JPH03197306A - Equipment for producing oxide superconducting thin film and method therefor - Google Patents

Equipment for producing oxide superconducting thin film and method therefor

Info

Publication number
JPH03197306A
JPH03197306A JP1336977A JP33697789A JPH03197306A JP H03197306 A JPH03197306 A JP H03197306A JP 1336977 A JP1336977 A JP 1336977A JP 33697789 A JP33697789 A JP 33697789A JP H03197306 A JPH03197306 A JP H03197306A
Authority
JP
Japan
Prior art keywords
thin film
chamber
oxide superconducting
substrate
superconducting thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1336977A
Other languages
Japanese (ja)
Inventor
Keizo Harada
敬三 原田
Hideo Itozaki
糸崎 秀夫
Shuji Yatsu
矢津 修示
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP1336977A priority Critical patent/JPH03197306A/en
Publication of JPH03197306A publication Critical patent/JPH03197306A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To obtain the title high quality thin film of favorable crystallinity without the need for heat treatment after film formation by forming a chamber with an insulator and enclosing the chamber with a high-frequency coil in producing the title thin film by the magnetron sputtering technique. CONSTITUTION:The objective equipment for producing oxide superconducting thin film, equipped with (A) a chamber 1 where the interior can be exhausted to high vacuum and a sputtering gas can be introduced at any arbitrary pressure, (B) a target electrode 8 set in the chamber 1 and holding a target 5, (C) a substrate holder 3 holding a substrate 2 with the objective thin film to be formed thereon, and (D) a heater 4 housed in the substrate holder 3 to heat the substrate 2. The chamber 1 is made of an insulating material, and a high-frequency coil 9 which is arranged so as to enclose the chamber 1 and connected to a high-frequency source 10 is also provided.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、酸、化物超電導薄膜を作製する装置および作
製方法に関する。より詳細には、高品質な酸化物超電導
薄膜を作製する装置およびその装置を使用して高品質な
酸化物超電導薄膜を作製する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an apparatus and method for producing an acid or compound superconducting thin film. More specifically, the present invention relates to an apparatus for producing a high-quality oxide superconducting thin film and a method for producing a high-quality oxide superconducting thin film using the apparatus.

従来の技術 Y I Ba2Cus Ot−x系、Bi、5r2Ca
2Cu、 011系およびTl2Ba、Ca2Cu、 
ON系の各酸化物超電導体は、臨界温度が高く、実用化
が有望と考えられている。
Conventional technology Y I Ba2Cus Ot-x system, Bi, 5r2Ca
2Cu, 011 series and Tl2Ba, Ca2Cu,
Each ON-based oxide superconductor has a high critical temperature and is considered to be promising for practical use.

これらの酸化物超電導体を、ジョセフソン素子、超電導
トランジスタ等の電子デバイスに応用するためには、薄
膜化することが必須である。
In order to apply these oxide superconductors to electronic devices such as Josephson elements and superconducting transistors, it is essential to make them thin.

酸化物超電導体の薄膜作製方法としては、真空蒸着法、
MBE法、スパッタリング法、CVD法等が検討されて
いる。特にスパッタリング法は比較的簡便であり、且つ
真空蒸着に比べると酸素分圧の高い状態で成膜できる。
Methods for producing thin films of oxide superconductors include vacuum evaporation,
MBE method, sputtering method, CVD method, etc. are being considered. In particular, the sputtering method is relatively simple and can form a film at a higher oxygen partial pressure than vacuum evaporation.

そのため、超電導特性が良好な薄膜を作製し易ぐ、ひろ
く酸化物超電導体の薄膜化の手法として用いられてきた
Therefore, it is easy to produce thin films with good superconducting properties, and has been widely used as a method for thinning oxide superconductors.

