JPH0337102A - Production of oxide superconductor by metal organic chemical vapor deposition method - Google Patents

Production of oxide superconductor by metal organic chemical vapor deposition method

Info

Publication number
JPH0337102A
JPH0337102A JP1169987A JP16998789A JPH0337102A JP H0337102 A JPH0337102 A JP H0337102A JP 1169987 A JP1169987 A JP 1169987A JP 16998789 A JP16998789 A JP 16998789A JP H0337102 A JPH0337102 A JP H0337102A
Authority
JP
Japan
Prior art keywords
oxide superconductor
organic metal
tetrahydrofuran
vapor deposition
organometallic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1169987A
Other languages
Japanese (ja)
Inventor
Shigeru Matsuno
繁 松野
Hidefusa Uchikawa
英興 内川
Kunihiko Egawa
江川 邦彦
Kiyoshi Yoshizaki
吉崎 浄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CHIYOUDENDOU HATSUDEN KANREN KIKI ZAIRYO GIJUTSU KENKYU KUMIAI
Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai
Original Assignee
CHIYOUDENDOU HATSUDEN KANREN KIKI ZAIRYO GIJUTSU KENKYU KUMIAI
Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CHIYOUDENDOU HATSUDEN KANREN KIKI ZAIRYO GIJUTSU KENKYU KUMIAI, Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai filed Critical CHIYOUDENDOU HATSUDEN KANREN KIKI ZAIRYO GIJUTSU KENKYU KUMIAI
Priority to JP1169987A priority Critical patent/JPH0337102A/en
Publication of JPH0337102A publication Critical patent/JPH0337102A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Chemical Vapour Deposition (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

PURPOSE:To stably supply a large amount of organic metal and to improve superconducting characteristics by adding tetrahydrofuran to an organic metal containing composition components of oxide superconductor and vaporizing the organic metal. CONSTITUTION:A transportation gas is introduced into a tetrahydrofuran tank 10 maintained at a fixed temperature, tetrahydrofuran 12 is sent to an organic metal tank 8 such as Ba-base heated to a fixed temperature to vaporize the Ba-based organic metal 9. Simultaneously, an organic metal 7 such as Y-base and an organic metal 9 such as Cu-base, etc., are vaporized. The gases of these organic metals 7, 8 and 9 are joined and sent with an oxidizing agent through a transportation gas passageway 1 to a reaction tube 3. A substrate 4 is heated by a heater 5 and an oxide superconductor is synthesized on a substrate 4 by heat reaction of the organic metal and the oxidizing agent.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、例えば磁界を発生する超電導コイル用の線
材に適用できる酸化物超電導体を得るための有機金属化
学気相蒸着法による酸化物超電導体の製造方法に関する
ものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is directed to the production of oxide superconductors using an organometallic chemical vapor deposition method to obtain oxide superconductors that can be applied, for example, to wires for superconducting coils that generate magnetic fields. The present invention relates to a method of manufacturing a body.

[従来の技術1 最近、磁気浮上列車、核磁気共鳴装置、物性研究用など
の分野において、運転コストの低い超電導コイル、磁気
シールド材、高周波空洞共振器などが望まれている。従
来の超電導コイルでは、臨界温度(Tc)の低い合金、
例えばNbTi(Tcは約10K)、あるいは金属間化
合物、例えばHbsSn(Tcは約18K)からなる超
電導線をコイル巻枠に巻回して製作されるために、超電
導コイルは液体ヘリウム温度(4,2K)で運転されて
いた。このために冷却に必要なコストが高く、かつ、シ
ステムが複雑になっていた。しかし、1987年になっ
て液体窒素温度(77K)で超電導性を示す非常に高い
Tcを有する酸化物超電導体が発見され、液体窒素温度
で超電導コイルが使用できる可能性が示された。この超
電導体はYBazCusO)’で代表される組成の酸化
物などである。
[Background Art 1] Recently, superconducting coils, magnetic shielding materials, high-frequency cavity resonators, etc. with low operating costs have been desired in fields such as magnetic levitation trains, nuclear magnetic resonance devices, and physical property research. In conventional superconducting coils, alloys with low critical temperature (Tc),
Superconducting coils are manufactured by winding a superconducting wire made of, for example, NbTi (Tc is about 10K) or an intermetallic compound, such as HbsSn (Tc is about 18K), around a coil frame. ) was being driven. For this reason, the cost required for cooling is high and the system is complicated. However, in 1987, an oxide superconductor with a very high Tc that exhibits superconductivity at liquid nitrogen temperature (77 K) was discovered, indicating the possibility of using superconducting coils at liquid nitrogen temperature. This superconductor is an oxide having a composition represented by YBazCusO)'.

