JPH04224112A - Production of thin film of oxide superconductor - Google Patents

Production of thin film of oxide superconductor

Info

Publication number
JPH04224112A
JPH04224112A JP2413119A JP41311990A JPH04224112A JP H04224112 A JPH04224112 A JP H04224112A JP 2413119 A JP2413119 A JP 2413119A JP 41311990 A JP41311990 A JP 41311990A JP H04224112 A JPH04224112 A JP H04224112A
Authority
JP
Japan
Prior art keywords
thin film
reactor
oxygen
gas
reaction furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2413119A
Other languages
Japanese (ja)
Inventor
Hideyuki Kurosawa
黒澤秀行
Seiji Hasei
長谷井政治
Toshio Hirai
平井敏雄
Hisanori Yamane
山根久典
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Riken Corp
Japan Science and Technology Agency
Original Assignee
Riken Corp
Research Development Corp of Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Riken Corp, Research Development Corp of Japan filed Critical Riken Corp
Priority to JP2413119A priority Critical patent/JPH04224112A/en
Publication of JPH04224112A publication Critical patent/JPH04224112A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To lower deposition temp. and to improve superconductivity by introducing beta-diketone metallic complexes containing Y, Ba, and Cu into a reaction furnace having specific partial pressure of oxygen and subjecting the complexes to chemical vapor deposition. CONSTITUTION:Oxygen gas 6 is introduced into a reaction furnace 7 and the pressure in the reaction furnace 7 is reduced by means of a vacuum pump 10, by which the partial pressure of oxygen in the reaction furnace 7 is held at <=0.5Torr. Subsequently, beta-diketone metallic complexes 1,2,3 containing Y, B, and Cu are heated by heaters 4, respectively, and evaporated, and the evaporated complexes 1,2,3 are introduced on inert gases 5 into the reaction furnace 7 and decomposed by means of heating by a heater 9, by which a thin film of oxide superconductor can be deposited onto a substrate 8.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は化学気相析出法によって
形成されるY系酸化物超電導薄膜の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a Y-based oxide superconducting thin film formed by chemical vapor deposition.

【0002】0002

【従来の技術】化学気相析出法(CVDとも以下云う)
によるY系酸化物超電導薄膜(YBa2 Cu3 O7
 −y)の合成を用い、既に超電導転移温度(Tc)や
臨界電流密度(Jc)などの超電導特性に優れた薄膜が
提供されている。また、CVDによって合成された薄膜
は、20テスラ(T)以上の高磁場巾でも高いJcを維
持しているなどの特徴があり、その実用化が期待されて
いる。しかし、優れた超電導特性が報告されている薄膜
の析出温度は850℃から950℃であり、超電導デバ
イスなどへCVD薄膜を応用するためには、析出温度の
低温化が必要とされている。
[Prior art] Chemical vapor deposition method (also referred to hereinafter as CVD)
Y-based oxide superconducting thin film (YBa2 Cu3 O7
-y) has already been used to provide thin films with excellent superconducting properties such as superconducting transition temperature (Tc) and critical current density (Jc). Furthermore, thin films synthesized by CVD have the characteristic of maintaining a high Jc even in high magnetic field widths of 20 Tesla (T) or more, and are expected to be put into practical use. However, the deposition temperature of thin films that have been reported to have excellent superconducting properties is 850°C to 950°C, and in order to apply CVD thin films to superconducting devices, it is necessary to lower the deposition temperature.

【0003】低い温度でY系酸化物超電導薄膜を合成す
る試みは、酸化ガスにN2 OガスやO3 ガスを用い
た熱CVDや薄膜合成時の炉内全圧力を調整した熱CV
D、あるいはマイクロ波プラズマなどのプラズマを用い
たCVDなどにより検討されている。
[0003] Attempts to synthesize Y-based oxide superconducting thin films at low temperatures include thermal CVD using N2O gas or O3 gas as the oxidizing gas, and thermal CVD that adjusts the total pressure in the furnace during thin film synthesis.
D, CVD using plasma such as microwave plasma, etc. are being considered.

