JPH01212218A - Production of thin superconducting oxide film - Google Patents

Production of thin superconducting oxide film

Info

Publication number
JPH01212218A
JPH01212218A JP63037939A JP3793988A JPH01212218A JP H01212218 A JPH01212218 A JP H01212218A JP 63037939 A JP63037939 A JP 63037939A JP 3793988 A JP3793988 A JP 3793988A JP H01212218 A JPH01212218 A JP H01212218A
Authority
JP
Japan
Prior art keywords
source
bis
substrate
heated
hexafluoroacetylacetonate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63037939A
Other languages
Japanese (ja)
Inventor
Shunichi Nishikida
錦田 俊一
Teruo Izumi
輝郎 和泉
Tatsuhiko Shigematsu
重松 達彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP63037939A priority Critical patent/JPH01212218A/en
Publication of JPH01212218A publication Critical patent/JPH01212218A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Chemical Vapour Deposition (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To easily obtain the title thin superconducting oxide film by depositing the oxides of specified Y source, Ba source, and Cu source on a substrate by the chemical vapor deposition method. CONSTITUTION:The substrate 6 (e.g., strontium titanate) is arranged in a reaction tube 8, and heated to 400-800 deg.C by a heater 7. The tris(dipivaloylmethanate)ytterium as the Y source is heated to 120-140 deg.C, the bis(hexafluoroacetylacetonate)barium as the Ba source is heated to 50-70 deg.C, and the bis(dipivaloylmethanate)copper as the Cu source is heated to 70-90 deg.C or bis(hexafluoroacetylacetonate)copper to 60-80 deg.C respectively by raw material heating furnaces 3-5 to evaporate the respective sources. The vapors are entrained by the carrier gas from a cylinder 2 at the rate of 100-500ml/min, and supplied to the reaction tube 8. Meanwhile, gaseous oxygen is supplied to the reaction tube 8 from a cylinder 1 at the rate of 50-300ml/min, and the Y-Ba-Cu-O based thin superconducting film is vapor-deposited on the substrate 6.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、化学気相蒸着法を用いて酸化物超電導薄膜
を製造する方法に関し、例えば、酸化物超電導材を金属
などのテープ上に成膜し線材として用いたり、コイル化
し高磁場磁石や送電線に利用したり、或いはエレクトロ
ニクス用配線材料やジッセフソン素子によるセンサーと
して用いるための超電導薄膜の製造方法に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a method for producing an oxide superconducting thin film using chemical vapor deposition, for example, a method for forming an oxide superconducting material on a tape of metal or the like. The present invention relates to a method for producing a superconducting thin film, which can be used as a coated wire, coiled and used as a high-field magnet or power transmission line, or used as a wiring material for electronics or a sensor using a Gisefson element.

(従来の技術) ペロプスカイト構造の酸化物Y1BatCu20ff−
Jは液体窒素温度以上でも超電導状態を示すことが知ら
れている。しかし、このいわゆる超電導セラミックスは
現在のところ工業用材料として1よ確立されておらず未
だ研究段階である。これらの研究のうち粉末を焼結させ
たバルクセラミックスの研究が主流であり、また、酸化
物粉末を材料とする線材の製造方法(例えば、金属管に
上記酸化物の粉末を封入しで線引きする方法)について
も若干の報告がある。しかし、焼結法では緻密な焼結体
が得られないことや、セラミックスであるため加工が難
しいので、例えば線材化しても電流密度が高くできない
など、実用化には多くの課題が残されている。
(Prior art) Perovskite structure oxide Y1BatCu20ff-
It is known that J exhibits a superconducting state even at temperatures above liquid nitrogen temperature. However, this so-called superconducting ceramic has not yet been established as an industrial material and is still at the research stage. Among these studies, the mainstream is research on bulk ceramics made by sintering powder, and there are also methods for producing wire rods made from oxide powder (for example, drawing the wire by enclosing the oxide powder in a metal tube). There are also some reports regarding this method. However, the sintering method does not produce a dense sintered body, and since it is made of ceramic, it is difficult to process, so even if it is made into a wire, it is not possible to achieve a high current density. There is.

