JPH05147905A - Production of oxide superconductor - Google Patents

Production of oxide superconductor

Info

Publication number
JPH05147905A
JPH05147905A JP3287022A JP28702291A JPH05147905A JP H05147905 A JPH05147905 A JP H05147905A JP 3287022 A JP3287022 A JP 3287022A JP 28702291 A JP28702291 A JP 28702291A JP H05147905 A JPH05147905 A JP H05147905A
Authority
JP
Japan
Prior art keywords
oxide superconductor
temperature
gaseous
prescribed
reaction tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3287022A
Other languages
Japanese (ja)
Inventor
Hisao Tanaka
尚生 田中
Tadashi Sugihara
忠 杉原
Takuo Takeshita
拓夫 武下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP3287022A priority Critical patent/JPH05147905A/en
Publication of JPH05147905A publication Critical patent/JPH05147905A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To enhance critical current density by forming an oxide superconductor on an Ag base body at the prescribed temperature and thereafter cooling it to ordinary temperature at the specified cooling velocity. CONSTITUTION:Inert gas such as Ar is introduced as carrier gas into the respective thermostats 1-4 packed with an organic metal of Bi, Sr, Ca, Cu or organic metal complex salt used a raw material from a gas introduction pipe 6 at the prescribed flow velocity. A gaseous raw material is supplied into a reaction tank 8. Further, gaseous O2 is supplied into the reaction tank 8 from the other gas introduction pipe 7. Inert gas containing the gaseous raw material is mixed with gaseous O2 in the reaction tank 8 and the gaseous mixture is supplied on an Ag tape at the prescribed pressure in the tank. Then, a susceptor 12 is heated to the prescribed temperature from ordinary temperature. A Bi-Sr-Ca- CuO-based oxide superconductor is deposited on the Ag tape 9 at 1-5mum/hour film formation velocity and built up in prescribed thickness. Thereafter, an oxide superconductor thin film having high critical current density is obtained by lowering the temperature of the oxide superconductor at <=5 deg.C/minute cooling velocity.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えば線材の製造方法
に適用することができるMOCVD法による酸化物超電
導体の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an oxide superconductor by MOCVD, which can be applied to a method for producing a wire.

【0002】[0002]

【従来の技術】従来、酸化物超電導体の製造方法の一つ
にMOCVD法がある。このMOCVD法による酸化物
超電導体の製造方法の技術として、例えば特開平2−8
8426号公報に開示された「超電導薄膜の製造方法」
が知られている。すなわち、この技術は、ビスマス、ス
トロンチウム、カルシウム、および、銅を少なくとも含
むMO(有機金属または有機金属錯体)を蒸発源の原料
として用いたCVD(化学気相析出)法により、形成さ
れる膜の融点温度以下の温度に保持された基板上に、高
C相を含む不純物の少ない超電導薄膜を形成するもの
である。例えばマグネシア(MgO)等のセラミックス
基板に超電導体薄膜を堆積する場合、その堆積速度(成
膜速度)は0.5μm/h程度にまで遅くしていた。も
し、この成膜速度を速くすると、例えば2μm/h程度
にすると、その臨界電流密度が減少してしまうからであ
る(下記表1参照)。また、この薄膜の堆積後は基板は
10℃/minの速度で冷却されていた。
2. Description of the Related Art Conventionally, the MOCVD method is one of the methods for producing an oxide superconductor. As a technique of the method of manufacturing an oxide superconductor by the MOCVD method, for example, Japanese Patent Laid-Open No. 2-8
"Method for manufacturing superconducting thin film" disclosed in Japanese Patent No. 8426.
It has been known. That is, this technique is for a film formed by a CVD (Chemical Vapor Deposition) method using MO (organic metal or organometallic complex) containing at least bismuth, strontium, calcium, and copper as a source of an evaporation source. A superconducting thin film containing a high T C phase and containing few impurities is formed on a substrate held at a temperature equal to or lower than the melting point temperature. For example, when depositing a superconductor thin film on a ceramic substrate such as magnesia (MgO), the deposition rate (deposition rate) has been slowed down to about 0.5 μm / h. This is because, if the film formation rate is increased, for example, if it is set to about 2 μm / h, the critical current density is reduced (see Table 1 below). After the deposition of this thin film, the substrate was cooled at a rate of 10 ° C / min.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記従
来技術にあっては、薄膜の成膜速度が遅いため量産化に
適していないとともに、その薄膜の臨界電流密度も低い
ものであって、実用化に供し得ないという課題があっ
た。
However, the above-mentioned prior art is not suitable for mass production because of the slow film forming rate of the thin film, and the critical current density of the thin film is low. There was a problem that it could not be used for.