【0004】酸化ガスにN2 OやO3 を用いた熱C
VDでは、析出温度650℃で超電導薄膜が合成されて
いるが、Tcゼロの値は80K以下である。また合成時
の炉内全圧力の調整による熱CVDでは、炉内全圧力1
.5Torr、、析出温度700℃で83KのTcが報
告されている。しかし、これらの方法による超電導薄膜
の合成ではJcについての報告はなされておらず、析出
温度700℃付近でJcの高い薄膜は得られていない。
[0004] Thermal C using N2 O or O3 as oxidizing gas
In VD, a superconducting thin film is synthesized at a deposition temperature of 650°C, but the value of Tc zero is 80K or less. In addition, in thermal CVD by adjusting the total pressure in the furnace during synthesis, the total pressure in the furnace is 1
.. A Tc of 83 K at a precipitation temperature of 700° C. is reported to be 5 Torr. However, there has been no report on Jc in the synthesis of superconducting thin films by these methods, and no thin film with high Jc has been obtained at a deposition temperature of around 700°C.

【0005】プラズマCVDでは、マイクロ波プラズマ
の導入により、析出温度580℃でTcが85K、77
K、OTでのJcが105 A/cm2 の膜が合成さ
れている。また、プラズマCVDで酸化ガスにN2 O
を用い、析出温度670℃から730℃でTcが89K
、77K、OTで105 A/cm2 のJcが報告さ
れている。しかし、プラズマを導入するためには、熱C
VDよりも高真空を必要とし、またプラズマを発生させ
る発振機なども必要となる。このため薄膜合成装置は非
常に高価になり、また装置の大型化なども熱CVDの場
合よりも難しい。
In plasma CVD, by introducing microwave plasma, Tc is 85K and 77K at a deposition temperature of 580°C.
A film with a Jc of 105 A/cm2 at K and OT has been synthesized. In addition, N2O is added to the oxidizing gas by plasma CVD.
Tc was 89K at a precipitation temperature of 670°C to 730°C.
, 77K, OT of 105 A/cm2 has been reported. However, in order to introduce plasma, heat C
It requires a higher vacuum than VD, and also requires an oscillator to generate plasma. For this reason, thin film synthesis equipment becomes extremely expensive, and it is more difficult to increase the size of the equipment than in the case of thermal CVD.

【0006】[0006]

【本発明が解決しようとする課題】本発明は、前述した
従来技術の問題点に着目してなされたもので、装置の大
型化が容易で量産性に優れた熱CVDによって、低い析
出温度で超電導特性に優れたY系超電導薄膜を製造する
方法を提供することを目的としている。
[Problems to be Solved by the Invention] The present invention has been made by focusing on the problems of the prior art described above. The object of the present invention is to provide a method for manufacturing a Y-based superconducting thin film with excellent superconducting properties.

【0007】[0007]

【課題を解決するための手段】本発明は前述した課題を
解決するため、少なくともイットリウム、バリウム、銅
を含むβ−ジケトン金属錯体を蒸発源原料に用いた化学
気相析出法によるY系超電導薄膜の製造方法を用い、薄
膜合成において反応炉内の酸素分圧を制御する手段を採
用する。
[Means for Solving the Problems] In order to solve the above-mentioned problems, the present invention provides a Y-based superconducting thin film produced by chemical vapor deposition using a β-diketone metal complex containing at least yttrium, barium, and copper as an evaporation source material. This method uses a method to control the oxygen partial pressure in the reactor during thin film synthesis.

【0008】より具体的な本発明の製造方法は、反応炉
内に導入されるArのごとき不活性ガスの流量と酸素ガ
ス、あるいは、酸素ガスをArガスなどの不活性ガスで
希釈した混合ガスの流量、さらに、反応炉内の圧力によ
って反応炉内における酸素分圧の制御を行う。
More specifically, the manufacturing method of the present invention includes the flow rate of an inert gas such as Ar introduced into the reactor and oxygen gas, or a mixed gas in which oxygen gas is diluted with an inert gas such as Ar gas. The oxygen partial pressure in the reactor is controlled by the flow rate and the pressure in the reactor.