これは通常Y2O5、BaC0,、CuOの各粉末を混
合、成形後、焼結熱処理して作製される。なお、この分
野の技術については、例えば、雑誌(フィジカルレビュ
(Phys rev、)58巻(1987)p、908
〜p、9101に記載されている。
This is usually produced by mixing Y2O5, BaC0, and CuO powders, molding, and then sintering heat treatment. Regarding the technology in this field, for example, see the magazine (Physical Review), Vol. 58 (1987), p. 908.
~p, 9101.

超電導コイルに適用される超電導線は高い臨界電流密度
(Jc)をもつことが要求される。また、従来の超電導
コイルに適用される超電導線は長い連続した線であるこ
と、かつ、長平方向に安定して優れた超電導特性を有す
ることが要求されている。
Superconducting wires used in superconducting coils are required to have a high critical current density (Jc). Furthermore, the superconducting wire used in conventional superconducting coils is required to be a long continuous wire and to have stable and excellent superconducting properties in the longitudinal direction.

しかしながら、Tcが高い酸化物超電導体はセラミック
スであるので、非常に脆弱であり、上記した焼結法では
長い連続した線を作るのが困難である。
However, since the oxide superconductor with a high Tc is a ceramic, it is very fragile, and it is difficult to make a long continuous wire using the above-mentioned sintering method.

一方、この材料を化学気相蒸着法(CVD法)によって
高速で厚膜状に合成することができれば、線材の製作も
可能になる。そこで、有機金属を原料としたCVD法に
よる酸化物超電導体の合成が試みられている。この有機
金属化学気相蒸着法(MOCVD法)では、有機金属を
加熱、気化してガス状にし、輸送ガスによって反応部に
輸送し、主として熱反応によって酸化物超電導体を合成
している。なお、この分野の従来技術については、例え
ば、雑誌(日本応用物理学会誌(J、Jpn、^pp1
.Phys、)27巻<1988)p、1265〜p、
12671に記載されている。
On the other hand, if this material can be synthesized into a thick film at high speed by chemical vapor deposition (CVD), it will also be possible to manufacture wire rods. Therefore, attempts have been made to synthesize oxide superconductors by the CVD method using organic metals as raw materials. In this metal organic chemical vapor deposition method (MOCVD method), an organic metal is heated and vaporized to a gaseous state, and transported to a reaction part by a transport gas to synthesize an oxide superconductor mainly through a thermal reaction. Regarding the conventional technology in this field, for example, please refer to the journal (Journal of the Japanese Society of Applied Physics (J, Jpn, ^pp1
.. Phys,) Volume 27 <1988) p, 1265-p,
12671.

