JPH0558640A - Production of oxide superconducting thin film - Google Patents

Production of oxide superconducting thin film

Info

Publication number
JPH0558640A
JPH0558640A JP25020491A JP25020491A JPH0558640A JP H0558640 A JPH0558640 A JP H0558640A JP 25020491 A JP25020491 A JP 25020491A JP 25020491 A JP25020491 A JP 25020491A JP H0558640 A JPH0558640 A JP H0558640A
Authority
JP
Japan
Prior art keywords
thin film
superconducting thin
substrate
interlayer
oxide superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25020491A
Other languages
Japanese (ja)
Inventor
Seiji Hasei
政治 長谷井
Hideyuki Kurosawa
秀行 黒澤
Toshio Hirai
敏雄 平井
Hisanori Yamane
久典 山根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Riken Corp
Original Assignee
Riken Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Riken Corp filed Critical Riken Corp
Priority to JP25020491A priority Critical patent/JPH0558640A/en
Publication of JPH0558640A publication Critical patent/JPH0558640A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To obtain a Bi-Sr-Ca-Cu-O oxide superconducting thin film excellent in superconductive characteristics with excellent mass productivity and good reproducibility by the presence of an interlayer between the thin film and a substrate, and producing the oxide superconducting thin film according to a specific chemical vapor deposition method. CONSTITUTION:A beta-diketone metallic complex containing a Bi-containing organometallic compound and at least Sr, Ca and Cu is used as an evaporation source raw material and the objective Bi-Sr-Ca-Cu-0 oxide superconducting thin film is produced on a substrate by a chemical vapor deposition method. In the process, an interlayer is present between the substrate and the oxide superconducting thin film. The interlayer preferably has excellent lattice conformity with the superconducting thin film and a thermal expansion coefficient close to that of the superconducting thin film. If a thin film will not cause diffusion into the superconducting thin film or reaction with the thin film, it is more preferred as the interlayer. Furthermore, since the interlayer contains the same elements as those in the superconducting thin film, it is considered that the diffusion into the superconducting thin film or reaction with the thin film will not affect the deterioration in superconductive characteristics by using the above-mentioned oxides as the interlayer even if the diffusion or reaction occurs to some extent.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は化学気相析出法(以下、
CVD法と略す)によって形成されるBi−Sr−Ca
−Cu−O酸化物超伝導薄膜の製造方法に関する。
The present invention relates to a chemical vapor deposition method (hereinafter,
Bi-Sr-Ca formed by CVD method)
And a method for manufacturing a Cu-O oxide superconducting thin film.

【0002】[0002]

【従来の技術】Bi−Sr−Ca−Cu−O系の酸化物
超伝導体において、超伝導転移温度(Tc)が約10K
を示す24Å相(Bi2 Sr2 CuOx )、約80Kの
Tcを示す30Å相(Bi2 Sr2 CaCu2 X )お
よび約110KのTcを示す37Å相(Bi2 Sr2
2 Cu3 X )の3種の超伝導相の存在が明らかにさ
れている。
2. Description of the Related Art A Bi-Sr-Ca-Cu-O-based oxide superconductor has a superconducting transition temperature (Tc) of about 10K.
24Å phase (Bi 2 Sr 2 CuO x ) showing 30 ° C. (Bi 2 Sr 2 CaCu 2 O x ) showing a Tc of about 80 K and 37Å phase showing a Tc of about 110 K (Bi 2 Sr 2 C)
The existence of three kinds of superconducting phases of a 2 Cu 3 O x ) has been clarified.

【0003】このBi−Sr−Ca−Cu−O系酸化物
超伝導体を液体窒素温度で動作するセンサー、素子、デ
バイスあるいは線材等に応用するためには、より高いT
cを有する超伝導相の開発が望まれる。Bi系超伝導
体、特に110KのTcを示す37Å相は、Y−Ba−
Cu−O系に比べ約20K程度Tcが高く、高価な稀土
類元素を含まないことから経済的に安価である、等の利
点があることから合成の検討が盛んに行われている。
In order to apply this Bi-Sr-Ca-Cu-O-based oxide superconductor to a sensor, an element, a device, a wire or the like which operates at a liquid nitrogen temperature, a higher T
Development of a superconducting phase having c is desired. Bi-based superconductors, especially 37Å phase showing Tc of 110 K, are Y-Ba-
Tc is about 20 K higher than that of Cu-O system, and it is economically inexpensive because it does not contain expensive rare earth elements. Therefore, its synthesis is being actively studied.