【0004】そこで、本願発明者は、超電導体薄膜を銀
に堆積する場合、成膜後の冷却速度を遅くすることによ
り、高臨界電流密度の薄膜が得られ、しかも、その成膜
速度も速くすることができることを、得た。したがっ
て、本発明は、成膜速度の高速化と臨界電流密度の向上
とを同時に実現することができる酸化物超電導体の製造
方法を提供することを、その目的としている。
Therefore, when depositing a superconductor thin film on silver, the inventor of the present application can obtain a thin film having a high critical current density by slowing the cooling rate after the film is formed, and the film forming rate is also high. Got what you can do. Therefore, it is an object of the present invention to provide a method for producing an oxide superconductor, which can simultaneously realize high film formation speed and high critical current density.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に、本発明に係る酸化物超電導体の製造方法において
は、MOCVD法による酸化物超電導体の製造方法にお
いて、銀基体に酸化物超電導体を所定温度にて形成し、
この後、5℃/min以下の速度で上記温度から常温ま
で冷却するものである。好ましくは、酸化物超電導体の
薄膜を1μm/h以上で5μm/h以下の成膜速度で銀
基体上に堆積する。また、酸化物超電導体としてはビス
マス−カルシウム−ストロンチウム−銅系その他のもの
に適用することができる。
In order to achieve the above object, in a method for producing an oxide superconductor according to the present invention, in a method for producing an oxide superconductor by MOCVD, an oxide superconductor is formed on a silver substrate. Is formed at a predetermined temperature,
After that, the temperature is cooled from the above temperature to room temperature at a rate of 5 ° C./min or less. Preferably, a thin film of an oxide superconductor is deposited on the silver substrate at a film forming rate of 1 μm / h or more and 5 μm / h or less. The oxide superconductor can be applied to bismuth-calcium-strontium-copper system and others.

【0006】[0006]

【作用】上記のように構成された酸化物超電導体の製造
方法にあっては、高速の成膜速度で銀基体に酸化物超電
導体を形成した後、5℃/min以下の低速で冷却する
と、その酸化物超電導体の臨界電流密度を飛躍的に向上
させることができる。
In the method of manufacturing an oxide superconductor having the above-described structure, when the oxide superconductor is formed on the silver substrate at a high film forming rate, the oxide superconductor is cooled at a low speed of 5 ° C./min or less. The critical current density of the oxide superconductor can be dramatically improved.

【0007】[0007]

【実施例】以下、本発明に係る酸化物超電導体の製造方
法の実施例について、図1〜図2を参照して説明する。
図1は、本発明の一実施例に係る酸化物超電導体の製造
装置の概略を示す断面図である。図2は、本発明の一実
施例に係る酸化物超電導体の形成温度の変化を示すグラ
フである。
EXAMPLES Examples of a method for producing an oxide superconductor according to the present invention will be described below with reference to FIGS.
FIG. 1 is a sectional view showing an outline of an oxide superconductor manufacturing apparatus according to an embodiment of the present invention. FIG. 2 is a graph showing changes in the formation temperature of an oxide superconductor according to an example of the present invention.