[発明が解決しようとする課題] 従来の酸化物超電導体を製造するMOCVD法では、有
機金属を加熱によって気化しガス状にしてCVD反応部
に供給するが、酸化物を構成する元素の有機金属は非常
に気化しにくい上、気化量を多くするために加熱温度を
高くすると分解してしまうので、反応部へ多量の原料を
安定に輸送することができなかった。このため、合成速
度が極めて遅いため、線材化に必要な厚膜を形成するこ
とができず、線材化に対して大きな障害になっていた。
[Problems to be Solved by the Invention] In the conventional MOCVD method for manufacturing oxide superconductors, organic metals are vaporized by heating and supplied to the CVD reaction part in a gaseous state. is very difficult to vaporize, and it decomposes when the heating temperature is raised to increase the amount of vaporization, making it impossible to stably transport a large amount of raw material to the reaction section. For this reason, the synthesis speed is extremely slow, making it impossible to form a thick film necessary for making wire rods, which has been a major obstacle to making wire rods.

この発明は上記のような課題を解決するためになされた
もので、安定に多量の有機金属を供給することによって
、合成速度を飛躍的に大きくし、超電導特性の優れた厚
膜状の酸化物超電導体を得ることができる有機金属化学
気相蒸着法による酸化物超電導体の製造方法を得ること
を目的とする。
This invention was made to solve the above-mentioned problems. By stably supplying a large amount of organic metal, the synthesis rate can be dramatically increased, and a thick film-like oxide with excellent superconducting properties can be produced. The object of the present invention is to obtain a method for producing an oxide superconductor using an organometallic chemical vapor deposition method capable of obtaining a superconductor.

[課題を解決するための手段] この発明の第一の発明に係る有機金属化学気相蒸着法に
よる酸化物超電導体の製造方法は、酸化物超電導体の各
組成成分を含む有機金属の少なくとも1つにテトラヒド
ロフランを添加して気化させ、これらの気化した有機金
属を輸送ガスによって反応部に輸送する工程と、反応部
において輸送された有機金属と酸化剤との化学反応によ
って基板上に酸化物超電導体を合成する工程とからなっ
ている。
[Means for Solving the Problems] A method for producing an oxide superconductor by an organometallic chemical vapor deposition method according to the first aspect of the present invention is a method for producing an oxide superconductor using an organometallic chemical vapor deposition method according to the first aspect of the present invention. Oxide superconductivity is formed on the substrate through a process in which tetrahydrofuran is added to and vaporized, and these vaporized organic metals are transported to the reaction section by a transport gas, and a chemical reaction between the transported organic metals and the oxidizing agent occurs in the reaction section. It consists of a process of synthesizing the body.

また、第二の発明に係る有機金属化学気相蒸着法による
酸化物超電導体の製造方法は、第一の発明におけるテト
ラヒドロフランを入れた容器に輸送ガスを吹き込んで、
加熱した有機金属を入れた容器にテトラヒドロフランを
輸送し、加熱した有機金属にテトラヒドロフランを添加
する。
Further, a method for producing an oxide superconductor by organometallic chemical vapor deposition according to the second invention includes blowing a transport gas into the container containing tetrahydrofuran according to the first invention,
Transport the tetrahydrofuran to a container containing the heated organometal and add the tetrahydrofuran to the heated organometal.

さらに、第三の発明に係る有機金属化学気相蒸着法によ
る酸化物超電導体の製造方法は、第一第二の発明におけ
るテトラヒドロフランを入れた容器が一20〜20℃に
、有機金属を入れた容器が100〜300℃に保持され
る。
Furthermore, the method for producing an oxide superconductor by the organometallic chemical vapor deposition method according to the third invention is such that the organometallic material is placed in the container containing tetrahydrofuran at 120 to 20°C in the first and second inventions. The container is maintained at 100-300°C.

[作  用] この発明の第一の発明においては、一定の工程を施すこ
とによって有機金属を安定に、がっ、多量に反応部に輸
送できるので、合成速度を飛躍的に大きくし、超電導特
性の優れた厚膜状の酸化物超電導体が得られる。
[Function] In the first aspect of the present invention, by carrying out a certain process, the organic metal can be stably transported to the reaction part in large quantities, dramatically increasing the synthesis rate and improving superconducting properties. A thick film-like oxide superconductor with excellent properties can be obtained.