具体的に、酸化物超電導体をスパッタリング法で薄膜化
する手順の一例を簡単に説明する。まず、成膜しようと
する酸化物超電導体の構成元素が、スパッタ効率を考慮
した組成で含まれるターゲットを作製する。−船釣には
、このターゲットは酸化物である。次にこのターゲット
を電極として、アルゴンおよび酸素を含む雰囲気でスパ
ッタリングし、400〜800℃程度に加熱したMgO
またはSrT+Ot等の基板上に薄膜を形成する。必要
に応じて成膜しただけの薄膜に大気圧等の酸素雰囲気で
熱処理を施して、酸素を供給し超電導体化する。
Specifically, an example of a procedure for thinning an oxide superconductor by sputtering will be briefly described. First, a target containing the constituent elements of the oxide superconductor to be formed in a composition that takes sputtering efficiency into consideration is prepared. - For boat fishing, this target is an oxide. Next, using this target as an electrode, sputtering was carried out in an atmosphere containing argon and oxygen, and MgO
Alternatively, a thin film is formed on a substrate such as SrT+Ot. If necessary, the thin film just formed is heat-treated in an oxygen atmosphere such as atmospheric pressure to supply oxygen and make it a superconductor.

また、薄膜の組成を正確に制御する目的で、複数のそれ
ぞれ異なる単一の酸化物のターゲットを使用してスパッ
タリングすることもある。
In addition, sputtering may be performed using a plurality of different targets of a single oxide in order to precisely control the composition of the thin film.

発明が解決しようとする課題 上述のような、電子デバイスに使用するためには、単結
晶で、かつ平滑性に優れた酸化物超電導薄膜が好ましい
Problems to be Solved by the Invention For use in electronic devices as described above, an oxide superconducting thin film that is single crystal and has excellent smoothness is preferable.

しかしながら、従来の方法では、成膜後に酸素雰囲気中
で高温(900℃前後)の熱処理を行わないと、超電導
特性のよい酸化物超電導薄膜が得られなかった。この熱
処理を行う前の薄膜を空気に曝すことは好ましくなく、
また、高温での熱処理により、基板元素の拡散が起こる
ため、酸化物超電導薄膜の基板近傍の部分はその超電導
特性が劣化する。さらに、成膜工程から熱処理工程の間
の搬送は煩雑でもあり、工程数も多く、それに伴い得ら
れる薄膜の超電導特性も安定しなかった。
However, in the conventional method, an oxide superconducting thin film with good superconducting properties could not be obtained unless a high temperature (approximately 900° C.) heat treatment was performed in an oxygen atmosphere after film formation. It is not preferable to expose the thin film to air before this heat treatment.
Further, due to the heat treatment at high temperature, diffusion of substrate elements occurs, so that the superconducting properties of the portion of the oxide superconducting thin film near the substrate deteriorate. Furthermore, the transportation between the film forming process and the heat treatment process is complicated, the number of steps is large, and the superconducting properties of the resulting thin film are also unstable.

そこで本発明の目的は、上記従来技術の問題点を解決し
て、結晶性のよい、高品質な酸化物超電導薄膜を成膜後
の熱処理なく作製可能な方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the problems of the prior art described above and to provide a method that can produce a high-quality oxide superconducting thin film with good crystallinity without post-deposition heat treatment.

課題を解決するための手段 本発明に従うと、内部を高真空に排気でき、スパッタリ
ングガスを任意の圧力まで導入可能なチャンバと、前記
チャンバ内に設けられ、ターゲットを保持しているター
ゲット電極と、前記チャンバ内で、表面に薄膜が形成さ
れる基板を保持する基板ホルダと、前記基板ホルダに内
蔵され、前記基板を加熱するヒータとを具備するマグネ
トロンスパッタリング法により酸化物超電導薄膜を作製
する装置において、前記チャンバが絶縁体材料で形成さ
れ、前記チャンバの周囲を囲むように配置され高周波電
源に接続されている高周波コイルを具備することを特徴
とする酸化物超電導薄膜を作製する装置が提供される。
Means for Solving the Problems According to the present invention, there is provided a chamber whose interior can be evacuated to a high vacuum and into which sputtering gas can be introduced to any pressure; a target electrode provided within the chamber and holding a target; In an apparatus for producing an oxide superconducting thin film by a magnetron sputtering method, the apparatus includes a substrate holder that holds a substrate on which a thin film is formed in the chamber, and a heater that is built in the substrate holder and heats the substrate. , there is provided an apparatus for producing an oxide superconducting thin film, characterized in that the chamber is formed of an insulating material, and includes a high-frequency coil arranged to surround the chamber and connected to a high-frequency power source. .

