JPH01316998A - Magnetic shielding material - Google Patents

Magnetic shielding material

Info

Publication number
JPH01316998A
JPH01316998A JP14894188A JP14894188A JPH01316998A JP H01316998 A JPH01316998 A JP H01316998A JP 14894188 A JP14894188 A JP 14894188A JP 14894188 A JP14894188 A JP 14894188A JP H01316998 A JPH01316998 A JP H01316998A
Authority
JP
Japan
Prior art keywords
reaction vessel
strontium
bismuth
calcium
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14894188A
Other languages
Japanese (ja)
Inventor
Hideyuki Kurosawa
黒澤 秀行
Toshio Hirai
平井 敏雄
Hisanori Yamane
久典 山根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Riken Corp
Japan Science and Technology Agency
Original Assignee
Riken Corp
Research Development Corp of Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Riken Corp, Research Development Corp of Japan filed Critical Riken Corp
Priority to JP14894188A priority Critical patent/JPH01316998A/en
Publication of JPH01316998A publication Critical patent/JPH01316998A/en
Pending legal-status Critical Current

Links

Landscapes

  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PURPOSE:To process a flexible superconductive substance coated sheet into an optional shape by a method wherein a sheet is coated with a superconductive substance thin film of bismuth, strontium, calcium, and copper through a chemical vapor phase deposition method. CONSTITUTION:A superconductive ceramic thin film is formed on a flexible sheet through a chemical vapor deposition method, using an evaporation source material which contains, at least, bismuth, strontium, calcium, and copper. In this manufacturing method, an alkoxide or a beta-diketon complex of bismuth, strontium, calcium, and copper is used as a raw material. The raw material of these four components is heated 5 until reaching to a temperature that the vapor pressure of the components is obtained, and an inert gas is introduced into a reaction vessel 8 as a carrier gas 6. Oxygen gas or gas containing oxygen is introduced into the reaction vessel 8 through a path 7 different from that of the raw material. A base flexible sheet 9, which makes a film deposit, is placed in the reaction vessel and moreover heated 10.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はシートにビスマス、ストロンチウム、カルシウ
ム及び銅系の超電導物質をコーティングさせた磁気シー
ルド材に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a magnetic shielding material in which a sheet is coated with bismuth, strontium, calcium, and copper-based superconducting materials.

(従来の技術) 超電導物質は完全反磁性を示すので、磁界に超電導物質
を置(と磁力束は超電導物質内部に侵入できず、外部か
らの磁力束は超電導物質の存在でゆがめられることは公
知の事実であり、この性質を利用することにより、超電
導物質で磁界を覆うことにより磁力束は超電導物質で覆
われた外部には浸透しないので完全に磁力を遮断した外
界をえることが可能である。現在各種の臨界温度を示す
酸化物系セラミック超電導体が開発されている。
(Prior art) Since superconducting materials exhibit complete diamagnetic properties, it is well known that when a superconducting material is placed in a magnetic field, magnetic flux cannot penetrate inside the superconducting material, and magnetic flux from the outside is distorted by the presence of the superconducting material. This is a fact, and by utilizing this property, by covering the magnetic field with superconducting material, the magnetic flux will not penetrate into the outside covered with superconducting material, so it is possible to obtain an external field that completely blocks magnetic force. Currently, oxide-based ceramic superconductors exhibiting various critical temperatures are being developed.

これら酸化物系セラミック超電導体の中でもBi −(
Sr、Ca) −Cu= Oは液体窒素温度(77K)
での使用が可能な材料として発電機、送電ケーブル、核
磁気共鳴分光器、ジョセフソン素子磁気シールド材等へ
の応用が検討されている。しかし、これらを実用化する
ためには、超電導体を要求される形状にする必要があり
、テープ化、薄膜化等が研究されている。テープ化及び
薄膜化技術としてはスパッタ法、真空蒸着法、反応蒸着
法等が検討され酸化物超電導膜が得られている。しかし
、これらの方法では蒸着速度が遅く、大型大面積への析
出が困難であり長尺な物への適応性に貧しく複雑形状基
体上への析出ができないという問題点があった。
Among these oxide-based ceramic superconductors, Bi −(
Sr, Ca) -Cu=O is liquid nitrogen temperature (77K)
Applications to generators, power transmission cables, nuclear magnetic resonance spectrometers, Josephson element magnetic shielding materials, etc. are being considered as materials that can be used. However, in order to put these into practical use, it is necessary to make the superconductor into the required shape, and research is being carried out on making it into tapes, thin films, etc. Sputtering, vacuum evaporation, reactive evaporation, and the like have been studied as tape-forming and thin-film forming techniques, and oxide superconducting films have been obtained. However, these methods have problems in that the deposition rate is slow, it is difficult to deposit on large and large areas, they are not adaptable to long objects, and cannot be deposited on substrates with complex shapes.