また、第二の発明においては、一定の容器間にテトラヒ
ドロフランを輸送することにより、製造操作が容易、安
定に行うことができる。
Moreover, in the second invention, by transporting tetrahydrofuran between fixed containers, the manufacturing operation can be performed easily and stably.

さらに、第三の発明においては、テトラヒドロフランお
よび有機金属の温度を、それぞれ一定範囲内で選択する
ことにより、超電導特性の優れた酸化物超電導体が得ら
れる。
Furthermore, in the third invention, an oxide superconductor with excellent superconducting properties can be obtained by selecting the temperatures of tetrahydrofuran and the organometallic within certain ranges.

[実施例] 以下、この発明を、その一実施例を示す代表的なYBa
zCu*Oy系酸化物超電導体について説明する。
[Example] This invention will be described below using a typical YBa
The zCu*Oy-based oxide superconductor will be explained.

第1図はこの発明の一実施例に供される反応装置であり
、図において、輸送ガス流路(1)、酸化剤輸送路(2
)による回路に反応管(3)が基板(4)を収納して配
置され、ヒーター(5)で加熱される。
FIG. 1 shows a reaction apparatus used in an embodiment of the present invention, and in the figure, a transport gas flow path (1), an oxidant transport path (2
) A reaction tube (3) containing a substrate (4) is placed in a circuit and heated by a heater (5).

(6)は排気口である。輸送ガス流路(1)には、Y系
有機金属槽(7) 、Ba系有機金属槽(8) 、Cu
系有機金属槽(9)、さらにテトラヒドロフラン槽(1
0)が配置されている。
(6) is an exhaust port. The transport gas flow path (1) includes a Y-based organometallic tank (7), a Ba-based organometallic tank (8), and a Cu
system organometallic tank (9), and further a tetrahydrofuran tank (1
0) is placed.

テトラヒドロフラン槽(10)は、第2図に示すように
輸送ガス流路(1〉が接続された恒温槽(11)にテト
ラヒドロフラン(12)が収納されている。
In the tetrahydrofuran tank (10), as shown in FIG. 2, tetrahydrofuran (12) is stored in a constant temperature bath (11) connected to a transport gas flow path (1>).

次に、製造方法につき具体的に説明する。輸送ガスを一
定の温度に保持したテトラヒドロフラン槽(10)に吹
き込むことに゛よってテトラヒドロフラン(12)を一
定温度に加熱したBih系有機金属槽(8)に輸送し、
Ba系有機金属を気化させる。同時に、一定温度に加熱
したY系有機金属(7) 、Cu系有機金属(9〉から
Y系有機金属ガス、Cu系有機金属ガスをそれぞれ気化
させ、これらを1つにして輸送ガス流路(1〉を通じて
、酸化剤とともに反応管(3〉に輸送する。次に、反応
管(3)の内部におかれた基板(4〉をヒーター(5〉
によって加熱し、輸送された有機金属と酸化剤との熱反
応によって酸化物超電導体を基板上に合成した。30分
間のき戒の後、大気圧の酸素雰囲気とし、10〜b温ま
で冷却を行ったところ、膜厚101輪のC軸配向したY
Ba2Cu、Oy系酸化物超電導体が得られた。このと
きの合成速度は20同/時であった。
Next, the manufacturing method will be specifically explained. By blowing the transport gas into the tetrahydrofuran tank (10) maintained at a constant temperature, the tetrahydrofuran (12) is transported to a Bih-based organometallic tank (8) heated to a constant temperature,
The Ba-based organic metal is vaporized. At the same time, Y-based organometallic gas and Cu-based organometallic gas are respectively vaporized from Y-based organometallic (7) and Cu-based organometallic (9) heated to a constant temperature, and these are combined into a transport gas flow path ( The substrate (4>) placed inside the reaction tube (3) is then transported to the reaction tube (3) together with the oxidizing agent through the heater (5>
The oxide superconductor was synthesized on the substrate through a thermal reaction between the transported organic metal and the oxidizing agent. After heating for 30 minutes, the atmosphere was made into an oxygen atmosphere at atmospheric pressure and cooled to a temperature of 10-100 m.
A Ba2Cu, Oy-based oxide superconductor was obtained. The synthesis rate at this time was 20 sims/hour.