【0008】本発明に係る酸化物超電導体の製造装置
は、図1に示すように、有機金属または有機金属錯体か
らなる酸化物超電導体の原料がそれぞれ充填された恒温
槽1、2、3、4と、これらの恒温槽1〜4に原料搬送
用の不活性ガス(アルゴンガス)を導入する導入管6
と、反応用の酸素ガスを反応槽8に導入するための導入
管7と、これらの原料を反応させる反応槽8と、原料を
堆積させるための基体としての銀テープ9を載置する反
応槽8内に配設されたサセプタ12と、反応槽8を加熱
するためのヒータ10と、反応槽8内を真空に引くため
の真空ポンプ11と、を有して構成されている。銀テー
プ9は、幅が7mm、長さが20mm、厚さが0.5m
mのもの等を使用している。また、この銀テープ9を保
持するサセプタ12は石英で形成されている。
The apparatus for producing an oxide superconductor according to the present invention, as shown in FIG. 1, has constant temperature baths 1, 2, 3 filled with raw materials for an oxide superconductor made of an organic metal or an organometallic complex, respectively. 4 and an introduction pipe 6 for introducing an inert gas (argon gas) for carrying raw materials into the constant temperature tanks 1 to 4
A reaction tank for introducing a reaction oxygen gas into the reaction tank 8, a reaction tank 8 for reacting these raw materials, and a silver tape 9 as a substrate for depositing the raw materials. 8 is provided with a susceptor 12, a heater 10 for heating the reaction tank 8, and a vacuum pump 11 for drawing a vacuum in the reaction tank 8. The silver tape 9 has a width of 7 mm, a length of 20 mm and a thickness of 0.5 m.
I am using m. The susceptor 12 holding the silver tape 9 is made of quartz.

【0009】この装置にあって、反応槽8は真空ポンプ
11により10-3Torr程度まで真空引きされる。そ
して、ビスマス、ストロンチウム、カルシウム、銅、の
有機金属または有機金属錯体、例えばBi(C
653、Sr(C111922、Ca(C11192
2、Cu(C111922は、各恒温槽1、2、3、4
内に充填されており、かつ所定の温度に加熱されて気化
されている。例えば、トリフェニルビスマスは110〜
120℃の範囲内の温度、ストロンチウムのβ−ジケト
ン錯体は227〜240℃の範囲内の温度、カルシウム
のβ−ジケトン錯体は185〜200℃の範囲内の温
度、銅のβ−ジケトン錯体は115〜130℃の範囲内
の温度にそれぞれ保持される。特に、トリフェニルビス
マスは115℃、ストロンチウムのβ−ジケトン錯体は
230℃、カルシウムのβ−ジケトン錯体は190℃、
銅のβ−ジケトン錯体は123℃に保持するものとす
る。
In this apparatus, the reaction tank 8 is evacuated to about 10 -3 Torr by the vacuum pump 11. Then, an organic metal or an organic metal complex of bismuth, strontium, calcium, copper, such as Bi (C
6 H 5) 3, Sr ( C 11 H 19 O 2) 2, Ca (C 11 H 19 O 2)
2 and Cu (C 11 H 19 O 2 ) 2 are in the constant temperature baths 1, 2 , 3, 4
It is filled inside and heated to a predetermined temperature to be vaporized. For example, triphenylbismuth is 110-
A temperature in the range of 120 ° C., a strontium β-diketone complex in the range of 227 to 240 ° C., a calcium β-diketone complex in the range of 185 to 200 ° C., and a copper β-diketone complex in the range of 115 ° C. Each is maintained at a temperature within the range of 130 ° C. In particular, triphenylbismuth is 115 ° C, strontium β-diketone complex is 230 ° C, calcium β-diketone complex is 190 ° C,
The β-diketone complex of copper shall be kept at 123 ° C.