【0004】しかし、24Å相、30Å相は比較的合成
されやすいのに対し、37Å相は合成されにくい上Tc
110Kを示すような超伝導体が合成されにくい。焼結
法において、Pbを添加することにより安定した37Å
相の合成が検討されている。
However, while the 24Å phase and the 30Å phase are relatively easy to synthesize, the 37Å phase is difficult to synthesize and the Tc is high.
It is difficult to synthesize a superconductor having a temperature of 110K. In the sintering method, stable addition of Pb to 37Å
Phase synthesis is being considered.

【0005】又、物理的析出法(以下、PVD法と略
す)あるいはCVD法に代表されるような薄膜作成技術
を用いたBi−Sr−Ca−Cu−O系の酸化物超伝導
薄膜においても、24Å相および30Å相は合成されや
すいのに対し、37Å相の合成は非常に困難である。従
ってTcが100Kを越えるような薄膜は勿論として、
安定して液体窒素温度以上の温度でTcを示す薄膜合成
の報告例は少ない。薄膜においても、CVD法によるP
b添加効果の検討がなされているが、超伝導特性の向上
は見られない。
Also, in a Bi-Sr-Ca-Cu-O-based oxide superconducting thin film using a physical deposition method (hereinafter abbreviated as PVD method) or a thin film forming technique typified by a CVD method. , 24Å phase and 30Å phase are easily synthesized, whereas 37Å phase is very difficult to synthesize. Therefore, let alone thin films with Tc exceeding 100K,
There are few reports of thin film synthesis that stably show Tc at a temperature of liquid nitrogen or higher. Also for thin films, P by CVD method
Although the effect of b addition has been studied, no improvement in superconducting properties is observed.

【0006】37Å相の生成には、合成したBi−Sr
−Ca−Cu−O薄膜をPb雰囲気中で熱処理する方法
が試みられている。Bi−Sr−Ca−Cu−O系酸化
物超伝導薄膜とPbあるいはPbO粉末をるつぼ内に導
入し600℃から900℃においてPb蒸気中での熱処
理が達成され、Tc(R=O)=102Kを得たとする
特開平2−170311号公報が提出されている。Pb
を添加しないBi系超伝導薄膜においては、CVD法を
用いて、成長速度12Å/hrで80時間という長時間
合成を行うことによりTc=97Kを得たという報告例
がある。
To generate the 37Å phase, the synthesized Bi-Sr is used.
A method of heat-treating a -Ca-Cu-O thin film in a Pb atmosphere has been attempted. A Bi-Sr-Ca-Cu-O-based oxide superconducting thin film and Pb or PbO powder were introduced into a crucible, and heat treatment in Pb vapor was achieved at 600 ° C to 900 ° C, and Tc (R = O) = 102K. Japanese Unexamined Patent Publication No. 2-170311 has been filed. Pb
In the case of a Bi-based superconducting thin film without addition of Tc = 97K, there is a report that Tc = 97K was obtained by performing long-time synthesis of 80 hours at a growth rate of 12Å / hr by using the CVD method.

【0007】また、薄膜の製造にあっては、超伝導薄膜
を析出させる基体(基板)を要するが、基体と薄膜との
相互拡散、格子の不整合あるいは熱膨張係数の違いによ
るクラックの発生等によって超伝導特性が劣化されるも
のと思われる。薄膜合成にあっては、これらの点を充分
に考慮しなければ超伝導特性に優れた薄膜は得にくいも
のと考える。
Further, in manufacturing a thin film, a substrate (substrate) on which a superconducting thin film is deposited is required, but mutual diffusion between the substrate and the thin film, lattice mismatch, or generation of cracks due to difference in thermal expansion coefficient, etc. It seems that superconducting properties are deteriorated by this. In thin film synthesis, it is difficult to obtain a thin film with excellent superconducting properties unless these points are taken into consideration.