なお、テトラヒドロフラン槽は一20〜20℃の範囲で
、適宜の温度に保ち、輸送ガスとしてアルゴンガスを用
い、その流量は10〜100cc/分、酸化剤としては
酸素ガスを用い、流量は50〜100cc/分であった
。また、原料の有機金属としてY、Da、。
The tetrahydrofuran tank was maintained at an appropriate temperature within the range of -20 to 20°C, argon gas was used as the transport gas, and the flow rate was 10 to 100 cc/min, and oxygen gas was used as the oxidizing agent, and the flow rate was 50 to 100 cc/min. It was 100cc/min. In addition, Y, Da, etc. are used as organic metals as raw materials.

Cuのβ−ジケトン錯体であるY(DPM)、、OIL
(DPM)2、Cu(DPH)、を用い、これらを太れ
た有機金属槽は100〜300℃の範囲の適宜の温度に
保持した8反応管(3)内部の真空度は1〜10tor
rとし、基板(4〉はMgOおよび5rTiO1の単結
晶を用い5基板温度は300〜900℃の範囲の適宜の
温度とした。
Y(DPM), which is a β-diketone complex of Cu, OIL
(DPM) 2 and Cu (DPH) were used in the 8 reaction tubes (3) in which these were kept at an appropriate temperature in the range of 100 to 300°C.The degree of vacuum inside was 1 to 10 torr.
The substrate (4) was a single crystal of MgO and 5rTiO1, and the temperature of the substrate (5) was an appropriate temperature in the range of 300 to 900°C.

また、比較のため、従来方法であるテトラヒドロフラン
を添加せずに同一の合成条件で合成した場合には、30
分の合成で膜厚が0.1pmのYBazCulOy系酸
化物超電導体を得た。このときの合成速度は0.2pm
/時であった。
In addition, for comparison, when synthesis was performed under the same synthesis conditions without adding tetrahydrofuran, which is the conventional method, 30
A YBazCulOy-based oxide superconductor with a film thickness of 0.1 pm was obtained by synthesis. The synthesis rate at this time is 0.2pm
/ It was time.

以上のように、テトラヒドロフランを添加することによ
って合成速度が極めて速くなったのは、テトラヒドロフ
ランが有機金属と反応して、表面で気化しやすい物質を
生威し、これにより多量の有機金属を安定に輸送できる
ようになったためと考えられる。
As mentioned above, the reason why the synthesis rate became extremely fast by adding tetrahydrofuran is that tetrahydrofuran reacts with the organic metal and produces a substance that easily vaporizes on the surface, thereby stabilizing a large amount of the organic metal. This is thought to be due to the fact that they can now be transported.

次に、得られた超電導体の電気抵抗の温度依存性を測定
し、Teを評価した。これによると、この発明の方法に
よる酸化物超電導体のTcは84にであったが、従来方
法によるものは58にと低かつた。また、液体窒素温度
でのJcの測定も行った結果、この発明の方法による酸
化物超電導体の、TCは1000A / a+*”であ
ったが、従来方法によるものはTeが液体窒素温度以下
のため超電導電流の通電ができなかった。このように、
この発明の方法によると、合成速度が従来に比べ100
倍と極めて速くなり、容易に厚膜状の酸化物超電導体が
得られ、また、Tc、 Jcはともに大幅に向上してい
た。
Next, the temperature dependence of the electrical resistance of the obtained superconductor was measured, and Te was evaluated. According to this, the Tc of the oxide superconductor produced by the method of the present invention was 84, while that of the oxide superconductor produced by the conventional method was as low as 58. In addition, as a result of measuring Jc at liquid nitrogen temperature, the TC of the oxide superconductor made by the method of this invention was 1000A/a+*'', but the TC of the oxide superconductor made by the conventional method was 1000 Therefore, superconducting current could not be passed.In this way,
According to the method of this invention, the synthesis speed is 100 times faster than before.
It was twice as fast, a thick film-like oxide superconductor was easily obtained, and both Tc and Jc were significantly improved.

