JPH01208323A - Production of thin film - Google Patents

Production of thin film

Info

Publication number
JPH01208323A
JPH01208323A JP63032594A JP3259488A JPH01208323A JP H01208323 A JPH01208323 A JP H01208323A JP 63032594 A JP63032594 A JP 63032594A JP 3259488 A JP3259488 A JP 3259488A JP H01208323 A JPH01208323 A JP H01208323A
Authority
JP
Japan
Prior art keywords
thin film
substrate
superconducting ceramic
reaction vessel
heated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63032594A
Other languages
Japanese (ja)
Inventor
Hideyuki Kurosawa
黒澤 秀行
Toshio Hirai
平井 敏雄
Hisanori Yamane
久典 山根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Riken Corp
Japan Science and Technology Agency
Original Assignee
Riken Corp
Research Development Corp of Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Riken Corp, Research Development Corp of Japan filed Critical Riken Corp
Priority to JP63032594A priority Critical patent/JPH01208323A/en
Priority to DE68922919T priority patent/DE68922919T3/en
Priority to EP89102584A priority patent/EP0329103B2/en
Priority to KR1019890001756A priority patent/KR890013815A/en
Publication of JPH01208323A publication Critical patent/JPH01208323A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Chemical Vapour Deposition (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To form a superconducting ceramic thin film having high critical temperature on a substrate having arbitrary form in a short time, by forming a specific superconducting ceramic thin film on a substrate using a chemical vapor deposition process. CONSTITUTION:beta-Diketone complexes of Y, Ba and Cu [e.g., Y(C11H19O2)2, Ba(C11H19O2)2 and Cu(C11H19O2)2] are put into respective raw material vessels 1-3, heated with heaters 4, evaporated by introducing a carrier gas through inert gas inlet ports 5 and introduced into a reaction vessel 7. The vapors are mixed with oxygen gas introduced through an inlet port 6, transferred to the surface of a substrate heated with a substrate-heater 9 at 600-800 deg.C to deposit a superconducting ceramic thin film composed of Ba2YCu3O7-y on the substrate and, as necessary, heat-treated in the same reaction vessel 7.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、超電導セラミックの薄膜製造法に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to a method for manufacturing superconducting ceramic thin films.

(従来の技術) 超電導体としては、元素超電導体、合金超電導体、化合
物超電導体、有機物超電導体などがあり、Nb、Sn、
 V、Ga等が実用化されている。しかし、これらの超
電導体は液体ヘリウムを用いた冷却装置による冷却が必
要であり、そのため、これらの超電導体を応用した装置
では冷却装置が大型化し、またコスト高になってしまう
。しかし近年、酸化物系セラミック超電導体として約4
0にの臨界温度を示す(La I −xSr X) 1
1cL104および約90にの臨海温度を示すBa2Y
2Cu、07□が発見された。これら酸化物系セラミッ
ク超電導体の中でもBa2YCu3O7−yは液体窒素
温度(77k)での使用が可能な材料として発電機、送
電ケーブル、核磁気共鳴分光器、ジョセフリン素子磁気
シールド材等への応用が検討されている。しかし、これ
らを実用化するためには、超電導体を要求される形状に
する必要があり、線材化、テープ化、導膜化等が研究さ
れている。特に素子等への応用のための薄膜化技術とし
てはスパッタ法、真空蒸着法、反応蒸着法等が検討され
酸化物超電導膜が得られている。しかし、これらの方法
では蒸着速度が遅く、大型大面積への析出が困難であり
長尺な物への適応性に貧しく複雑形状基体上への析出が
できないという問題点があった。
(Prior art) Superconductors include elemental superconductors, alloy superconductors, compound superconductors, and organic superconductors, including Nb, Sn,
V, Ga, etc. have been put into practical use. However, these superconductors require cooling with a cooling device using liquid helium, and therefore, in devices using these superconductors, the cooling device becomes large and the cost increases. However, in recent years, as oxide-based ceramic superconductors, approximately 4
(La I −xSr X) 1
1cL104 and Ba2Y exhibiting a critical temperature of about 90
2Cu, 07□ was discovered. Among these oxide-based ceramic superconductors, Ba2YCu3O7-y is a material that can be used at liquid nitrogen temperatures (77K) and has applications in generators, power transmission cables, nuclear magnetic resonance spectrometers, Josephlin element magnetic shielding materials, etc. It is being considered. However, in order to put these into practical use, it is necessary to make the superconductor into a required shape, and research is being conducted into making it into wires, tapes, conductive films, etc. In particular, sputtering, vacuum evaporation, reactive evaporation, and other methods have been investigated as thin film techniques for application to devices, etc., and oxide superconducting films have been obtained. However, these methods have problems in that the deposition rate is slow, it is difficult to deposit on large and large areas, they are not adaptable to long objects, and cannot be deposited on substrates with complex shapes.