一方、酸化物超電導の薄膜では、緻密なものが得られ電
流密度が高いものが出来ることが知られており、前記の
ような各方面への実用化が期待されている。しかし、薄
膜の製作法としてこれまで成功したのは、わずかにスパ
ッタリング法が報告されているのみである(例えばJa
panese Journalor Applied 
Physics Vol、26.No、7 L1248
)、 L/かしスパッタリング法は高真空装置が必要で
あり、しかも薄着速度が小さいなど実用化には問題が多
い。
On the other hand, it is known that oxide superconducting thin films can be dense and have high current densities, and are expected to be put to practical use in various fields as described above. However, only a few sputtering methods have been reported to have been successful in producing thin films (for example, Ja
panese Journal Applied
Physics Vol, 26. No, 7 L1248
), the L/cutter sputtering method requires a high-vacuum device, and has many problems in practical application, such as a slow deposition rate.

(発明が解決しようとする課題) 本発明の目的は、YlBagCusOy−Jの薄膜を、
スパッタリング法に較べて簡単な装置を使用できる化学
気相蒸着法(CVD法)で製造する方法を提供すること
にある。
(Problems to be Solved by the Invention) The purpose of the present invention is to provide a thin film of YlBagCusOy-J.
It is an object of the present invention to provide a manufacturing method using a chemical vapor deposition method (CVD method) which can use simpler equipment than a sputtering method.

(課題を解決するための手段) CVD法は作製したい膜の成分を含むガスを高温に加熱
した基板上に流すことにより、基板表面でガスが熱分解
し、被膜が生成するものである。しかし、これまでYl
BalCusOv−Jを作るために必要なY、Ba、C
uを含み、しかも蒸気圧の高い物質が知られていないた
め、CVD法によるYJazCusOyJ薄膜の製造に
ついては報告がない。
(Means for Solving the Problems) The CVD method is a method in which a gas containing the components of the film to be produced is passed over a substrate heated to a high temperature, whereby the gas is thermally decomposed on the substrate surface and a film is produced. However, until now Yl
Y, Ba, and C required to make BalCusOv-J
Since no substance containing u and having a high vapor pressure is known, there are no reports on the production of YJazCusOyJ thin films by CVD.

本発明者は、CVD法によるY+BatCu30.−f
薄膜の製造を試み、V源、Ba源およびCu源として適
当な化合物を探究した結果それぞれ下記の化合物が適当
であることを見出した。
The present inventor has developed Y+BatCu30. -f
As a result of trying to manufacture a thin film and searching for compounds suitable as a V source, Ba source, and Cu source, the following compounds were found to be suitable for each.

Yの原料として、 トリス(ジピバロイルメタナート)イツトリウム、11
aの原料として、 ビス(ヘキサフルオロアセチルアセトナート)バリウム Cuの原料として、 ビス(ジピバロイルメタナート)銅、またはビス(ヘキ
サフルオロアセチルアセトナート)w4これらの化合物
を用い、窒素またはArガスをキャリヤーガスとし、酸
素を反応させればY+Ba+Cuの酸化物が生成するこ
とが分かった。従ってキャリヤーガス流量などをコント
ロールしてY+BatCu30、−為の組成になるよう
にすれば目的とする超電導性の薄膜が製造できる。
As a raw material for Y, tris(dipivaloyl methanate) yttrium, 11
As a raw material for a, as a raw material for bis(hexafluoroacetylacetonato) barium Cu, as a raw material for bis(dipivaloyl methanato) copper or bis(hexafluoroacetylacetonate) w4, these compounds are used, and nitrogen or Ar gas is used. It has been found that by using the carrier gas as a carrier gas and reacting with oxygen, an oxide of Y+Ba+Cu is generated. Therefore, the desired superconducting thin film can be produced by controlling the flow rate of the carrier gas to obtain a composition of Y+BatCu30,-.