なお、以上の実施例では、最も気化しにくいBa系有機
金属にテトラヒドロフランを添加した場合について述べ
たが、Y系有機金属および/またはCu系有機金属に添
加することもさらに合成速度を速くする効果がある。ま
た、原料の有機金属として上記の実施例で用いたY 、
 Ba、 CuのDP14系の他に、Y(IF^)1、
Ba(IF^)2、Cu()IF^)2を用いても同様
の効果が得られる。 HFA系についてもBa(!(F
^)2に添加するのが最も効果的である。上記の製造方
法はYBaCuO系のものであるが、原料にBi、 S
r−Ca、Cu、Pb、 Ti、Ba系の有機金属を用
い、適当に組み合わせることによってB i Pb5r
CaCuO系超電導体、TiBaCaCuo系超電導体
などの系内電導体超電導体についても、同様の効果が得
られる。
In addition, in the above example, the case where tetrahydrofuran was added to the Ba-based organic metal, which is the most difficult to vaporize, was described, but adding it to the Y-based organic metal and/or the Cu-based organic metal also has the effect of further speeding up the synthesis rate. There is. In addition, Y, which was used in the above example as a raw material organometallic,
In addition to Ba and Cu DP14 series, Y(IF^)1,
Similar effects can be obtained by using Ba(IF^)2 and Cu()IF^)2. Regarding HFA series, Ba(!(F
^) It is most effective to add it to 2. The above manufacturing method is based on YBaCuO, but the raw materials include Bi, S
By appropriately combining r-Ca, Cu, Pb, Ti, and Ba-based organic metals, B i Pb5r
Similar effects can be obtained with intra-system conductor superconductors such as CaCuO-based superconductors and TiBaCaCuo-based superconductors.

[発明の効果] 以上のように、この発明の第一の発明によれば、酸化物
超電導体の各組成成分を含む有機金属を加熱することに
よって気化させる工程と、気化した有機金属を輸送ガス
によって反応部に輸送する工程と、反応部において輸送
された有機金属と酸化剤との化学反応によって基板上に
酸化物超電導体を合成する工程とからなる酸化物超電導
体の製造方法において、加熱した有機金属の少なくとも
1つにテトラヒドロフランを添加する゛ことによって、
有機金属を安定に、かつ、多量に輸送するようにしたの
で、合成速度が極めて速くなり、従ってTc、Jcなと
の超電導特性の優れた厚膜状の酸化物超電導体を効率良
く製造することができる効果がある。
[Effects of the Invention] As described above, according to the first aspect of the present invention, there is a step of vaporizing an organic metal containing each compositional component of an oxide superconductor by heating it, and a step of vaporizing the vaporized organic metal with a transport gas. In a method for manufacturing an oxide superconductor, the oxide superconductor is synthesized on a substrate by a chemical reaction between the organic metal transported and the oxidizing agent in the reaction section. By adding tetrahydrofuran to at least one of the organic metals,
Since the organic metal is transported stably and in large quantities, the synthesis rate is extremely fast, and therefore thick film-like oxide superconductors with excellent superconducting properties such as Tc and Jc can be efficiently manufactured. It has the effect of

また、第二の発明によれば、テトラヒドロフランを入れ
た容器に輸送ガスを吹き込んで加熱した有機金属を入れ
た容器に輸送し、テトラヒドロフランを加熱した有機金
属に添加するようにしたので、上記の効果に加え、製造
操作が容易、安定にできる。
Furthermore, according to the second invention, a transport gas is blown into a container containing tetrahydrofuran to transport it to a container containing a heated organic metal, and tetrahydrofuran is added to the heated organic metal, so that the above-mentioned effects can be achieved. In addition, manufacturing operations are easy and stable.