【0009】反応炉内に導入される不活性ガスの流量は
、各原料蒸気を反応炉内の基板上に導入するために用い
るキャリアガスの流量である。またキャリアガスとキャ
リアガスとは別経路で反応炉内に導入する不活性ガスの
流量である。さらに、これらの不活性ガスと酸素ガスを
不活性ガスで希釈したガス中における不活性ガスの流量
である。
The flow rate of the inert gas introduced into the reactor is the flow rate of the carrier gas used to introduce each raw material vapor onto the substrate in the reactor. Further, the carrier gas and the carrier gas are flow rates of an inert gas introduced into the reactor through separate routes. Furthermore, it is the flow rate of the inert gas in a gas obtained by diluting these inert gases and oxygen gas with an inert gas.

【0010】酸素ガスの流量とは、導入する酸素ガスの
流量、あるいは、不活性ガスで希釈されたガス中におけ
る酸素ガスの流量である。ここで、反応炉内に導入され
る酸素ガスの流量は、少なくとも反応炉内に導入される
各原料蒸気が分解重合し、Y系酸化物超電導体を形成で
きる流量を意味する。
The flow rate of oxygen gas is the flow rate of oxygen gas introduced or the flow rate of oxygen gas in a gas diluted with an inert gas. Here, the flow rate of oxygen gas introduced into the reactor means a flow rate at which each raw material vapor introduced into the reactor can be decomposed and polymerized to form a Y-based oxide superconductor.

【0011】反応炉内の圧力は減圧であり、熱Torr
から数10Torrの範囲が好ましい。数10Torr
以上の圧力では、反応炉内のガスの流速が遅くなるため
に、基体の手前において原料ガスが分解重合する割合が
多くなるため薄膜が形成されにくくなる。また、数To
rr以下の圧力では、真空排気装置の排気能力を高める
ため大型の真空ポンプやメカニカルポンプなどが必要と
なる。
The pressure inside the reactor is reduced, and the heat Torr
to several tens of Torr is preferable. Several 10 Torr
At the above pressure, the flow rate of the gas in the reactor becomes slow, and the ratio of decomposition and polymerization of the raw material gas in front of the substrate increases, making it difficult to form a thin film. Also, the number To
At pressures below rr, a large vacuum pump or mechanical pump is required to increase the evacuation capacity of the evacuation device.

【0012】反応炉内の酸素分圧は、反応炉内における
全ガスの流量に対する酸素ガスの流量と反応炉内の圧力
によって任意に制御でき、制御する酸素分圧は少なくと
も0.5Torr以下とする。0.5Torrよりも高
い酸素分圧において膜を合成すると、800℃以下の低
い析出温度で超電導特性に優れた薄膜が得られにくい。 好ましくは、10−eTorrオーダーの酸素分圧であ
る。
[0012] The oxygen partial pressure in the reactor can be arbitrarily controlled by the flow rate of oxygen gas relative to the flow rate of all gases in the reactor and the pressure in the reactor, and the oxygen partial pressure to be controlled is at least 0.5 Torr or less. . When a film is synthesized at an oxygen partial pressure higher than 0.5 Torr, it is difficult to obtain a thin film with excellent superconducting properties at a low deposition temperature of 800° C. or lower. Preferably, the oxygen partial pressure is on the order of 10-eTorr.

【0013】[0013]

【作用】以上のような製造方法によれば、プラズマや酸
素以外の酸化ガスを用いることなく通常の熱CVDによ
って、低い析出温度でY系超電導薄膜を合成することが
できる。
[Function] According to the manufacturing method described above, a Y-based superconducting thin film can be synthesized at a low deposition temperature by ordinary thermal CVD without using plasma or oxidizing gases other than oxygen.

【0014】以下図1〜図3を参照して本発明の実施例
を説明する。
Embodiments of the present invention will be described below with reference to FIGS. 1 to 3.

【0015】(実施例1)図1は、本発明の製造方法に
おいて適用可能なホット・ウォール型の熱CVD装置の
一例を示す図である。
(Embodiment 1) FIG. 1 is a diagram showing an example of a hot wall type thermal CVD apparatus applicable to the manufacturing method of the present invention.