(本発明が解決しようとする課題) 本発明は以上の問題点に鑑みてなされたもので蒸着速度
が早く大型大面積への処理、長尺複雑形状な物への超電
導体の析出ができる、超電導セラミック薄膜の製造方法
を提供することを目的とする。
(Problems to be Solved by the Present Invention) The present invention has been made in view of the above-mentioned problems, and it has a fast vapor deposition rate, can process large and large areas, and can deposit superconductors on long and complex shaped objects. The purpose of the present invention is to provide a method for manufacturing a superconducting ceramic thin film.

(課題を解決するための手段とその作用)本発明は、前
述した問題点を解決するために、バリウム・イットリウ
ム及び銅を少くとも含む蒸発源の原料を用いた化学気相
析出法により基体上に超電導セラミックの薄膜を形成す
る手段を採用する。
(Means for Solving the Problems and Their Effects) In order to solve the above-mentioned problems, the present invention provides a chemical vapor deposition method using a chemical vapor deposition method using an evaporation source material containing at least barium, yttrium, and copper. A method of forming a thin film of superconducting ceramic is adopted.

より具体的には、本発明の製造方法はアルカリ土類元素
、希土類元素および銅のβ−ジケトン錯体を原料とする
。これら3成分の錯体をそれらの蒸気圧が得られる温度
まで加熱し、アルゴンガスの如き不活性ガスをキャリア
ガスとして反応容器内に導入する。キャリアガスはN2
等でもよい。上記錯体とは別の経路で酸素ガスを反応容
器内に導入する。反応容器内に膜を析出させるための基
体を置き、さらにこの基体を加熱する。基体の加熱は反
応容器内に加熱器を置き基体を加熱するか、或いは、反
応容器の外部゛から加熱器により加熱する。さらに高周
波加熱等の方法を用いてもよい。
More specifically, the production method of the present invention uses β-diketone complexes of alkaline earth elements, rare earth elements, and copper as raw materials. The complex of these three components is heated to a temperature at which their vapor pressures are obtained, and an inert gas such as argon gas is introduced into the reaction vessel as a carrier gas. Carrier gas is N2
etc. may be used. Oxygen gas is introduced into the reaction vessel through a route different from that for the above complex. A substrate for depositing a film is placed in a reaction vessel, and this substrate is further heated. The substrate can be heated by placing a heater inside the reaction vessel and heating the substrate, or by heating the substrate from outside the reaction vessel. Furthermore, methods such as high frequency heating may be used.

いずれかの方法により加熱した基体上に酸素ガス及び各
組成元−を含むβ−ジケトン錯体の蒸気を含んだ不活性
ガスを導入する。基体の加熱温度はβ−ジケトン錯体が
十分に分解、重合する温度基、上であり、基体が変化し
ない温度である。好ましくは、600℃〜800℃であ
る。反応容器内の圧力は大気圧もしくは減圧でもよいが
、良質の膜を形成するためには減圧が好ましい。膜厚は
析出時間及び原料加熱温度により任意に制御することが
できる。また超電導体の組成制御は原料加熱温度及びキ
ャリアガス流量により制御できる。超電導体の酸素量は
酸素導入量の調整による酸素分圧制御によってコントロ
ールされ、さらに他の方法により製造される超電導体と
同様に空気中あるいは酸素中での熱処理により制御する
こともできる。また超電導体を析出後の冷却中に熱処理
を行なってもよい。
An inert gas containing oxygen gas and vapor of a β-diketone complex containing each constituent element is introduced onto the substrate heated by any of the methods. The heating temperature of the substrate is above the temperature range at which the β-diketone complex is sufficiently decomposed and polymerized, and the temperature at which the substrate does not change. Preferably it is 600°C to 800°C. The pressure inside the reaction vessel may be atmospheric pressure or reduced pressure, but reduced pressure is preferred in order to form a high quality membrane. The film thickness can be arbitrarily controlled by the deposition time and raw material heating temperature. Further, the composition of the superconductor can be controlled by the heating temperature of the raw material and the flow rate of the carrier gas. The amount of oxygen in the superconductor is controlled by controlling the oxygen partial pressure by adjusting the amount of oxygen introduced, and can also be controlled by heat treatment in air or oxygen, similar to superconductors produced by other methods. Further, heat treatment may be performed during cooling of the superconductor after precipitation.