【0010】そして、各恒温槽1、2、3、4には、不
活性ガス導入管6より搬送ガスとしてアルゴンガスが各
々50cc/minの流量で導入され、さらに、この搬
送ガスによって原料ガスは反応槽8内に搬送される。ま
た、酸素ガスが酸素ガス導入管7より反応槽8内に30
0cc/minの流量で導入される。この結果、各組成
元素を含んだアルゴンガスと酸素ガスとは、反応槽8内
で混合される。このとき、真空ポンプ11の排気能力を
調節して反応槽8は圧力15Torrに保持され、これ
らのガスは銀テープ9上に導入されるものである。な
お、反応槽8に至るまでの配管は原料蒸気が凝縮しない
ように所定の温度に保持されている。
Argon gas is introduced into each of the constant temperature baths 1, 2, 3 and 4 as a carrier gas from the inert gas introducing pipe 6 at a flow rate of 50 cc / min, and the source gas is supplied by the carrier gas. It is transported into the reaction tank 8. Further, oxygen gas is introduced into the reaction tank 8 through the oxygen gas introduction pipe 7 in an amount of 30
It is introduced at a flow rate of 0 cc / min. As a result, the argon gas containing each composition element and the oxygen gas are mixed in the reaction tank 8. At this time, the evacuation capacity of the vacuum pump 11 is adjusted so that the reaction tank 8 is maintained at a pressure of 15 Torr, and these gases are introduced onto the silver tape 9. The piping leading to the reaction tank 8 is maintained at a predetermined temperature so that the raw material vapor does not condense.

【0011】そして、サセプタ12の温度を常温から所
定速度で800℃の温度に昇温し、銀テープ9上にBi
−Sr−Ca−Cu−Oの酸化物超電導体を、成膜速度
が例えば2μm/hになるように1時間析出させる。こ
のようにして銀テープ9上に2μmの厚さに薄膜が堆積
された後、サセプタ12の温度を2℃/minの速度で
降下してこの銀テープ9および薄膜をゆっくり冷却す
る。この結果得られた酸化物超電導体薄膜の臨界電流密
度(A/cm2)を絶対温度4.2Kで測定したものが表
1である。比較例としてマグネシア(MgO)基板上に
酸化物超電導体を形成したとき、また、0.5μm/h
の成膜速度のとき、さらに、10℃/minの冷却速度
のときの結果も表1に示している。
Then, the temperature of the susceptor 12 is raised from room temperature to a temperature of 800 ° C. at a predetermined rate, and the Bi tape on the silver tape 9 is heated.
An -Sr-Ca-Cu-O oxide superconductor is deposited for 1 hour so that the film formation rate is, for example, 2 μm / h. After the thin film having a thickness of 2 μm is deposited on the silver tape 9 in this manner, the temperature of the susceptor 12 is lowered at a rate of 2 ° C./min to slowly cool the silver tape 9 and the thin film. Table 1 shows the critical current density (A / cm 2 ) of the oxide superconductor thin film obtained as a result of the measurement at an absolute temperature of 4.2K. As a comparative example, when the oxide superconductor was formed on the magnesia (MgO) substrate,
Table 1 also shows the results at the film forming speed of 10 ° C. and at the cooling speed of 10 ° C./min.

【0012】[0012]

【表1】 [Table 1]

【0013】この表1から明らかなように、マグネシア
基板上に酸化物超電導体薄膜を形成したとき、2μm/
hの高速成長の場合の臨界電流密度は、0.5μm/h
の低速成長の場合に比較して急激に減少する。よって、
マグネシア基板ではその成膜速度を速くすることができ
ない。また、このマグネシア基板では冷却速度を10℃
/minから2℃/minに遅くしてもほとんど影響が
ないことがわかる。銀テープ上に酸化物超電導体薄膜を
2μm/hの高速成長で、10゜C/minの冷却速度
で形成したとき、その臨界電流密度は、マグネシア基板
上に形成したときの臨界電流密度と比べて飛躍的に向上
しない。しかし、2μm/hの高速成長で、2℃/mi
nの遅い冷却速度で実施したときは、酸化物超電導体薄
膜の臨界電流密度を非常に大きくすることができる。
As is clear from Table 1, when an oxide superconductor thin film is formed on a magnesia substrate, it is 2 μm /
The critical current density for high-speed growth of h is 0.5 μm / h
It decreases sharply compared to the case of slow growth. Therefore,
The magnesia substrate cannot increase the film forming speed. Also, this magnesia substrate has a cooling rate of 10 ° C.
It can be seen that there is almost no effect even if the temperature is decreased from / min to 2 ° C / min. When an oxide superconductor thin film was formed on a silver tape at a high growth rate of 2 μm / h at a cooling rate of 10 ° C / min, its critical current density was higher than that when formed on a magnesia substrate. It does not improve dramatically. However, with high-speed growth of 2 μm / h, 2 ° C./mi
When performed at a slow cooling rate of n, the critical current density of the oxide superconductor thin film can be made very large.