(本発明が解決しようとする課題) 本発明は以上の問題点に鑑みてなされたもので蒸着速度
が早く大型大面積への処理、長尺複雑形状な物への超電
導体の析出ができる、超電導セラミンク薄膜の製造方法
により製造された超電導物質をコーティングした可撓性
のシートを提供することにより磁界を完全に遮断するこ
とを目的としている。
(Problems to be Solved by the Present Invention) The present invention has been made in view of the above-mentioned problems, and it has a fast vapor deposition rate, can process large and large areas, and can deposit superconductors on long and complex shaped objects. The purpose is to completely block magnetic fields by providing a flexible sheet coated with a superconducting material produced by a method for producing a superconducting ceramic thin film.

(課題を解決するための手段とその作用)本発明は、前
述した問題点を解決するために、ビスマス、ストロンチ
ウム、カルシウム及ヒ銅を少くとも含む蒸発源の原料を
用いた化学気相析出法により可撓性シート上に超電導セ
ラミックの薄膜を形成する手段を採用する。
(Means for Solving the Problems and Their Effects) In order to solve the above-mentioned problems, the present invention provides a chemical vapor deposition method using an evaporation source material containing at least bismuth, strontium, calcium and arsenic. This method employs a method of forming a thin film of superconducting ceramic on a flexible sheet.

より具体的には、本発明の製造方法はビスマス、ストロ
ンチウム、カルシウム及び銅のアルコキシド又はβ−ジ
ケトン錯体を原料とする。これら4成分の原料をそれら
の蒸気圧が得られる温度まで加熱し、アルゴンガスの如
き不活性ガスをキャリアガスとして反応容器内に導入す
る。キャリアガスはN2等でもよい。上記原料とは別の
経路で酸素ガスあるいは酸素を含むガスを反応容器内に
導入する。反応容器内に膜を析出させるための基体可撓
性シートを置き、さらにこの基体を加熱する。
More specifically, the production method of the present invention uses bismuth, strontium, calcium, and copper alkoxides or β-diketone complexes as raw materials. These four raw materials are heated to a temperature at which their vapor pressures are obtained, and an inert gas such as argon gas is introduced into the reaction vessel as a carrier gas. The carrier gas may be N2 or the like. Oxygen gas or a gas containing oxygen is introduced into the reaction vessel through a route different from that of the raw materials. A flexible sheet substrate for depositing a film is placed in a reaction vessel, and the substrate is further heated.

基体の加熱は反応容器内に加熱器を置き基体を加熱する
か、或いは、反応容器の外部から加熱器により加熱する
。さらに高周波加熱等の方法を用いてもよい。いずれか
の方法により加熱した基体上に酸素ガスあるいは酸素を
含むガス及び各組成元素を含むアルコキシド又はβ−ジ
ケトン錯体の蒸気を含んだ不活性ガスを導入する。基体
の加熱温度はアルコキシド又はβ−ジケトン錯体が十分
に分解、重合する温度以上であり、基体が変化しない温
度である。好ましくは、700℃〜900℃である。反
応容器内の圧力は減圧である。膜厚は析出時間、析出温
度、原料加熱温度、ガス圧力及びキャリアガス流量によ
り任意に制御することができる。また超電導体の組成制
御は原料加熱温度、析出温度、ガス圧力及びキャリアガ
ス流量により制御できる。超電導体の酸素量の調整や熱
処理が必要な場合には、酸素導入量による酸素分圧の制
御により調整でき、空気中、酸素中で熱処理を行っても
よい。また超電導体を析出後の冷却時に反応容器内で熱
処理を行ってもよい。基体として使用する可撓性シート
はカーボンファイバークロス、アルミナ繊維、金属シー
トなど織布又は不織布のいかなるものでも使用可能であ
り、可撓性シートが耐熱性を欠く場合は炭化ケイ素、ア
ルミナマグネシアなどの耐酸化物皮膜を常法によりコー
ティングして使用する。
The substrate can be heated by placing a heater inside the reaction vessel and heating the substrate, or by heating the substrate from outside the reaction vessel. Furthermore, methods such as high frequency heating may be used. An inert gas containing oxygen gas or a gas containing oxygen and the vapor of an alkoxide or β-diketone complex containing each constituent element is introduced onto the substrate heated by any of the methods. The heating temperature of the substrate is a temperature above which the alkoxide or β-diketone complex is sufficiently decomposed and polymerized, and a temperature at which the substrate does not change. Preferably it is 700°C to 900°C. The pressure inside the reaction vessel is reduced pressure. The film thickness can be arbitrarily controlled by the deposition time, deposition temperature, raw material heating temperature, gas pressure, and carrier gas flow rate. Further, the composition of the superconductor can be controlled by the raw material heating temperature, precipitation temperature, gas pressure, and carrier gas flow rate. If the amount of oxygen in the superconductor needs to be adjusted or heat treated, it can be adjusted by controlling the oxygen partial pressure depending on the amount of oxygen introduced, and the heat treatment may be performed in air or oxygen. Furthermore, heat treatment may be performed within the reaction vessel during cooling of the superconductor after precipitation. The flexible sheet used as the base can be any woven or non-woven fabric such as carbon fiber cloth, alumina fiber, metal sheet, etc. If the flexible sheet lacks heat resistance, it can be made of silicon carbide, alumina magnesia, etc. It is used by coating with an oxidation-resistant film using a conventional method.