以上のような製造方法により作られた超電導体の膜は、
その焼結体を製造する温度よりも低温で合成され、原料
であるβ−ジケトン錯体の加熱温度及びキャリアガス流
量で組成制御ができくかつ酸素量の制御も同一の反応容
器内で行うことができ、さらに大型大面積複雑形状の基
体の上に析出させることができる。
The superconductor film produced by the above manufacturing method is
It is synthesized at a lower temperature than the temperature at which the sintered body is manufactured, and the composition can be controlled by the heating temperature of the raw material β-diketone complex and the flow rate of the carrier gas, and the amount of oxygen can also be controlled in the same reaction vessel. Furthermore, it can be deposited on large substrates with large areas and complex shapes.

(実施例) 以下第1図〜第6図を参照して本発明の詳細な説明する
。第1図は本発明における製造方法の1例である。イツ
トリウム、バリウム、銅のβ−ジケトン錯体たとえば、
Y(C++H+q(h)z、 l1a(CzHtq(h
)z、 CLI(C+JtJz)zを各々1.2.3の
原料容器内に入れヒーター4により加熱する。
(Example) The present invention will be described in detail below with reference to FIGS. 1 to 6. FIG. 1 is an example of the manufacturing method according to the present invention. β-diketone complexes of yttrium, barium, copper, e.g.
Y(C++H+q(h)z, l1a(CzHtq(h
)z and CLI(C+JtJz)z are respectively placed in the raw material containers of 1.2.3 and heated by the heater 4.

容器1のイツトリウムのβ−ジケトン錯体は130℃、
容器2のバリウムのβ−ジケトン錯体は250’C,容
器3の銅のβ−ジケトン錯体は150℃に加熱する。各
原料容器部1.2.3には不活性ガス導入口5からキャ
リアガスとしてアルゴンガスが50ml/ 5hin導
入される。又、酸素ガスは導入口6から反応容器内へ1
00mA!/ll1n導入される。各β−ジケトン錯体
の蒸気を含んだキャリアガス及び酸素ガスは反応容器内
7で混合され基板8上に導入される。基板8は基板加熱
用ヒータ9により800℃に加熱される。反応容器内は
減圧である。以上のようにしてジルコニア基板上に3時
間析出させた。得られた膜の厚さは3〜4μmである。
The β-diketone complex of yttrium in container 1 is at 130°C,
The barium β-diketone complex in container 2 is heated to 250°C, and the copper β-diketone complex in container 3 is heated to 150°C. Argon gas is introduced into each raw material container section 1.2.3 from the inert gas inlet 5 at a rate of 50 ml/5 h as a carrier gas. In addition, oxygen gas is introduced into the reaction vessel from the inlet 6.
00mA! /ll1n is introduced. A carrier gas containing the vapor of each β-diketone complex and oxygen gas are mixed in a reaction vessel 7 and introduced onto a substrate 8. The substrate 8 is heated to 800° C. by a substrate heating heater 9. The inside of the reaction vessel is under reduced pressure. Deposition was carried out on the zirconia substrate for 3 hours as described above. The thickness of the obtained membrane is 3-4 μm.

第2図には基板であるジルコニアのX線回折パターン及
び第3図には析出させた膜のX線回折パターンを示す。
FIG. 2 shows the X-ray diffraction pattern of the zirconia substrate, and FIG. 3 shows the X-ray diffraction pattern of the deposited film.

また第4図には90にで超電導を示す BazYCua
Oフ−yのX線回折パターンを示す。第2図〜第4図で
明らかなように、ジルコニア基板上の膜は第4図と同じ
相である。次に分析電子顕微鏡により組成元素であるバ
リウム、イツトリウム、銅の分析を行った。第5図にそ
の効果を示す。又、第6図には同一測定条件下で分析を
行った焼結法により合成した超電導体の結果を示す。第
5図で明らかなように膜中の組成元素の比はBa:Y:
Cu=2 : 1 : 3となり90にで超電導を示す
超電導体と同じ組成比となっている。
Also, Figure 4 shows superconductivity at 90.
The X-ray diffraction pattern of Ofu-y is shown. As is clear from FIGS. 2 to 4, the film on the zirconia substrate is in the same phase as in FIG. Next, the compositional elements barium, yttrium, and copper were analyzed using an analytical electron microscope. Figure 5 shows the effect. Moreover, FIG. 6 shows the results of a superconductor synthesized by the sintering method analyzed under the same measurement conditions. As is clear from Fig. 5, the compositional element ratio in the film is Ba:Y:
Cu=2:1:3, which is the same composition ratio as a superconductor that exhibits superconductivity at 90%.