また、本発明では、上記の装置を使用して、酸化物超電
導薄膜をスパッタリング法で基板上に作製する方法にお
いて、スパッタリング時にターゲット電極に印加する電
力をターゲット1CrI当り0.2〜1.5Wとし、前
記高周波コイルに高周波電力を印加して、ラジカルな酸
素を多く発生させることを特徴とする酸化物超電導薄膜
の作製方法が提供される。
Further, in the present invention, in a method of producing an oxide superconducting thin film on a substrate by sputtering using the above-mentioned apparatus, the power applied to the target electrode during sputtering is set to 0.2 to 1.5 W per 1 CrI target. , there is provided a method for producing an oxide superconducting thin film, characterized in that a high frequency power is applied to the high frequency coil to generate a large amount of radical oxygen.

罫月 本発明の装置は、酸化物超電導薄膜を作製する高周波ス
パックリング装置で、チャン/<が絶縁体で形成され、
チャンバの周囲を囲むように配置された高周波コイルを
具備するところにその主要な特徴がある。
The apparatus of the present invention is a high frequency sputtering apparatus for producing an oxide superconducting thin film, in which the channel /< is formed of an insulator,
Its main feature is that it includes a high frequency coil placed around the periphery of the chamber.

また、本発明の方法は、前記の装置を用い、スパッタリ
ング法のみで成膜した薄膜には不足する酸素を、高周波
コイルによる放電によりラジカルな酸素を多量に発生さ
せて十分に供給することをその主要な特徴とする。
In addition, the method of the present invention uses the above-mentioned apparatus to generate a large amount of radical oxygen through electric discharge using a high-frequency coil to sufficiently supply oxygen, which is insufficient in a thin film formed only by sputtering. Main characteristics.

酸化物超電導体は、一般に低い成膜速度で成膜すると、
結晶性のよい高品質の薄膜が得られる。
Generally, when oxide superconductors are deposited at a low deposition rate,
A high quality thin film with good crystallinity can be obtained.

しかしながら、通常のスパッタリング法においては、成
膜速度を遅くするためには、投入する高周波電力を小さ
くしなければならない。この場合、得られる酸化物超電
導薄膜は、結晶性は優れるものの酸素不足の薄膜となる
。従って、成膜しただけでは超電導特性があまりよくな
いため、前述の900℃前後での熱処理を行わなければ
ならない。
However, in the normal sputtering method, in order to slow down the film formation rate, the input high frequency power must be reduced. In this case, the obtained oxide superconducting thin film has excellent crystallinity but is oxygen-deficient. Therefore, since the superconducting properties are not very good just by forming a film, the above-mentioned heat treatment at around 900° C. must be performed.

これは、高周波電力を小さくすると、発生するプラズマ
の強度が弱くなり、十分な酸素を含んだ高品質な酸化物
超電導薄膜ができる際の反応に最も寄与していると考え
られているラジカルな酸素(0°)が不足するからであ
る。
This is because when the radio frequency power is reduced, the intensity of the generated plasma becomes weaker, and the radical oxygen that is thought to contribute most to the reaction when a high-quality oxide superconducting thin film containing sufficient oxygen is formed. (0°) is insufficient.