【0016】原料物質にY、Ba、Cuのthd錯体(
thd:2,2,6,6−tetrametyl−3,
5−heptanditonato)1、2、3を用い
た。各原料を106℃から242℃の範囲でヒータ4に
より加熱蒸発させ、それぞれ流量150ml/min 
のArガス5を用いて反応炉7内に導入した。酸素ガス
6は、1%酸素ガスを含むAr希釈ガスを用い、別経路
で流量250ml/min を反応炉内に導入した。反
応炉7内は真空ポンプ10により減圧とし、圧力は10
Torrとした。この条件での酸素分圧は0.036T
orrである。基板8には、鏡面研磨したSrTiO3
 (100)単結晶基板を用いた。ヒータ9による析出
温度650℃、700℃で成膜を行った。析出時間は3
0分とした。析出終了後、酸素1気圧下で析出温度から
約150℃まで10℃/min で冷却するin−si
tu酸素処理を行った。
[0016] A thd complex of Y, Ba, and Cu (
thd:2,2,6,6-tetramethyl-3,
5-heptanditotonato) 1, 2, and 3 were used. Each raw material is heated and evaporated with a heater 4 in the range of 106°C to 242°C, each with a flow rate of 150ml/min.
The Ar gas 5 was introduced into the reactor 7 using Ar gas 5. As the oxygen gas 6, an Ar dilution gas containing 1% oxygen gas was used and introduced into the reactor at a flow rate of 250 ml/min through a separate route. The pressure inside the reactor 7 is reduced by the vacuum pump 10, and the pressure is 10
Torr. The oxygen partial pressure under this condition is 0.036T
It is orr. The substrate 8 is made of mirror-polished SrTiO3.
A (100) single crystal substrate was used. Film formation was performed at a deposition temperature of 650° C. and 700° C. using a heater 9. The precipitation time is 3
It was set to 0 minutes. After the precipitation is completed, in-si cooling is performed at a rate of 10°C/min from the precipitation temperature to approximately 150°C under 1 atm of oxygen.
tu oxygen treatment was performed.

【0017】析出温度700℃で得られた膜のX線回折
パターンを図2に示す。(001)のピークの強度が大
きく、c軸配向した膜が形成された。析出温度650℃
においてもc軸配向した膜が形成された。図3には70
0℃で析出した膜の抵抗率の温度依存性を示す。この膜
の抵抗率は、温度の低下とともに直線的に減少し、89
Kでゼロ抵抗を示した。650℃で析出した膜も83K
でゼロ抵抗を示した。700℃で析出した膜は、77K
、OTにおいて2.2×106 A/cm2 のJcを
示した。
The X-ray diffraction pattern of the film obtained at a precipitation temperature of 700° C. is shown in FIG. The intensity of the (001) peak was high, and a c-axis oriented film was formed. Precipitation temperature 650℃
Also, a c-axis oriented film was formed. 70 in Figure 3
The temperature dependence of the resistivity of a film deposited at 0°C is shown. The resistivity of this film decreases linearly with decreasing temperature, 89
It showed zero resistance at K. The film deposited at 650℃ also has a temperature of 83K.
It showed zero resistance. The film deposited at 700℃ is 77K
, showed a Jc of 2.2×106 A/cm2 in OT.

【0018】(実施例2)実施例1と同じ原料1、2、
3を用い、各原料を128℃から242℃の範囲で加熱
蒸発させ、それぞれ流量150ml/min のArガ
ス5を用いて反応炉7内に導入した。酸素ガス6は、0
.5%酸素ガスを含むAr希釈ガスを用い、別経路で流
量250ml/min を反応炉内に導入した。反応炉
内は真空ポンプ10により減圧とし、圧力は10Tor
rとした。この条件での酸素分圧は0.018Torr
である。基板8には、鏡面研磨したSrTiO3 (1
00)単結晶基板を用いた。ヒータ9による析出温度6
50℃、700℃で成膜を行った。析出時間は30分と
した。析出終了後、酸素1気圧下で析出温度から約15
0℃まで15℃/minで冷却するin−situ酸素
処理を行った。
(Example 2) Same raw materials 1, 2, and as in Example 1
Each raw material was heated and evaporated in the range of 128° C. to 242° C. using Ar gas 5 at a flow rate of 150 ml/min. Oxygen gas 6 is 0
.. Ar dilution gas containing 5% oxygen gas was introduced into the reactor at a flow rate of 250 ml/min via a separate route. The pressure inside the reactor is reduced by a vacuum pump 10, and the pressure is 10 Torr.
It was set as r. The oxygen partial pressure under this condition is 0.018 Torr
It is. The substrate 8 is made of mirror-polished SrTiO3 (1
00) A single crystal substrate was used. Deposition temperature 6 by heater 9
Film formation was performed at 50°C and 700°C. The precipitation time was 30 minutes. After the completion of precipitation, the temperature is reduced to about 15% from the precipitation temperature under 1 atm of oxygen.
In-situ oxygen treatment was performed by cooling to 0°C at a rate of 15°C/min.