第2の実施例は第1図においてイツトリウム、バリウム
、銅のβ−ジケトン錯体(Y(CIlHI90□)z、
 Ba(C11■+qOz)z、 Cu(CsHFJz
)z)を各々1.2.3の原料容器内に入れヒーター4
により加熱した。各容器の加熱温度は、130℃125
0℃190℃とした。各容器部には不活性ガス導入口5
からキャリアガスとしてアルゴンガスが50m1l/m
in導入される。又、反応容器内の基板8は、基板加熱
用ヒータ9により900℃に加熱される。
The second example is a β-diketone complex of yttrium, barium, and copper (Y(CIlHI90□)z,
Ba(C11■+qOz)z, Cu(CsHFJz
)z) into the raw material containers of 1.2.3 respectively and heat the heater 4.
heated by. The heating temperature of each container is 130℃125
The temperature was 0°C and 190°C. Inert gas inlet 5 in each container part
Argon gas is used as carrier gas from 50ml/m
Introduced in. Further, the substrate 8 in the reaction container is heated to 900° C. by a substrate heating heater 9.

反応容器内の圧力は減圧である。以上のようにしてジル
コニア基板上に4時間析出させた。析出した膜は第1の
実施例と同様に第3図と同じX線回折パターンを示した
The pressure inside the reaction vessel is reduced pressure. Deposition was carried out on the zirconia substrate for 4 hours as described above. The deposited film showed the same X-ray diffraction pattern as shown in FIG. 3 as in the first example.

(効 果) 本発明によれば、任意形状の基体上に高い臨界温度を示
す高品度の超電導セラミックの薄膜を形成できるから、
各分野に超電導体を幅広く応用可能となる。
(Effects) According to the present invention, a thin film of high-grade superconducting ceramic exhibiting a high critical temperature can be formed on a substrate of any shape.
Superconductors can be widely applied in various fields.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の製造方法に使用可能な装置の断面図
、第2図はジルコニア基板のX線回折パターンのグラフ
図、第3図は実施例によるジルコニア基板上の膜のX線
回折パターンのグラフ図、第4図は従来の超電導体のX
線回折パターンのグラフ図、第5図は実施例による膜の
分析電子顕微鏡による分析図、第6図は従来の超電導体
の分析電子顕微鏡による分析図である。 図中:  1,2.3−一−−−−−原料容器、4−・
−・原料加熱ヒータ、 5−−−−−−一不活性ガス導入口、 6−−−一酸素ガス導入口、 7−−−−−一反応容器内、 8−−−−−−一基板、 9−・・一基板加熱ヒータ。 代理人  弁理士  桑 原 英 明
FIG. 1 is a cross-sectional view of an apparatus that can be used in the manufacturing method of the present invention, FIG. 2 is a graph of an X-ray diffraction pattern of a zirconia substrate, and FIG. 3 is an X-ray diffraction diagram of a film on a zirconia substrate according to an example. A graph of the pattern, Figure 4 shows the X of a conventional superconductor.
A graph of a line diffraction pattern, FIG. 5 is an analysis diagram of a film according to an example using an analytical electron microscope, and FIG. 6 is an analysis diagram of a conventional superconductor using an analytical electron microscope. In the figure: 1, 2. 3-1----raw material container, 4-.
- Raw material heating heater, 5-------1 inert gas inlet, 6---1 oxygen gas inlet, 7------1 reaction vessel, 8------1 substrate , 9-... Single-substrate heater. Agent Patent Attorney Hideaki Kuwahara

Claims (4)