【0008】[0008]

【本発明が解決しようとする課題】超伝導特性に優れた
Bi−Sr−Ca−Cu−O酸化物超伝導薄膜を得るた
めには、熱処理によるPb添加、あるいは成長速度を非
常に遅くして長時間の合成を行う方法が良いとされてい
た。しかしながら工業的な量産性等の観点から不都合な
点が多い。
In order to obtain a Bi-Sr-Ca-Cu-O oxide superconducting thin film having excellent superconducting properties, Pb is added by heat treatment or the growth rate is made very slow. It was said that the method of performing the synthesis for a long time was good. However, there are many disadvantages from the viewpoint of industrial mass productivity.

【0009】本発明は、これら従来技術の問題点に着目
してなされたもので、熱処理等の後工程を持たず成膜速
度を落とすことなく薄膜を合成し、また基体との格子不
整合あるいは熱膨張係数の違いを緩和することにより、
量産性に優れ再現性よく、超伝導特性に優れたBi−S
r−Ca−Cu−O酸化物超伝導薄膜を製造する方法を
提供することを目的とする。
The present invention has been made by paying attention to the problems of these prior arts. It has no post-treatment such as heat treatment, synthesizes a thin film without reducing the film formation rate, and has a lattice mismatch with the substrate or By relaxing the difference in thermal expansion coefficient,
Bi-S with excellent mass productivity, good reproducibility, and excellent superconductivity
It is an object of the present invention to provide a method for producing an r-Ca-Cu-O oxide superconducting thin film.

【0010】[0010]

【課題を解決するための手段】本発明は前述した課題を
解決するため、フェニールビスマス、Sr、Ca、Cu
のβ−ジケトン金属錯体を蒸発源原料に用いたCVD法
によるBi−Sr−Ca−Cu−O酸化物超伝導薄膜の
製造において、基体(基板)と超伝導薄膜との間に中間
層を存在させる方法を採用する。
In order to solve the above-mentioned problems, the present invention provides phenyl bismuth, Sr, Ca, Cu.
In the production of a Bi-Sr-Ca-Cu-O oxide superconducting thin film by the CVD method using the β-diketone metal complex as described above as an evaporation source material, an intermediate layer is present between the substrate (substrate) and the superconducting thin film. Adopt the method of making.

【0011】基体表面上に、基体およびBi−Sr−C
a−Cu−O酸化物超伝導薄膜との間で拡散および反応
の起こりにくいような薄膜(中間層)を作製し、その薄
膜上にBi−Sr−Ca−Cu−O酸化物超伝導薄膜を
合成するものである。
On the surface of the substrate, the substrate and Bi-Sr-C are
A thin film (intermediate layer) which is less likely to diffuse and react with the a-Cu-O oxide superconducting thin film is formed, and a Bi-Sr-Ca-Cu-O oxide superconducting thin film is formed on the thin film. It is a composition.

【0012】ここで中間層は、超伝導薄膜との格子整合
性がよく、熱膨張係数の近いものが好ましく、超伝導薄
膜への拡散や反応が起こらないような薄膜であればより
好ましい。さらには、中間層として少なくともBi、S
r、CaまたはCuの1種あるいはそれ以上の元素を含
む酸化物を用いることにより、超伝導薄膜への拡散や反
応が多少なりとも起こったとしても、超伝導薄膜と同一
元素であるため超伝導特性の劣化には影響しないものと
考えられる。
The intermediate layer preferably has good lattice matching with the superconducting thin film and has a close thermal expansion coefficient, and more preferably a thin film that does not cause diffusion or reaction to the superconducting thin film. Furthermore, as an intermediate layer, at least Bi, S
By using an oxide containing one or more elements of r, Ca or Cu, even if some diffusion or reaction occurs in the superconducting thin film, it is the same element as the superconducting thin film, so It is considered that it does not affect the deterioration of characteristics.