【0019】いずれの析出温度においてもc軸配向した
膜が形成された。また、膜は液体窒素温度以上のTcを
有し、700℃で析出させた膜で87K、650℃で析
出させた膜で85Kを示した。
A c-axis oriented film was formed at any precipitation temperature. Further, the film had a Tc higher than the liquid nitrogen temperature, and the film deposited at 700°C showed a temperature of 87K, and the film deposited at 650°C showed a temperature of 85K.

【0020】(実施例3)実施例1と同じ原料を用い、
各原料を128℃から242℃の範囲で加熱蒸発させ、
それぞれ流量150ml/min のArガスを用いて
反応炉内に導入した。また上記Arガスとは別経路で反
応炉内に215ml/min の流量でArガスを導入
した。酸素ガスは、純酸素ガス(99.9%)を用い、
別経路で流量35ml/min を反応炉内に導入した
。この条件での酸素分圧は0.5Torrである。
(Example 3) Using the same raw materials as in Example 1,
Each raw material is heated and evaporated in the range of 128°C to 242°C,
Ar gas was introduced into the reactor at a flow rate of 150 ml/min. Furthermore, Ar gas was introduced into the reactor through a different route from the above Ar gas at a flow rate of 215 ml/min. Pure oxygen gas (99.9%) was used as the oxygen gas,
A flow rate of 35 ml/min was introduced into the reactor via a separate route. The oxygen partial pressure under this condition is 0.5 Torr.

【0021】基板には、鏡面研磨したSrTiO3 (
100)単結晶基板を用いた。析出温度750℃と80
0℃で成膜を行った。析出時間は30分とした。析出終
了後、酸素1気圧下で析出温度から約150℃まで15
℃/min で冷却するin−situ酸素処理を行っ
た。
The substrate is made of mirror-polished SrTiO3 (
100) A single crystal substrate was used. Precipitation temperature 750℃ and 80℃
Film formation was performed at 0°C. The precipitation time was 30 minutes. After the completion of the precipitation, the temperature was increased from the precipitation temperature to approximately 150°C for 15 minutes under 1 atm of oxygen.
In-situ oxygen treatment was performed with cooling at °C/min.

【0022】いずれの析出温度においてもc軸配向した
膜が形成された。800℃で析出させた膜で88K、7
50℃で析出させた膜でも88KのTcを示した。また
800℃で析出させた膜は、77K、OTで3×105
 A/cm2 のJcを示した。
A c-axis oriented film was formed at any precipitation temperature. 88K, 7 for a film deposited at 800℃
The film deposited at 50° C. also showed a Tc of 88K. In addition, the film deposited at 800℃ was 3×105 at 77K, OT.
It showed a Jc of A/cm2.

【0023】[0023]

【発明の効果】上述した製造方法によって合成されたY
系超電導薄膜は、低い析出温度で形成され、また、超電
導特性にも優れていることから超電導デバイスや半導体
デバイスと複合化したデバイスなどへの応用展開が可能
となる。
[Effect of the invention] Y synthesized by the above-mentioned production method
Since superconducting thin films are formed at low precipitation temperatures and have excellent superconducting properties, they can be applied to superconducting devices and devices combined with semiconductor devices.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の製造方法に使用可能な装置の断面図。FIG. 1 is a sectional view of an apparatus that can be used in the manufacturing method of the present invention.

【図2】本発明の実施例による薄膜のX線回折図形。FIG. 2 is an X-ray diffraction pattern of a thin film according to an example of the present invention.

【図3】本発明の実施例による薄膜の抵抗率の温度依存
性の図。
FIG. 3 is a diagram of temperature dependence of resistivity of a thin film according to an example of the present invention.