(作用) CVD法は基板を加熱し、この上にガスを流すだけで膜
が生成するため、真空や特別の電源などが不要であり、
スパッタリング法に比べて安価に生膜ができる。
(Operation) The CVD method generates a film by simply heating the substrate and flowing gas over it, so there is no need for a vacuum or special power source.
A biofilm can be formed at a lower cost than the sputtering method.

上記の原料ガスを選んだ理由は、これらのガスが100
〜130℃において数mlHgの蒸気圧があるため、原
料ガスを100℃前後に加熱することにより、容易に加
熱基板上に導くことができるためである。
The reason for choosing the above raw material gases is that these gases have 100
This is because there is a vapor pressure of several mlHg at ~130°C, so by heating the raw material gas to around 100°C, it can be easily guided onto the heated substrate.

CVD法では、通常塩化物がよく使用されるが、Cu、
Ys Baの塩化物は数100℃に加熱しなければ蒸発
しない。
In the CVD method, chloride is usually used, but Cu,
YsBa chloride does not evaporate unless it is heated to several hundred degrees Celsius.

上記の原料を使用する本発明の薄膜製造方法の基本的な
条件を述べれば次のとおりである。
The basic conditions of the thin film manufacturing method of the present invention using the above raw materials are as follows.

基板としては、例えば、チタン酸ストロンチウムの仮が
使用できる。この場合、基板の加熱温度は400〜80
0℃が適当である。
As the substrate, for example, strontium titanate can be used. In this case, the heating temperature of the substrate is 400 to 80°C.
0°C is suitable.

CVDの条件としては、まず、原料ガスの加熱温度は、
トリス(ジピバロイルメタナート)イツトリウムで12
0〜140℃、ビス(ヘキサフルオロアセチルアセトナ
ート)バリウムで50〜70℃、ビス(ジピバロイルメ
タナート)銅で70〜90℃、またビス(ヘキサフルオ
ロアセチルアセトナート)w4で60〜80℃、がそれ
ぞれ適当である。
As conditions for CVD, first, the heating temperature of the raw material gas is
Tris (dipivaloyl methanate) Yttrium 12
0 to 140°C, 50 to 70°C for bis(hexafluoroacetylacetonate) barium, 70 to 90°C for copper bis(dipivaloyl methanate), and 60 to 80°C for bis(hexafluoroacetylacetonate) w4. °C is appropriate.

キャリヤーガスには、窒素、アルゴン等の不活性ガスを
使用し、その流量は各原料毎に、100〜500s j
! 7分とする。酸素は50〜300m j! /分程
度がよい。
An inert gas such as nitrogen or argon is used as the carrier gas, and its flow rate is 100 to 500 sj for each raw material.
! It will be 7 minutes. Oxygen is 50-300mj! / minute is good.

(実施例1) 図示のCVD装置によって、チタン酸ストロンチウム基
板の上にYlBalCusOt−JのEillllを生
成させた。
(Example 1) Eill of YlBalCusOt-J was produced on a strontium titanate substrate using the illustrated CVD apparatus.

実施条件は第1表のとおりである。The implementation conditions are as shown in Table 1.