【0013】またさらには、中間層として少なくともB
2 Sr2 CuOx の相あるいはBi2 Sr2 CaCu
2 X の相を用いることにより、格子整合性がよく熱膨
張係数の緩和が達成され、超伝導薄膜への拡散や反応に
よる超伝導特性の劣化も考えられないものと思われる。
Furthermore, at least B is used as the intermediate layer.
i 2 Sr 2 CuO x phase or Bi 2 Sr 2 CaCu
It is considered that the use of the 2 O X phase achieves good lattice matching and relaxation of the thermal expansion coefficient, and that deterioration of superconducting properties due to diffusion into the superconducting thin film or reaction is not considered.

【0014】製造方法は、まず基体上にPVD法あるい
はCVD法などの薄膜作製技術を用いて中間層となる薄
膜を作製する。この中間層を有する基体を反応炉内に置
き、さらにこの基体を加熱する。基体の加熱は、反応炉
内に加熱器を置き基体を加熱するかあるいは反応炉の外
部から加熱器により加熱することで行う。さらに高周波
加熱等の方法やマイクロ波プラズマ、RFプラズマ等の
手法を用いてもよい。
In the manufacturing method, first, a thin film to be an intermediate layer is formed on a substrate by using a thin film forming technique such as a PVD method or a CVD method. The substrate having the intermediate layer is placed in a reaction furnace, and the substrate is further heated. The heating of the substrate is performed by placing a heater in the reaction furnace to heat the substrate, or by heating the substrate from outside the reaction furnace. Further, a method such as high frequency heating or a method such as microwave plasma or RF plasma may be used.

【0015】基体の加熱温度は、Biを含む有機金属お
よびSr、Ca、Cuを含むβ−ジケトン金属錯体が十
分に分解重合する温度以上であり、基体と中間層および
超伝導薄膜との拡散や反応が考えられるときには少なく
とも拡散や反応が起こる温度以下が好ましい。いずれか
の方法により加熱した基体上に、酸素ガス又は酸素を含
むガス及び各元素を含む蒸気を含んだ不活性ガスを導入
する。
The heating temperature of the substrate is higher than the temperature at which the organic metal containing Bi and the β-diketone metal complex containing Sr, Ca, Cu are sufficiently decomposed and polymerized, and the diffusion of the substrate with the intermediate layer and the superconducting thin film is prevented. When a reaction is considered, it is preferably at least below the temperature at which diffusion or reaction occurs. An inert gas containing oxygen gas or a gas containing oxygen and a vapor containing each element is introduced onto the substrate heated by any method.

【0016】薄膜の組成比は、蒸発源原料の加熱温度
か、または不活性ガス流量により調整でき、またこの両
方を組み合わせて調整してもよい。反応炉内の圧力は減
圧であり、その圧力はキャリアガスや酸化ガスの流量さ
らには反応炉内における温度勾配等にも関係するが、少
なくとも導入された各元素を含む蒸気が基体上で分解重
合するだけの流速を維持できる圧力であればよい。
The composition ratio of the thin film can be adjusted by the heating temperature of the evaporation source raw material, the flow rate of the inert gas, or a combination of both. The pressure in the reaction furnace is a reduced pressure, and the pressure is related to the flow rates of the carrier gas and the oxidizing gas and the temperature gradient in the reaction furnace, but the vapor containing at least the introduced elements decomposes and polymerizes on the substrate. Any pressure may be used as long as it can maintain a sufficient flow rate.

【0017】以上のような製造方法により、基板と薄膜
との相互拡散を抑えることができ、薄膜と同じ元素を含
む中間層であることから、基板と薄膜との格子の不整合
あるいは熱膨張係数の違いを緩和する働きがあるものと
思われる。
By the above manufacturing method, mutual diffusion between the substrate and the thin film can be suppressed, and since it is an intermediate layer containing the same element as the thin film, the lattice mismatch between the substrate and the thin film or the thermal expansion coefficient. It seems that there is a function to alleviate the difference between.

【0018】以下、図1〜図4を参照して本発明の実施
例を説明する。
An embodiment of the present invention will be described below with reference to FIGS.