以上のような製造方法により作られた超電導体の膜は、
その焼結体を製造する温度よりも低温で合成され、原料
であるアルコキシド又はβ−ジケトン錯体の加熱温度、
析出温度、ガス圧力及びキャリアガス流量で組成制御が
でき、かつ酸素量の制御又は熱処理も同一の反応容器内
で行うことができ、さらに大型大面積複雑形状の基体の
上に析出させることができる。
The superconductor film produced by the above manufacturing method is
The heating temperature of the raw material alkoxide or β-diketone complex, which is synthesized at a lower temperature than the temperature at which the sintered body is manufactured;
The composition can be controlled by the deposition temperature, gas pressure, and carrier gas flow rate, and the amount of oxygen or heat treatment can be performed in the same reaction vessel, and furthermore, it can be deposited on large substrates with large areas and complex shapes. .

(実施例) 第1図〜第3図を参照して本発明の詳細な説明する。第
1図は、本発明における製造方法の一例である。ビスマ
ス、ストロンチウム、カルシウム、銅のアルコキシド又
はβ−ジケトン錯体、Bi (OC,H,)3.5r(
CzLqOz)z 、Ca(C++H+qOz)z、C
u(C++H+9oz)zを各々1.2.3.4の原料
容器に入れヒーター5により加熱する。容器1のビスマ
スのアルコキシドは135℃、容器2のストロンチウム
のβ−ジケトン錯体は220’C1容器3のカルシウム
のβ−ジケトン錯体は180’c、illのβ−ジケト
ン錯体は130’Cに加熱する。各原料部l、2.3.
4には不活性ガス導入口6がらキャリアガスとしてアル
ゴンガスが60mA’/win導入される。又酸素ガス
導入ロアから反応容器内8へ100mJ/ll1in感
人される。各組成元素を含んだアルコキシド又はβ−ジ
ケトン錯体の蒸気は、キャリアガスにより反応容器内8
に導入され、酸素ガスと混合され基体上に導入される。
(Example) The present invention will be described in detail with reference to FIGS. 1 to 3. FIG. 1 is an example of the manufacturing method according to the present invention. Bismuth, strontium, calcium, copper alkoxide or β-diketone complex, Bi (OC,H,)3.5r(
CzLqOz)z, Ca(C++H+qOz)z, C
u(C++H+9oz)z is placed in each of the raw material containers of 1.2.3.4 and heated by the heater 5. The bismuth alkoxide in container 1 is heated to 135°C, the strontium β-diketone complex in container 2 is heated to 220°C, the calcium β-diketone complex in container 3 is heated to 180°C, and the β-diketone complex in ill is heated to 130°C. . Each raw material part l, 2.3.
Argon gas is introduced into 4 as a carrier gas through an inert gas inlet 6 at a rate of 60 mA'/win. Also, 100 mJ/11 inch is introduced into the reaction vessel 8 from the oxygen gas introduction lower. The vapor of the alkoxide or β-diketone complex containing each constituent element is brought into the reaction vessel by a carrier gas.
is introduced onto the substrate, mixed with oxygen gas and introduced onto the substrate.

基体9は基体加熱用ヒーター10により、820〜83
0℃に加熱される。反応容器内は減圧であり、ITor
rである。以上のようにしてアルミナ糸織布土に1時間
析出させた。得られた膜の厚さは3〜5μmである。第
2図には織布上からはがした膜のX線回折パターンを示
す。又第3図には織布上の膜の抵抗率温度依存性を示す
。膜は正方品C軸30.71人の相がほとんどでありわ
ずかにCuO1未同定相が含まれるが、その抵抗変化は
110に付近から抵抗が低下し、78にで抵抗値ゼロと
なり膜は超電導体であることは明らかである。
The base body 9 is heated to 820 to 83 by the heater 10 for heating the base body.
Heated to 0°C. The inside of the reaction vessel is under reduced pressure, and ITor
It is r. As described above, precipitation was carried out on the alumina thread woven soil for 1 hour. The thickness of the obtained membrane is 3-5 μm. FIG. 2 shows the X-ray diffraction pattern of the membrane peeled off from the woven fabric. Furthermore, FIG. 3 shows the temperature dependence of the resistivity of the film on the woven fabric. The film is a square product with a C-axis of 30.71, and contains a small amount of unidentified phase of CuO1, but its resistance decreases from around 110, and reaches zero at 78, indicating that the film is superconducting. It is clear that it is a body.