図に示すように、反応管8の中に基板6を置き、加熱装
置7でこれを加熱した。一方、原料加熱炉3.4.5か
らそれぞれ所定の温度に加熱されたトリス(ジピバロイ
ルメタナート)イツトリウム(Y (DPM) 3)と
ビス(ヘキサフルオロアセチルアセトナート)バリウム
(Ba (IF^)8)と、ビス(ジピバロイルメタナ
ート)銅(Cu (DPM) x)を、窒素ガスボンベ
2から送られるキャリアーガスとともに反応管8に供給
した。酸素は酸素ボンベlから送られて、原料ガスおよ
びキャリヤーガスと混合される。
As shown in the figure, a substrate 6 was placed in a reaction tube 8 and heated by a heating device 7. On the other hand, tris (dipivaloyl methanate) yttrium (Y (DPM) 3) and bis (hexafluoroacetylacetonate) barium (Ba (IF ^) 8) and bis(dipivaloyl methanate) copper (Cu (DPM) x) were supplied to the reaction tube 8 together with a carrier gas sent from the nitrogen gas cylinder 2. Oxygen is sent from an oxygen cylinder 1 and mixed with the source gas and carrier gas.

第   1    表 このようにして、30分の反応の結果、3μm厚のY+
Ba1Cu30.−J組成の緻密な膜が生成した。この
膜に0□雰囲気中で880°C×30分の熱処理を施し
、室温まで12時間で冷却した後、X線回折で調べたと
ころ、Y+BazCusOtjの斜方晶ペロブスカイト
型の結晶が生成していることが確認された。
Table 1 Thus, as a result of 30 minutes of reaction, a 3 μm thick Y+
Ba1Cu30. A dense film of -J composition was produced. This film was heat-treated at 880°C for 30 minutes in a 0□ atmosphere, cooled to room temperature for 12 hours, and examined by X-ray diffraction, which revealed that orthorhombic perovskite crystals of Y+BazCusOtj were formed. This was confirmed.

更に、四端子法で電気抵抗を測定した結果、77K(液
体窒素温度)で0Ωになることがわかっk。
Furthermore, as a result of measuring the electrical resistance using the four-terminal method, it was found that it became 0Ω at 77K (liquid nitrogen temperature).

なお、Cu源としてビス(ジピバロイルメタナ−) )
 w4(Cu(DPM)いを使用した場合も、ビス(ヘ
キサフルオロアセチルアセトナート) !Fi(Cu(
HF^)冨)を用いた場合も同じ結果が得られた。
Note that bis(dipivaloylmethana) is used as the Cu source.
Even when using w4(Cu(DPM)), bis(hexafluoroacetylacetonate)!Fi(Cu(
The same results were obtained when using HF^).

(発明の効果) 本発明の方法によれば、CVD法を用いて比較的簡単な
装置でYIBalCuユ0.−5系の超電導セラミック
スの薄膜ができる。基板に金属(例えば、銀)のテープ
を使用し、その上に本発明方法によってY、BagCu
sOt−Jの薄膜を形成させた後、これを適当に加工す
れば、超電導線材を製造することができる。また、上記
のようにして基板上にYlBazCusOtJの薄膜を
形成して、各種のセンサー素子も製造できる。
(Effects of the Invention) According to the method of the present invention, YIBalCu can be produced using a relatively simple device using the CVD method. A thin film of -5 series superconducting ceramics is produced. A metal (e.g. silver) tape is used for the substrate, and Y, BagCu
After forming a thin film of sOt-J, if it is processed appropriately, a superconducting wire can be manufactured. Moreover, various sensor elements can also be manufactured by forming a thin film of YlBazCusOtJ on a substrate as described above.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の方法を実施するCVD装置の概要を示すも
のである。
The figure shows an outline of a CVD apparatus that implements the method of the present invention.