【実施例】図1は、本発明の製造方法において適用可能
なホット・ウォール型の熱CVD装置の一例を示す図で
ある。蒸発源原料に、トリフェニールビスマス、β−ジ
ケトン金属錯体のSr、Ca、Cuを用い、1〜4の各
ボート内に挿入した。
FIG. 1 is a diagram showing an example of a hot wall type thermal CVD apparatus applicable in the manufacturing method of the present invention. Triphenyl bismuth and Sr, Ca, and Cu of the β-diketone metal complex were used as the evaporation source material, and they were inserted into each boat of 1 to 4.

【0019】各原料を82℃から230℃の温度範囲で
ヒーター5により加熱蒸発させ、キャリアガスとしてA
rガス6を用い、それぞれ50ml/min の流量で反応炉
7内に導入した。酸素ガス8は、キャリアガスとは別経
路で流量720ml/min にて反応炉7内に導入した。反
応炉7内は真空ポンプ10により減圧とし、圧力は10
0Torrとした。また、酸素濃度調整のためのキャリ
アガスとは別経路でArガス9を反応炉7内に導入し
た。Arガス9の流量280ml/min の時、酸素分圧は
60Torrである。
Each raw material is heated and evaporated by the heater 5 in the temperature range of 82 ° C. to 230 ° C.
The r gas 6 was introduced into the reaction furnace 7 at a flow rate of 50 ml / min. The oxygen gas 8 was introduced into the reaction furnace 7 at a flow rate of 720 ml / min separately from the carrier gas. The pressure inside the reaction furnace 7 is reduced by a vacuum pump 10 to a pressure of 10
It was set to 0 Torr. Further, Ar gas 9 was introduced into the reaction furnace 7 through a route different from the carrier gas for adjusting the oxygen concentration. When the flow rate of Ar gas 9 is 280 ml / min, the oxygen partial pressure is 60 Torr.

【0020】基板11には、鏡面研磨したMgO(10
0)単結晶基板を用いた。ヒーター12による析出温度
800℃で成膜を行ったが、測温は基板直下に設置した
熱電対13により行った。析出時間は2時間とした。析
出終了後、合成時のガス流量のままで760Torrに
開放し室温まで急冷した。
The substrate 11 has a mirror-finished MgO (10
0) A single crystal substrate was used. The film formation was performed at a deposition temperature of 800 ° C. by the heater 12, but the temperature was measured by the thermocouple 13 installed directly under the substrate. The deposition time was 2 hours. After the completion of precipitation, the gas flow rate at the time of synthesis was maintained at 760 Torr and the temperature was rapidly cooled to room temperature.

【0021】ここで得られた膜について、X線により膜
の同定を行い、蛍光X線により化学組成の分析を行っ
た。図2に得られた膜のX線回折パターンを示す。
With respect to the film thus obtained, the film was identified by X-ray and the chemical composition was analyzed by fluorescent X-ray. The X-ray diffraction pattern of the obtained film is shown in FIG.

【0022】膜の同定および化学組成分析を終了した表
面に少なくともBi2 Sr2 CaCu2 X の相を析出
させた基体を、再度図1中の11に設置し、少なくとも
Bi2 Sr2 Ca2 Cu3 X の37Å相を含む薄膜が
合成される原料加熱温度で各蒸発源原料を加熱し、析出
温度800℃において、上記と同様の方法で薄膜合成を
行った。析出時間は、3時間とした。析出終了後、酸素
760Torr下で析出温度から約100℃まで20℃
/min で冷却するin−situ酸素処理を行った。
A substrate having at least a Bi 2 Sr 2 CaCu 2 O x phase deposited on the surface after completion of film identification and chemical composition analysis was again set at 11 in FIG. 1 and at least Bi 2 Sr 2 Ca 2 heating each evaporation source material at material heating temperature thin film containing 37Å phase of Cu 3 O X is synthesized, at precipitation temperature 800 ° C., it was thin synthesized in the same manner as described above. The deposition time was 3 hours. After the deposition is completed, the temperature is raised from the deposition temperature to about 100 ° C. at 20 ° C. under 760 Torr of oxygen.
In-situ oxygen treatment of cooling at 1 / min was performed.