【符号の説明】[Explanation of symbols]

1、2、3…原料 4…原料加熱ヒータ 5…不活性ガス 6…酸素ガス 7…反応炉 8…基板 9…基板加熱ヒータ 10…真空ポンプ 1, 2, 3...raw materials 4... Raw material heating heater 5...Inert gas 6...Oxygen gas 7...Reactor 8...Substrate 9...Substrate heating heater 10...Vacuum pump

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  Y、Ba、Cuを少なくとも含むβ−
ジケトン金属錯体を蒸発源原料に用いた化学気相析出法
によりYBa2 Cu3 O7 −yなる酸化物超電導
薄膜を製造する方法において、薄膜形成時の反応炉内の
酸素分圧を0.5Torr以下にすることを特徴とする
薄膜を製造する製造方法。
Claim 1: β- containing at least Y, Ba, and Cu
In a method for producing an oxide superconducting thin film of YBa2 Cu3 O7 -y by a chemical vapor deposition method using a diketone metal complex as an evaporation source material, the oxygen partial pressure in the reactor during thin film formation is set to 0.5 Torr or less. A manufacturing method for manufacturing a thin film characterized by the following.
【請求項2】  反応炉内における酸素分圧を反応炉内
に導入する不活性ガスおよび酸素ガスの流量と反応炉内
の全圧力により制御することを特徴とする請求項1記載
の薄膜製造方法。
2. The thin film manufacturing method according to claim 1, wherein the oxygen partial pressure in the reactor is controlled by the flow rates of inert gas and oxygen gas introduced into the reactor and the total pressure in the reactor. .
JP2413119A 1990-12-21 1990-12-21 Production of thin film of oxide superconductor Pending JPH04224112A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2413119A JPH04224112A (en) 1990-12-21 1990-12-21 Production of thin film of oxide superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2413119A JPH04224112A (en) 1990-12-21 1990-12-21 Production of thin film of oxide superconductor

Publications (1)

Publication Number Publication Date
JPH04224112A true JPH04224112A (en) 1992-08-13

Family

ID=18521817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2413119A Pending JPH04224112A (en) 1990-12-21 1990-12-21 Production of thin film of oxide superconductor

Country Status (1)

Country Link
JP (1) JPH04224112A (en)

Similar Documents

Publication Publication Date Title
Nakayama et al. Superconductivity of Bi2Sr2Ca n− 1Cu n O y (n= 2, 3, 4, and 5) thin films prepared in situ by molecular‐beam epitaxy technique
US6074768A (en) Process for forming the oxide superconductor thin film and laminate of the oxide superconductor thin films
CA1322514C (en) Thin film of single crystal of lna_cu_o___ having three-layered perovskite structure and process for producing the same
US5116811A (en) Cvd method for the formation of bi-containing superconducting thin films
JPH01104774A (en) Production of thin film of oxide superconductor
JPH04224112A (en) Production of thin film of oxide superconductor
US6569813B2 (en) Method of producing oxide superconductive composite material
JPH0337101A (en) Production of oxide superconductor by mocvd method
JPH0196015A (en) Formation of superconducting thin film
JP3038758B2 (en) Method for producing oxide superconducting thin film
JPH04349107A (en) Formation of oxide superconducting thin film
JP2818701B2 (en) Surface treatment method for oxide high-temperature superconductor
JP2668532B2 (en) Preparation method of superconducting thin film
JPS63314719A (en) Manufacture of ceramic superconductive formed body
JPH0375207A (en) Production of thin film of oxide superconductor
JP2835235B2 (en) Method of forming oxide superconductor thin film
JPH0558640A (en) Production of oxide superconducting thin film
Zhao et al. Organometallic chemical vapor deposition of superconducting YBaCuO films and post-deposition processing
JPH03285804A (en) Production of oxide superconductor thin film
JPH0337102A (en) Production of oxide superconductor by metal organic chemical vapor deposition method
JPH01208323A (en) Production of thin film
JPH03197321A (en) Production of superconductor of thin film
JPH029716A (en) Production of thin superconducting film
JPH01308809A (en) Production of filmy superconductor
JPH0558641A (en) Production of oxide superconducting thin film