【0014】なお、銀テープ上に1μm/h以下、例え
ば0.5μm/hの成長速度で酸化物超電導体を形成し
ようとしたときは、成長速度が遅すぎて膜として形成で
きない。また、銀テープ上に5μm/h以上の成膜速度
で酸化物超電導体薄膜を形成し冷却速度を遅くしても、
その臨界電流密度は上昇することはない。銀テープ上に
2μm/hの高速成長で酸化物超電導体薄膜を形成し、
その後、5℃/min以上に冷却速度を速くしても、そ
の臨界電流密度は向上しない。
When an oxide superconductor is to be formed on a silver tape at a growth rate of 1 μm / h or less, for example 0.5 μm / h, the growth rate is too slow to form a film. Moreover, even if the oxide superconductor thin film is formed on the silver tape at a film formation rate of 5 μm / h or more and the cooling rate is slowed,
Its critical current density does not increase. An oxide superconductor thin film is formed on a silver tape by high-speed growth of 2 μm / h,
Then, even if the cooling rate is increased to 5 ° C./min or more, the critical current density is not improved.

【0015】したがって、本発明によれば、銀テープ上
に酸化物超電導体薄膜を、高速成長させることができる
とともに、高い臨界電流密度に実現することができる。
このことは、銀テープが長尺化可能であるので酸化物超
電導体を線材化するためには大変有効である。また、高
速成長させることができるので、効率よく酸化物超電導
体薄膜を製造することができる。さらに、高い臨界電流
密度を得ることができるので、超電導薄膜線の実用化に
対応することができる。なお、本発明は、Bi系の酸化
物超電導体に限定されるものではなく、La系、Y系、
Tl系等に適用することができる。
Therefore, according to the present invention, an oxide superconductor thin film can be grown on a silver tape at a high speed and a high critical current density can be realized.
This is very effective for making the oxide superconductor into a wire because the silver tape can be made long. Moreover, since the growth can be performed at a high speed, the oxide superconductor thin film can be efficiently manufactured. Further, since a high critical current density can be obtained, it is possible to put the superconducting thin film wire into practical use. The present invention is not limited to Bi-based oxide superconductors, but La-based, Y-based,
It can be applied to the Tl system and the like.

【0016】[0016]

【発明の効果】本発明は、銀基体上への酸化物超電導体
の成膜を迅速に行うことができ量産化に適応することが
できるとともに、その薄膜の臨界電流密度を実用化に十
分な値にまで高めることができる。
INDUSTRIAL APPLICABILITY The present invention enables rapid formation of a film of an oxide superconductor on a silver substrate and is suitable for mass production, and the critical current density of the thin film is sufficient for practical use. Can be raised to value.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係る酸化物超電導体の製造
装置の概略を示す断面図である。
FIG. 1 is a cross-sectional view showing an outline of an oxide superconductor manufacturing apparatus according to an embodiment of the present invention.

【図2】本発明の一実施例に係る酸化物超電導体の製造
温度の変化を示すグラフである。
FIG. 2 is a graph showing changes in manufacturing temperature of an oxide superconductor according to an example of the present invention.

【符号の説明】[Explanation of symbols]

9 銀テープ 9 silver tape

【手続補正書】[Procedure amendment]

【提出日】平成4年10月19日[Submission date] October 19, 1992

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図面の簡単な説明[Name of item to be corrected] Brief description of the drawing

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係る酸化物超電導体の製造
装置の概略を示す断面図である。
FIG. 1 is a cross-sectional view showing an outline of an oxide superconductor manufacturing apparatus according to an embodiment of the present invention.