【0023】得られた膜のX線回折パターンを図3に示
す。c軸配向した30Å相が顕著にみられ、c軸配向し
た37Å相が極微量混在する膜が形成された。図4に
は、この膜の抵抗の温度依存性を示す。温度の低下とと
もに抵抗は減少し、中間層を有しない薄膜に比べ、液体
窒素温度以上でより高いTcを示した。
The X-ray diffraction pattern of the obtained film is shown in FIG. The c-axis oriented 30Å phase was remarkably observed, and a film in which a very small amount of c-axis oriented 37Å phase was mixed was formed. FIG. 4 shows the temperature dependence of the resistance of this film. The resistance decreased as the temperature decreased, and showed higher Tc above the liquid nitrogen temperature as compared with the thin film having no intermediate layer.

【0024】[0024]

【発明の効果】上述した製造方法により合成されたBi
−Sr−Ca−Cu−O超伝導薄膜は、基体と超伝導薄
膜との間に中間層を介することにより、結晶性、配向性
および超伝導特性に優れた膜が得られ、熱処理等の高T
c化のための後工程を要せず、析出速度も速いことから
製造工程上簡易的である。
EFFECT OF THE INVENTION Bi synthesized by the above manufacturing method
In the -Sr-Ca-Cu-O superconducting thin film, a film excellent in crystallinity, orientation and superconducting properties can be obtained by interposing an intermediate layer between the substrate and the superconducting thin film, and high heat treatment and the like can be obtained. T
No post-process for conversion to c is required, and the deposition rate is high, which is a simple manufacturing process.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の製造方法に使用可能な装置の断面概略
図である。
FIG. 1 is a schematic cross-sectional view of an apparatus that can be used in the manufacturing method of the present invention.

【図2】本発明の実施例による中間層としての膜のX線
回折図形である。
FIG. 2 is an X-ray diffraction pattern of a film as an intermediate layer according to an example of the present invention.

【図3】本発明の実施例による膜のX線回折図形であ
る。
FIG. 3 is an X-ray diffraction pattern of a film according to an example of the present invention.

【図4】本発明の実施例による膜の抵抗の温度依存性の
図である。 a・・・中間層を有しない薄膜 b・・・中間層を有する薄膜
FIG. 4 is a diagram of temperature dependence of resistance of a film according to an example of the present invention. a: Thin film having no intermediate layer b: Thin film having an intermediate layer

【符号の説明】[Explanation of symbols]

1〜4 蒸発源原料 5 原料加熱ヒーター 6 キャリアガス 7 反応炉 8 酸素ガス 9 Arガス 10 真空ポンプ 11 基板 12 基板加熱ヒーター 13 熱電対 1-4 evaporation source raw material 5 raw material heating heater 6 carrier gas 7 reaction furnace 8 oxygen gas 9 Ar gas 10 vacuum pump 11 substrate 12 substrate heating heater 13 thermocouple

───────────────────────────────────────────────────── フロントページの続き (72)発明者 長谷井 政治 埼玉県熊谷市熊谷810番地 株式会社リケ ン熊谷事業所内 (72)発明者 黒澤 秀行 埼玉県熊谷市熊谷810番地 株式会社リケ ン熊谷事業所内 (72)発明者 平井 敏雄 宮城県仙台市泉区高森3丁目4番地の91 (72)発明者 山根 久典 宮城県仙台市宮城野区二の森21番3号 ツ インヒルズA401 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Politics Hasei, 810 Kumagaya, Kumagaya, Saitama Prefecture, inside the Kumagaya Plant, Inc. (72) Hideyuki Kurosawa, 810, Kumagaya, Kumagaya, Saitama Prefecture, inside Kumagaya, Ltd. (72) Inventor Toshio Hirai, 3-4 Takamori, Izumi-ku, Sendai-shi, Miyagi 91 (72) Hisanori Yamane 21-3 Ninomori 21-3, Miyagino-ku, Sendai-shi, Miyagi Twin Hills A401