従って、本発明の方法では、00を多く含む強力なプラ
ズマを発生させるために高周波コイルを併用する。しか
しながら、ターゲット電極に印加する高周波電力を小さ
くし過ぎると、成膜速度が遅過ぎて、実用性が失われる
だけである。そこで本発明の方法では、ターゲット電極
に印加する高周波電力を、ターゲット1cm当り0.2
〜1.5Wとする。
Therefore, in the method of the present invention, a high frequency coil is used in combination to generate strong plasma containing a large amount of 00. However, if the high frequency power applied to the target electrode is too low, the film formation rate will be too slow and practicality will be lost. Therefore, in the method of the present invention, the high frequency power applied to the target electrode is set to 0.2 per cm of target.
~1.5W.

また、本発明の方法では、高周波コイルに印加する高周
波電力は、100〜lkWが好ましい。これは、この電
力が100W未満ではその効果がなく、lkWを超える
電力を印加すると、プラズマが強くなり過ぎ、分子粒(
クラスタ)が集まって膜状となった薄膜が形成されてし
まうからである。さらに、高周波コイルに印加する高周
波電力の位相は、ターゲット電力に印加する高周波電力
の位相と一致させるか、少なくとも互いに打ち消し合う
ことがないようにすべきである。また、DCスパッタリ
ング法を用いればこの問題を避けることができる。
Moreover, in the method of the present invention, the high frequency power applied to the high frequency coil is preferably 100 to 1 kW. This has no effect if the power is less than 100 W, and if more than 1 kW is applied, the plasma becomes too strong and the molecular particles (
This is because clusters) gather together to form a film-like thin film. Furthermore, the phase of the high frequency power applied to the high frequency coil should match the phase of the high frequency power applied to the target power, or at least should not cancel each other out. Moreover, this problem can be avoided by using the DC sputtering method.

以下、本発明を実施例により、さらに詳しく説明するが
、以下の開示は本発明の単なる実施例に過ぎず、本発明
の技術的範囲をなんら制限するものではない。
EXAMPLES Hereinafter, the present invention will be explained in more detail with reference to Examples, but the following disclosure is merely an example of the present invention and does not limit the technical scope of the present invention in any way.

実施例 本発明の装置および方法で、Y l 38.2[:L1
20 ?−X酸化物超電導薄膜およびB1□5r2Ca
、Cu、、 0)l酸化物超電導薄膜を作製した。
EXAMPLE In the apparatus and method of the present invention, Y l 38.2[:L1
20? -X oxide superconducting thin film and B1□5r2Ca
, Cu, 0) l oxide superconducting thin films were fabricated.

第1図に、本発明の装置の一例の概念図を示す。FIG. 1 shows a conceptual diagram of an example of the apparatus of the present invention.

第1図の装置は、DCスパッタリング装置であり、内部
を高真空に排気可能で、スパッタリングガスを導入する
ことができる石英ガラス製のチャンバ1を具備する。チ
ャンバ1内には、下部にターゲット5が固定されるター
ゲット電極8が、また、上部には、基板2がターゲット
5と向き合って保持される基板ホルダ3が設けられてい
る。ターゲット電極8は、DC電源6に接続され、DC
電源6は接地されている。基板ホルダ3は、内部に基板
2を過熱するヒータ4を具備し、やはり接地されている
。さらにチャンバ1の周囲には、チャンバ1を中心とし
て高周波コイル9が配置され、高周波コイル9は高周波
電力10に接続されている。
The apparatus shown in FIG. 1 is a DC sputtering apparatus, and includes a chamber 1 made of quartz glass that can be evacuated to a high vacuum and into which sputtering gas can be introduced. Inside the chamber 1, a target electrode 8 to which a target 5 is fixed is provided at the lower part, and a substrate holder 3 in which the substrate 2 is held facing the target 5 is provided at the upper part. The target electrode 8 is connected to the DC power supply 6 and
Power source 6 is grounded. The substrate holder 3 includes a heater 4 for heating the substrate 2 inside, and is also grounded. Further, a high frequency coil 9 is arranged around the chamber 1 with the chamber 1 at the center, and the high frequency coil 9 is connected to a high frequency power 10.