【特許請求の範囲】[Claims] (1)バリウム・イットリウム及び銅を少くとも含む蒸
発源の原料を用いた化学気相析出法により1000℃以
下の温度領域で基体上に超電導セラミックの薄膜を形成
したことを特徴とする薄膜製造法。
(1) A thin film manufacturing method characterized in that a superconducting ceramic thin film is formed on a substrate in a temperature range of 1000°C or less by chemical vapor deposition using an evaporation source material containing at least barium, yttrium, and copper. .
(2)薄膜を構成する各組成元素の原料がβ−ジケトン
錯体である請求項(1)の薄膜製造法。
(2) The method for producing a thin film according to claim 1, wherein the raw material for each compositional element constituting the thin film is a β-diketone complex.
(3)各組成元素の組成比を原料加熱温度及びキャリア
ガス流量で調整した請求項(1)の薄膜製造法。
(3) The thin film manufacturing method according to claim (1), wherein the composition ratio of each compositional element is adjusted by the raw material heating temperature and the carrier gas flow rate.
(4)超電導セラミック薄膜の形成後その熱処理を同一
反応室内で連続して行う請求項(1)の薄膜製造法。
(4) The thin film manufacturing method according to claim (1), wherein after the formation of the superconducting ceramic thin film, the heat treatment is performed continuously in the same reaction chamber.
JP63032594A 1988-02-17 1988-02-17 Production of thin film Pending JPH01208323A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP63032594A JPH01208323A (en) 1988-02-17 1988-02-17 Production of thin film
DE68922919T DE68922919T3 (en) 1988-02-17 1989-02-15 Process for the production of thin layers of high temperature superconductor oxide.
EP89102584A EP0329103B2 (en) 1988-02-17 1989-02-15 Process for manufacturing thin film of high-Tc superconducting oxide
KR1019890001756A KR890013815A (en) 1988-02-17 1989-02-16 Method for manufacturing thin film of superconducting oxide with high Curie temperature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63032594A JPH01208323A (en) 1988-02-17 1988-02-17 Production of thin film

Publications (1)

Publication Number Publication Date
JPH01208323A true JPH01208323A (en) 1989-08-22

Family

ID=12363183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63032594A Pending JPH01208323A (en) 1988-02-17 1988-02-17 Production of thin film

Country Status (1)

Country Link
JP (1) JPH01208323A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5458086A (en) * 1993-10-13 1995-10-17 Superconductor Technologies, Inc. Apparatus for growing metal oxides using organometallic vapor phase epitaxy

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63310515A (en) * 1987-06-12 1988-12-19 Nippon Telegr & Teleph Corp <Ntt> Manufacture of superconductor membrane
JPH01188677A (en) * 1988-01-21 1989-07-27 Shimadzu Corp Production of superconducting thin film
JPH01252779A (en) * 1988-02-10 1989-10-09 Westinghouse Electric Corp <We> Production of ceramic superconductor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63310515A (en) * 1987-06-12 1988-12-19 Nippon Telegr & Teleph Corp <Ntt> Manufacture of superconductor membrane
JPH01188677A (en) * 1988-01-21 1989-07-27 Shimadzu Corp Production of superconducting thin film
JPH01252779A (en) * 1988-02-10 1989-10-09 Westinghouse Electric Corp <We> Production of ceramic superconductor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5458086A (en) * 1993-10-13 1995-10-17 Superconductor Technologies, Inc. Apparatus for growing metal oxides using organometallic vapor phase epitaxy
USRE36295E (en) * 1993-10-13 1999-09-14 Superconductor Technologies, Inc. Apparatus for growing metal oxides using organometallic vapor phase epitaxy

Similar Documents

Publication Publication Date Title
CA1330193C (en) Method for making artificial layered high-t_ superconductors
JP2711253B2 (en) Superconducting film and method for forming the same
JPH0597588A (en) Production of oxide superconductor film
CA1322514C (en) Thin film of single crystal of lna_cu_o___ having three-layered perovskite structure and process for producing the same
JPH01104774A (en) Production of thin film of oxide superconductor
JPH04300292A (en) Film forming method for multicomponent oxide film superconducting film
JPH01208323A (en) Production of thin film
US5362711A (en) Method for producing single crystal superconducting LnA2 Cu3 O7-x films
JPH01219016A (en) Production of thin superconducting ceramic film containing dispersed oxide
JPH01220311A (en) Manufacture of superconductive ceramic wire rod
JPH01220499A (en) Magnetic shielding material
JPH0297426A (en) Production of superconducting thin film
JPH01316998A (en) Magnetic shielding material
JPH01316462A (en) Production of superconducting ceramic wire
EP0329103B2 (en) Process for manufacturing thin film of high-Tc superconducting oxide
KR100338359B1 (en) A Fabrication Technique for Epitaxial Thick Films of High Temperature Superconductor by the Partial Melting Method
JPH029716A (en) Production of thin superconducting film
JPH0288426A (en) Production of superconducting thin film
JPH01316906A (en) Superconducting coil
JPH01203258A (en) Production of oxide superconducting sintered body
JP2835235B2 (en) Method of forming oxide superconductor thin film
JPH02124713A (en) Production of superconducting thin film
JPH03177354A (en) Oxide superconductive wire
JP2817299B2 (en) Preparation method of composite oxide superconducting thin film
JPH01240664A (en) Method for synthesizing superconducting thin film in vapor phase