Claims (1)

【特許請求の範囲】[Claims]  Y源としてトリス(ジピバロイルメタナート)イット
リウム、Ba源としてビス(ヘキサフルオロアセチルア
セトナート)バリウム、Cu源としてビス(ジピバロイ
ルメタナート)銅またはビス(ヘキサフルオロアセチル
アセトナート)銅を用い、化学気相蒸着法で酸化物を基
板に蒸着させることを特徴とするY−Ba−Cu−O系
超電導薄膜の製造方法。
Tris (dipivaloyl methanate) yttrium as a Y source, bis (hexafluoroacetylacetonate) barium as a Ba source, bis (dipivaloyl methanate) copper or bis (hexafluoroacetylacetonate) copper as a Cu source 1. A method for producing a Y-Ba-Cu-O based superconducting thin film, which comprises depositing an oxide on a substrate by chemical vapor deposition.
JP63037939A 1988-02-19 1988-02-19 Production of thin superconducting oxide film Pending JPH01212218A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63037939A JPH01212218A (en) 1988-02-19 1988-02-19 Production of thin superconducting oxide film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63037939A JPH01212218A (en) 1988-02-19 1988-02-19 Production of thin superconducting oxide film

Publications (1)

Publication Number Publication Date
JPH01212218A true JPH01212218A (en) 1989-08-25

Family

ID=12511525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63037939A Pending JPH01212218A (en) 1988-02-19 1988-02-19 Production of thin superconducting oxide film

Country Status (1)

Country Link
JP (1) JPH01212218A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0193405A (en) * 1987-06-16 1989-04-12 Kawasaki Steel Corp Complex compound for forming oxide superconductor thin film and method for forming said thin film
JPH03243779A (en) * 1990-02-20 1991-10-30 Fuyuutec Fuaanesu:Kk Device for producing oxide superconducting thin film

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0193405A (en) * 1987-06-16 1989-04-12 Kawasaki Steel Corp Complex compound for forming oxide superconductor thin film and method for forming said thin film
JPH03243779A (en) * 1990-02-20 1991-10-30 Fuyuutec Fuaanesu:Kk Device for producing oxide superconducting thin film
JPH07108764B2 (en) * 1990-02-20 1995-11-22 株式会社フューテックファーネス Oxide superconducting thin film manufacturing equipment

Similar Documents

Publication Publication Date Title
KR910007382B1 (en) Superconductor material and method of manufacturing super-conductor film
JPH08506216A (en) Superconducting YBa formed at a low temperature. Lower 2 Cu Cu Lower 3 O Lower 7-x
JP2711253B2 (en) Superconducting film and method for forming the same
JPH01252779A (en) Production of ceramic superconductor
Nakayama et al. Superconductivity of Bi2Sr2Ca n− 1Cu n O y (n= 2, 3, 4, and 5) thin films prepared in situ by molecular‐beam epitaxy technique
EP0342039B1 (en) Josephson device and method of making same
Nemoto et al. Chemical vapor deposition of superconducting Bi-Sr-Ca-Cu-O films using fluorocarbon-based precursors
JPH02225317A (en) Production of oxide superconductor by chemical gas phase deposition method
JPH01212218A (en) Production of thin superconducting oxide film
US5863336A (en) Apparatus for fabrication of superconductor
EP0558268B1 (en) Thallium-calcium-barium-copper-oxide superconductor with silver and method
Kirlin et al. Growth of High TcYBaCuO Thin Films by Metalorganic Chemical Vapor Deposition
JPS63301424A (en) Manufacture of oxide superconductor membrane
JPH0288426A (en) Production of superconducting thin film
KR100338359B1 (en) A Fabrication Technique for Epitaxial Thick Films of High Temperature Superconductor by the Partial Melting Method
JPH01203258A (en) Production of oxide superconducting sintered body
JPH0297426A (en) Production of superconducting thin film
JPH01220311A (en) Manufacture of superconductive ceramic wire rod
JPS63235462A (en) Formation of thin oxide film with k2nif4-type crystalline structure
JPH01208323A (en) Production of thin film
Kim et al. Effects of deposition temperature and annealing process on the superconducting properties of YBa2Cu3O7− x thin films prepared by metal organic chemical vapor deposition
JP2781033B2 (en) Metal oxide material
JPH0256815A (en) Manufacture of superconductor
JPH01316462A (en) Production of superconducting ceramic wire
JPH01282122A (en) Production of thin film superconductor