実施例1 第1図の装置を用いて、YSBaおよびCuを原子比1
コ2+4.5で含む焼結体をターゲット5に用いて、Y
、BazCua 0t−x酸化物超電導薄膜を作製した
。ターゲット5は、直径12.5cm (5!ン)の円
形とし、ターゲット電極8に印加するDC電力を50.
100.200.300 W (それぞれ、約0.4W
/cut、約0゜8 W/co?、約1.6 W/cf
fI、約2.4 W/ci)とし、高周波コイル9に印
加する高周波電力を0.50.100.500 Wとし
て、成膜を行った。他のスパッタリング条件を以下に示
す。
Example 1 Using the apparatus shown in Figure 1, YSBa and Cu were mixed at an atomic ratio of 1.
Using a sintered body containing Y2+4.5 as target 5, Y
, a BazCua 0t-x oxide superconducting thin film was prepared. The target 5 has a circular shape with a diameter of 12.5 cm (5 cm), and the DC power applied to the target electrode 8 is 50 cm.
100.200.300 W (approximately 0.4 W each)
/cut, approximately 0°8 W/co? , about 1.6 W/cf
fI, about 2.4 W/ci), and the high frequency power applied to the high frequency coil 9 was 0.50.100.500 W. Other sputtering conditions are shown below.

基板    MgO 基板温度 600℃ 基板−ターゲット間距離  70mm スパッタリングガス Ar  8 SCCM024SC
CM 圧力   9 X 10−”Torr 膜厚   3000人 薄膜形成後に熱処理は行わず、超電導特性を測定した。
Substrate MgO Substrate temperature 600℃ Substrate-target distance 70mm Sputtering gas Ar 8 SCCM024SC
CM Pressure: 9×10-” Torr Film thickness: 3000 people After forming the thin film, no heat treatment was performed, and the superconducting properties were measured.

高周波電力と、成膜速度および測定結果との関係を以下
の第1〜3表に示す。
The relationships between high frequency power, film formation rate, and measurement results are shown in Tables 1 to 3 below.

第3表 臨界電流密度 (A / cnf ) 第1表 成膜速度(人/秒) 第2表 臨界温度 (K) 実施例2 第1図の装置を用いて、Bi、 5rSCaおよびCu
を原子比2:2:2:3で含む焼結体をターゲット5に
用いて、B125r2Ca2Cu30に酸化物超電導薄
膜を作製した。実施例1と同様、ターゲット5は、直径
12.5cm (51’)の円形とし、ターゲット電極
8に印加するDC電力を50.100.200.300
 W(それぞれ、約0.4 W/cf、約0.8W/c
ut、約1.6W / caf、約2.4 W7cat
)とし、高周波コイル9に印加する高周波電力を0.5
0.100.500 Wとして、成膜を行った。他のス
パッタ条件を以下に示第5表 臨界温度 (K) 基板    MgO 基板温度 750℃ 基板−ターゲット間距離 70mm スパッタリングガス Ar  8 SCCMo 2 4
 SCCM 圧力    9 Xl0−2Torr 膜厚   2000人 薄膜形成後、実施例1と同様熱処理は行わず、超電導特
性を測定した。高周波電力と、成膜速度および測定結果
との関係を以下の第4〜6表に示す。
Table 3: Critical current density (A/cnf) Table 1: Film formation rate (person/second) Table 2: Critical temperature (K) Example 2 Using the apparatus shown in Figure 1, Bi, 5rSCa and Cu were
An oxide superconducting thin film was fabricated on B125r2Ca2Cu30 using a sintered body containing the following in an atomic ratio of 2:2:2:3 as target 5. As in Example 1, the target 5 is circular with a diameter of 12.5 cm (51'), and the DC power applied to the target electrode 8 is 50.100.200.300.
W (approximately 0.4 W/cf, approximately 0.8 W/c, respectively)
ut, approx. 1.6W/caf, approx. 2.4 W7cat
), and the high frequency power applied to the high frequency coil 9 is 0.5
The film was formed at a power of 0.100.500 W. Other sputtering conditions are shown below in Table 5 Critical temperature (K) Substrate MgO Substrate temperature 750°C Substrate-target distance 70mm Sputtering gas Ar 8 SCCMo 2 4
SCCM Pressure: 9 Xl0-2 Torr Film Thickness: 2000 people After forming the thin film, no heat treatment was performed as in Example 1, and the superconducting properties were measured. The relationships between high frequency power, film formation rate, and measurement results are shown in Tables 4 to 6 below.