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 Biを含む有機金属および少なくともS
r,Ca,Cuを含むβ−ジケトン金属錯体を蒸発源原
料に用いた化学気相析出法により、基体にBi−Sr−
Ca−Cu−Oの酸化物超伝導薄膜を製造する方法にお
いて、基体と酸化物超伝導薄膜との間に中間層を存在さ
せることを特徴とする酸化物超伝導薄膜の製造方法。
1. An organic metal containing Bi and at least S
By a chemical vapor deposition method using a β-diketone metal complex containing r, Ca, Cu as an evaporation source material, Bi-Sr-
A method for producing an oxide superconducting thin film of Ca-Cu-O, characterized in that an intermediate layer is present between the substrate and the oxide superconducting thin film.
【請求項2】 中間層として少なくともBi,Sr,C
aまたはCuの1種あるいはそれ以上の元素を含む酸化
物を有する請求項1の薄膜の製造方法。
2. At least Bi, Sr, C as an intermediate layer
The method for producing a thin film according to claim 1, further comprising an oxide containing one or more elements of a or Cu.
【請求項3】 中間層として少なくともBi2 Sr2
uOx の相を有する請求項1の薄膜の製造方法。
3. At least Bi 2 Sr 2 C as an intermediate layer
The method for producing a thin film according to claim 1, having a uO x phase.
【請求項4】 中間層として少なくともBi2 Sr2
aCu2 X の相を有する請求項1の薄膜の製造方法。
4. At least Bi 2 Sr 2 C as an intermediate layer
The method for producing a thin film according to claim 1, having a phase of aCu 2 O x .
JP25020491A 1991-09-04 1991-09-04 Production of oxide superconducting thin film Pending JPH0558640A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25020491A JPH0558640A (en) 1991-09-04 1991-09-04 Production of oxide superconducting thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25020491A JPH0558640A (en) 1991-09-04 1991-09-04 Production of oxide superconducting thin film

Publications (1)

Publication Number Publication Date
JPH0558640A true JPH0558640A (en) 1993-03-09

Family

ID=17204373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25020491A Pending JPH0558640A (en) 1991-09-04 1991-09-04 Production of oxide superconducting thin film

Country Status (1)

Country Link
JP (1) JPH0558640A (en)

Similar Documents

Publication Publication Date Title
Schulz et al. MOCVD routes to thin metal oxide films for superconducting electronics
EP0406126B2 (en) Substrate having a superconductor layer
US6074768A (en) Process for forming the oxide superconductor thin film and laminate of the oxide superconductor thin films
US5116811A (en) Cvd method for the formation of bi-containing superconducting thin films
EP0410868A2 (en) Superconducting thin film of compound oxide and process for preparing the same
Nemoto et al. Chemical vapor deposition of superconducting Bi-Sr-Ca-Cu-O films using fluorocarbon-based precursors
JPH01104774A (en) Production of thin film of oxide superconductor
EP0347335B1 (en) A superconducting thin film and a process for depositing the same
US5196398A (en) Process for producing thallium type superconducting thin film
EP0372808B1 (en) Process for preparing a perovskite type superconductor film
US5883050A (en) Hg-based superconducting cuprate films
JPH0558640A (en) Production of oxide superconducting thin film
Zama et al. Preparation and characterization of YBaCuO superconducting films by low-temperature chemical vapor deposition using β-diketonate complex and N2O
EP0412000B1 (en) Process for preparing superconducting thin films
Schmaderer et al. High-Tc-superconductors prepared by CVD
JPH0558641A (en) Production of oxide superconducting thin film
EP0329103B2 (en) Process for manufacturing thin film of high-Tc superconducting oxide
JP3038758B2 (en) Method for producing oxide superconducting thin film
Hitchman et al. Some Considerations of MOCVD for the Preparation of High T c Thin Films
KR950008862B1 (en) MANUFACTURING METHOD OF YBA2 CU3O7-x (X=0-0.5) SUPER CONDUCTOR
Zhao et al. Metalorganic Chemical Vapor Deposition of YBa2Cu3O7-x Thin Films
JP2781331B2 (en) Manufacturing method of thin film superconductor
JPH01208323A (en) Production of thin film
JPH0288426A (en) Production of superconducting thin film
Abe et al. Thin Film, OMCVD Process for High-T c Superconductivity