さらに、第三の発明によれば、テトラヒドロフランを入
れた容器を一20〜20℃に、有機金属を入れた容器を
100〜300℃に保持することとし、これらの温度を
適宜に選択することにより、上記の効果に加え、さらに
超電導特性の優れたものが得られる効果がある。
Furthermore, according to the third invention, by maintaining the container containing tetrahydrofuran at -20 to 20°C and the container containing the organic metal at 100 to 300°C, and selecting these temperatures appropriately. In addition to the above-mentioned effects, there is the effect that even more excellent superconducting properties can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例を説明するための反応装置
の回路図、第2図は第1図におけるテトラヒドロフラン
槽の正断面図である。 (1)・・・輸送ガス流路、(2)・・・酸化剤輸送路
、(3〉・・・反応管、(4)・・・基板、(5)・・
・ヒーター、(6〉・・・排気口、(7〉・・・Y系有
機金属槽、(8)・・・Ba系有機金属槽、(9〉・・
・Cu系有機金属槽、(10)・・・テトラヒドロフラ
ン槽、(11)・・・恒温槽、(12〉・・・テトラヒ
ドロフラン。 なお、各図中、同一符号は同一または相当部分を示す。 4:基板 7.8,9 :育槻f属層 10: テトラヒドロフラ 第 図
FIG. 1 is a circuit diagram of a reaction apparatus for explaining one embodiment of the present invention, and FIG. 2 is a front sectional view of the tetrahydrofuran tank in FIG. 1. (1)... Transport gas flow path, (2)... Oxidizer transport path, (3>... Reaction tube, (4)... Substrate, (5)...
・Heater, (6>...Exhaust port, (7>...Y-based organometallic tank, (8)...Ba-based organometallic tank, (9>...
・Cu-based organometallic bath, (10)...Tetrahydrofuran bath, (11)...Thermostatic bath, (12>...Tetrahydrofuran. In each figure, the same reference numerals indicate the same or equivalent parts. 4 : Substrate 7.8, 9 : Ikutsuki f-group layer 10 : Tetrahydrofura diagram

Claims (3)

【特許請求の範囲】[Claims] (1).酸化物超電導体の各組成成分を含む有機金属を
加熱することによつて気化させる工程と、気化した前記
有機金属を輸送ガスによって反応部に輸送する工程と、
前記反応部において輸送された前記有機金属と酸化剤と
の化学反応によって基板上に前記酸化物超電導体を合成
する工程とからなる酸化物超電導体の製造方法において
、加熱した前記有機金属の少なくとも1つにテトラヒド
ロフランを添加する工程を含むことを特徴とする有機金
属化学気相蒸着法による酸化物超電導体の製造方法。
(1). a step of vaporizing an organic metal containing each compositional component of the oxide superconductor by heating; a step of transporting the vaporized organic metal to a reaction part by a transport gas;
A method for producing an oxide superconductor comprising the step of synthesizing the oxide superconductor on a substrate by a chemical reaction between the organic metal transported in the reaction section and an oxidizing agent, wherein at least one of the heated organic metals 1. A method for producing an oxide superconductor by an organometallic chemical vapor deposition method, the method comprising the step of adding tetrahydrofuran to the oxide superconductor.
(2).テトラヒドロフランを入れた容器に輸送ガスを
吹き込み、加熱した有機金属を入れた容器に輸送するこ
とによつて、前記テトラヒドロフランを加熱した前記有
機金属に添加する請求項(1)記載の有機金属化学気相
蒸着法による酸化物超電導体の製造方法。
(2). The organometallic chemical vapor phase according to claim 1, wherein the tetrahydrofuran is added to the heated organometallic by blowing a transport gas into a container containing tetrahydrofuran and transporting the tetrahydrofuran to a container containing the heated organometal. A method for producing an oxide superconductor using a vapor deposition method.
(3).テトラヒドロフランを入れた容器を−20〜2
0℃に、有機金属を入れた容器を100〜300℃にそ
れぞれ保持する請求項(1)または(2)記載の有機金
属化学気相蒸着法による酸化物超電導体の製造方法。
(3). -20~2 container containing tetrahydrofuran
The method for producing an oxide superconductor by the organometallic chemical vapor deposition method according to claim 1 or 2, wherein the temperature is maintained at 0°C and the container containing the organometallic is maintained at 100 to 300°C.
JP1169987A 1989-07-03 1989-07-03 Production of oxide superconductor by metal organic chemical vapor deposition method Pending JPH0337102A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1169987A JPH0337102A (en) 1989-07-03 1989-07-03 Production of oxide superconductor by metal organic chemical vapor deposition method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1169987A JPH0337102A (en) 1989-07-03 1989-07-03 Production of oxide superconductor by metal organic chemical vapor deposition method