第6表 臨界電流密度 (A / crl) この結果、本発明の方法に従って、高周波コイルによる
プラズマを用いて、遅い成膜速度で成膜した酸化物超電
導薄膜は、成膜後に熱処理を行わなくても優れた超電導
特性を有することがわかる。
Table 6 Critical current density (A/crl) As a result, the oxide superconducting thin film deposited at a slow deposition rate using plasma from a high-frequency coil according to the method of the present invention does not require heat treatment after deposition. It can be seen that the material also has excellent superconducting properties.

発明の詳細 な説明したように、本発明に従うと、従来よりも少ない
工程で、高品質の酸化物超電導薄膜が作製可能である。
As described in detail, according to the present invention, a high quality oxide superconducting thin film can be produced with fewer steps than conventional methods.

従って、本発明により高品質の酸化物超電導薄膜の生産
コストが低減される。
Therefore, the present invention reduces the production cost of high quality oxide superconducting thin films.

第1図Figure 1

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の装置の一例の概念図である。 〔主な参照番号〕 1・・・チャンバ、 2・・・基板、 3・・・基板ホルダ、 4・・・ヒータ、 5・ ・ ・ターゲット、 6.10・・・高周波電源、 8・・・ターゲット電極 FIG. 1 is a conceptual diagram of an example of the apparatus of the present invention. [Main reference number] 1...chamber, 2... Board, 3... Board holder, 4... Heater, 5. Target, 6.10...High frequency power supply, 8...Target electrode

Claims (2)

【特許請求の範囲】[Claims] (1)内部を高真空に排気でき、スパッタリングガスを
任意の圧力まで導入可能なチャンバと、前記チャンバ内
に設けられ、ターゲットを保持しているターゲット電極
と、前記チャンバ内で、表面に薄膜が形成される基板を
保持する基板ホルダと、前記基板ホルダに内蔵され、前
記基板を加熱するヒータとを具備するマグネトロンスパ
ッタリング法により酸化物超電導薄膜を作製する装置に
おいて、前記チャンバが絶縁体材料で形成され、前記チ
ャンバの周囲を囲むように配置され高周波電源に接続さ
れている高周波コイルを具備することを特徴とする酸化
物超電導薄膜を作製する装置。
(1) A chamber whose interior can be evacuated to a high vacuum and into which sputtering gas can be introduced to a desired pressure; a target electrode provided in the chamber and holding a target; and a thin film on the surface of the chamber. In an apparatus for producing an oxide superconducting thin film by a magnetron sputtering method, the chamber includes a substrate holder that holds a substrate to be formed, and a heater that is built into the substrate holder and heats the substrate, wherein the chamber is made of an insulating material. 1. An apparatus for producing an oxide superconducting thin film, comprising: a high-frequency coil arranged to surround the chamber and connected to a high-frequency power source.
(2)酸化物超電導薄膜をスパッタリング法で基板上に
作製する方法において、請求項1に記載の装置を用い、
スパッタリング時にターゲット電極に印加する電力をタ
ーゲット1cm^3当り0.2〜1.5Wとし、前記高
周波コイルに高周波電力を印加して、ラジカルな酸素を
多く発生させることを特徴とする酸化物超電導薄膜の作
製方法。
(2) A method for producing an oxide superconducting thin film on a substrate by a sputtering method, using the apparatus according to claim 1,
An oxide superconducting thin film characterized in that the power applied to the target electrode during sputtering is 0.2 to 1.5 W per cm^3 of the target, and high frequency power is applied to the high frequency coil to generate a large amount of radical oxygen. How to make
JP1336977A 1989-12-26 1989-12-26 Equipment for producing oxide superconducting thin film and method therefor Pending JPH03197306A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1336977A JPH03197306A (en) 1989-12-26 1989-12-26 Equipment for producing oxide superconducting thin film and method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1336977A JPH03197306A (en) 1989-12-26 1989-12-26 Equipment for producing oxide superconducting thin film and method therefor