【図2】本発明の一実施例に係る酸化物超電導体の製造
温度の変化を示すグラフである。
FIG. 2 is a graph showing changes in manufacturing temperature of an oxide superconductor according to an example of the present invention.

【符号の説明】 9 銀テープ[Explanation of symbols] 9 Silver tape

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01L 39/24 ZAA B 8728−4M // H01B 12/06 ZAA 8936−5G ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI technical display location H01L 39/24 ZAA B 8728-4M // H01B 12/06 ZAA 8936-5G

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 MOCVD法による酸化物超電導体の製
造方法において、 銀基体に酸化物超電導体を所定温度にて形成し、 この形成後、5℃/min以下の速度で上記温度から常
温まで冷却することを特徴とする酸化物超電導体の製造
方法。
1. A method for producing an oxide superconductor by MOCVD, wherein an oxide superconductor is formed on a silver substrate at a predetermined temperature, and after this formation, the temperature is cooled from the above temperature to room temperature at a rate of 5 ° C./min or less. A method for producing an oxide superconductor, comprising:
JP3287022A 1991-10-07 1991-10-07 Production of oxide superconductor Withdrawn JPH05147905A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3287022A JPH05147905A (en) 1991-10-07 1991-10-07 Production of oxide superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3287022A JPH05147905A (en) 1991-10-07 1991-10-07 Production of oxide superconductor

Publications (1)

Publication Number Publication Date
JPH05147905A true JPH05147905A (en) 1993-06-15

Family

ID=17712031

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3287022A Withdrawn JPH05147905A (en) 1991-10-07 1991-10-07 Production of oxide superconductor

Country Status (1)

Country Link
JP (1) JPH05147905A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1076126C (en) * 1999-05-21 2001-12-12 北京工业大学 Polycrystal silver based belt and preparation and use thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1076126C (en) * 1999-05-21 2001-12-12 北京工业大学 Polycrystal silver based belt and preparation and use thereof

Similar Documents

Publication Publication Date Title
Schieber Deposition of high temperature superconducting films by physical and chemical methods
Nakayama et al. Superconductivity of Bi2Sr2Ca n− 1Cu n O y (n= 2, 3, 4, and 5) thin films prepared in situ by molecular‐beam epitaxy technique
US5116811A (en) Cvd method for the formation of bi-containing superconducting thin films
JPH02225317A (en) Production of oxide superconductor by chemical gas phase deposition method
JPH01104774A (en) Production of thin film of oxide superconductor
Erbil et al. A Review of Metalorganic Chemical Vapor Deposition of High-Temperature
JPH05147905A (en) Production of oxide superconductor
JP3897550B2 (en) Preparation method of boride superconductor thin film
US3480484A (en) Method for preparing high mobility indium antimonide thin films
JP2767298B2 (en) LAMINATED THIN FILM AND PROCESS FOR PRODUCING THE SAME
JP2539032B2 (en) Continuous raw material supply device for oxide superconductor manufacturing apparatus and continuous raw material supply method
JP2661169B2 (en) Superconductor thin film manufacturing method
JP4034151B2 (en) Preparation method of boride superconductor thin film
JPH06166597A (en) Method for chemical deposition of bismuth-strontium-calcium-copper oxide-based superconductor
JPH01212218A (en) Production of thin superconducting oxide film
KR20040014642A (en) Manufacturing method for superconductive Magnesium Boride thin-film
JPH0375207A (en) Production of thin film of oxide superconductor
JP2518121B2 (en) Method for producing BiSrCaCuO-based superconducting film
JP2828652B2 (en) Superconducting element manufacturing method
KR100447215B1 (en) Manufacturing method for superconductive Magnesium Boride thin-film
US3488165A (en) Superconductors having a flexible substrate and a coating substantially of nbsn3
JPH0328110A (en) Production of superconducting film of oxide and device therefor
JPH0288426A (en) Production of superconducting thin film
JPH02175874A (en) Production of oxide superconducting thin film
JPH0256815A (en) Manufacture of superconductor

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990107