Publications (1)

Publication Number Publication Date
JPH0337102A true JPH0337102A (en) 1991-02-18

Family

ID=15896498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1169987A Pending JPH0337102A (en) 1989-07-03 1989-07-03 Production of oxide superconductor by metal organic chemical vapor deposition method

Country Status (1)

Country Link
JP (1) JPH0337102A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01308805A (en) * 1988-06-06 1989-12-13 Mitsubishi Metal Corp Production of filmy superconductor
JPH01308802A (en) * 1988-06-06 1989-12-13 Mitsubishi Metal Corp Production of filmy superconductor and device therefor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01308805A (en) * 1988-06-06 1989-12-13 Mitsubishi Metal Corp Production of filmy superconductor
JPH01308802A (en) * 1988-06-06 1989-12-13 Mitsubishi Metal Corp Production of filmy superconductor and device therefor

Similar Documents

Publication Publication Date Title
Schulz et al. MOCVD routes to thin metal oxide films for superconducting electronics
US5162296A (en) Plasma-enhanced CVD of oxide superconducting films by utilizing a magnetic field
Zhang et al. Formation of oriented high Tc superconducting Bi‐Sr‐Ca‐Cu‐O thin films on silver substrates by organometallic chemical vapor deposition
Enstrom et al. Compounds and Alloys for Superconducting Applications
JPH0337102A (en) Production of oxide superconductor by metal organic chemical vapor deposition method
US7090889B2 (en) Boride thin films on silicon
US5883050A (en) Hg-based superconducting cuprate films
JPH0489378A (en) Production of oxide superconductor by chemical vapor deposition method of organic metal
JP3897550B2 (en) Preparation method of boride superconductor thin film
JP5764404B2 (en) Superconducting wire manufacturing method
JPH0337101A (en) Production of oxide superconductor by mocvd method
JP5468857B2 (en) Superconducting wire manufacturing method and CVD apparatus
JP2821207B2 (en) Method for synthesizing oxide superconductor by MOCVD method
JPH0375207A (en) Production of thin film of oxide superconductor
JPH04224112A (en) Production of thin film of oxide superconductor
JP2668532B2 (en) Preparation method of superconducting thin film
Tesfamichael et al. Ab-initio Study of Atomic Scale Interaction Among Nb, Sn, Cl, and O
JPH03170304A (en) Apparatus for producing oxide superconductor
JPH05147905A (en) Production of oxide superconductor
JPS63314719A (en) Manufacture of ceramic superconductive formed body
JPH06187848A (en) Oxide superconducting wire and manufacture thereof
KR20040014642A (en) Manufacturing method for superconductive Magnesium Boride thin-film
JPH01202875A (en) Manufacture of superconductive material structure
JPS63274027A (en) Manufacture of superconductive material
JPH01106479A (en) Superconductive material structure