Publications (1)

Publication Number Publication Date
JPH03197306A true JPH03197306A (en) 1991-08-28

Family

ID=18304344

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1336977A Pending JPH03197306A (en) 1989-12-26 1989-12-26 Equipment for producing oxide superconducting thin film and method therefor

Country Status (1)

Country Link
JP (1) JPH03197306A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05221613A (en) * 1992-02-13 1993-08-31 Nitto Koki Kk Thin-film forming apparatus for mist material coating by compression spraying method
JP2013245388A (en) * 2012-05-28 2013-12-09 Nippon Telegr & Teleph Corp <Ntt> Manufacturing method of superconductor
CN107523807A (en) * 2017-08-22 2017-12-29 中国科学院半导体研究所 Heat the fixation control device and its equipment of pallet

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05221613A (en) * 1992-02-13 1993-08-31 Nitto Koki Kk Thin-film forming apparatus for mist material coating by compression spraying method
JP2013245388A (en) * 2012-05-28 2013-12-09 Nippon Telegr & Teleph Corp <Ntt> Manufacturing method of superconductor
CN107523807A (en) * 2017-08-22 2017-12-29 中国科学院半导体研究所 Heat the fixation control device and its equipment of pallet

Similar Documents

Publication Publication Date Title
Nakayama et al. Superconductivity of Bi2Sr2Ca n− 1Cu n O y (n= 2, 3, 4, and 5) thin films prepared in situ by molecular‐beam epitaxy technique
JPH03197306A (en) Equipment for producing oxide superconducting thin film and method therefor
JP5145109B2 (en) Method for producing polycrystalline thin film and method for producing oxide superconducting conductor
JPH0791152B2 (en) Method for manufacturing superconductor thin film
JPH06291375A (en) Manufacture of thin film superconductor and its manufacture
JP2767298B2 (en) LAMINATED THIN FILM AND PROCESS FOR PRODUCING THE SAME
JP2818701B2 (en) Surface treatment method for oxide high-temperature superconductor
JPH03197305A (en) Production of oxide superconducting thin film
JPH03197303A (en) Production of oxide superconducting thin film
JPH03197304A (en) Production of oxide superconducting thin film
JPH02275716A (en) Production of oxide superconductor thin film
JP2742418B2 (en) Method for producing oxide superconducting thin film
JPH0238310A (en) Production of oxide high temperature superconductive thin film
JPH0243357A (en) Production of thin superconducting film
JPH0621344B2 (en) Superconducting thin film production equipment
JPH02255507A (en) Production of high-temperature superconducting thin film
JP3240686B2 (en) Method for producing high-quality oxide superconducting thin film and superconducting junction
JPH02157123A (en) Production of thin barium titanate film
JPH01201008A (en) Production of thin film of oxide superconductor
JP2835235B2 (en) Method of forming oxide superconductor thin film
JPS63299019A (en) Manufacture of thin film superconductive material
JPH06287100A (en) Formation of thin oxide superconducting film containing rare earth element
JPH02118061A (en) Production of oxide superconductor
JPH01112614A (en) Manufacture of super conductive film
JPH05194095A (en) Production of thin-film electric conductor