〔効 果〕〔effect〕

本発明により得られた可撓性の超電導物質コーティング
シートは任意の形状に加工可能でありいかなる形状にお
いても磁力束をシールすることができ、巾広い応用が可
能である。
The flexible superconducting material coated sheet obtained by the present invention can be processed into any shape and can seal magnetic flux in any shape, allowing a wide range of applications.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の製造方法に使用可能な装置の断面図、
第2図は実施例による膜のX線回折パターンのグラフ図
、第3図は実施例による膜の抵抗率温度依存性のグラフ
図である。 図中: 1.2,3.L−−−−−−・原料容器、5−・−原料
加熱ヒーター、6−−−−−−−不活性ガス導入口、7
−−−−−−一酸素ガス導入口、8−−−−−−・反応
容器内、9−・−基体、10−・−基体加熱ヒーター。 代理人 弁理士  桑 原 英 明
FIG. 1 is a sectional view of an apparatus that can be used in the manufacturing method of the present invention;
FIG. 2 is a graph of the X-ray diffraction pattern of the film according to the example, and FIG. 3 is a graph of the resistivity temperature dependence of the film according to the example. In the figure: 1.2,3. L----- Raw material container, 5-- Raw material heating heater, 6----- Inert gas inlet, 7
----------oxygen gas inlet, 8-------inside the reaction vessel, 9---substrate, 10---substrate heating heater. Agent Patent Attorney Hideaki Kuwahara

Claims (1)

【特許請求の範囲】[Claims] シートにビスマス、ストロンチウム、カルシウム及び銅
系の超電導物質の薄膜を化学気相析出法によりコーティ
ングさせたことを特徴とする磁気シールド材。
A magnetic shielding material characterized by coating a sheet with a thin film of bismuth, strontium, calcium, and copper-based superconducting materials by chemical vapor deposition.
JP14894188A 1988-06-16 1988-06-16 Magnetic shielding material Pending JPH01316998A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14894188A JPH01316998A (en) 1988-06-16 1988-06-16 Magnetic shielding material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14894188A JPH01316998A (en) 1988-06-16 1988-06-16 Magnetic shielding material

Publications (1)

Publication Number Publication Date
JPH01316998A true JPH01316998A (en) 1989-12-21

Family

ID=15464087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14894188A Pending JPH01316998A (en) 1988-06-16 1988-06-16 Magnetic shielding material

Country Status (1)

Country Link
JP (1) JPH01316998A (en)

Similar Documents

Publication Publication Date Title
Reade et al. Characterization of Y‐Ba‐Cu‐O thin films and yttria‐stabilized zirconia intermediate layers on metal alloys grown by pulsed laser deposition
JPH08506216A (en) Superconducting YBa formed at a low temperature. Lower 2 Cu Cu Lower 3 O Lower 7-x
JP2711253B2 (en) Superconducting film and method for forming the same
Nakayama et al. Superconductivity of Bi2Sr2Ca n− 1Cu n O y (n= 2, 3, 4, and 5) thin films prepared in situ by molecular‐beam epitaxy technique
CA1322514C (en) Thin film of single crystal of lna_cu_o___ having three-layered perovskite structure and process for producing the same
US6074768A (en) Process for forming the oxide superconductor thin film and laminate of the oxide superconductor thin films
JPH01316998A (en) Magnetic shielding material
DE69302572T2 (en) Process for the production of thin coatings from inorganic oxides of controlled stoichiometry
JPH01208323A (en) Production of thin film
JPH01220499A (en) Magnetic shielding material
US5362711A (en) Method for producing single crystal superconducting LnA2 Cu3 O7-x films
JPH01219016A (en) Production of thin superconducting ceramic film containing dispersed oxide
JPH01316462A (en) Production of superconducting ceramic wire
JPH01220311A (en) Manufacture of superconductive ceramic wire rod
JPH0297426A (en) Production of superconducting thin film
JPH01316906A (en) Superconducting coil
JPH0297421A (en) Production of high temperature superconducting thin film
JPH029716A (en) Production of thin superconducting film
JPH02124713A (en) Production of superconducting thin film
JPH01203258A (en) Production of oxide superconducting sintered body
JPH02157120A (en) Oxide superconducting thin film and its production
JPH0247254A (en) Production of conductive metal oxide
JPH01240664A (en) Method for synthesizing superconducting thin film in vapor phase
Ichikawa et al. 3-15 Yagumonakamachi, Moriguchi, Osaka 570, Japan.
JPH03177354A (en) Oxide superconductive wire