JP2013245388A - Manufacturing method of superconductor - Google Patents

Manufacturing method of superconductor Download PDF

Info

Publication number
JP2013245388A
JP2013245388A JP2012121146A JP2012121146A JP2013245388A JP 2013245388 A JP2013245388 A JP 2013245388A JP 2012121146 A JP2012121146 A JP 2012121146A JP 2012121146 A JP2012121146 A JP 2012121146A JP 2013245388 A JP2013245388 A JP 2013245388A
Authority
JP
Japan
Prior art keywords
thin film
oxygen
copper oxide
radical oxygen
oxygen generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012121146A
Other languages
Japanese (ja)
Other versions
JP5801755B2 (en
Inventor
Krockenberger Yoshiharu
クロッケンバーガー ヨシハル
Hideki Yamamoto
秀樹 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2012121146A priority Critical patent/JP5801755B2/en
Publication of JP2013245388A publication Critical patent/JP2013245388A/en
Application granted granted Critical
Publication of JP5801755B2 publication Critical patent/JP5801755B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Physical Vapour Deposition (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method capable of matching an oxygen composition with a stoichiometric composition without performing annealing treatment under a reducing atmosphere after manufacturing a sample, in manufacture of a copper oxide superconductor having an infinite layer structure or a thin film thereof or a thin film element thereof.SOLUTION: An oxide thin film deposition device for an MBE method includes a deposition chamber 201, an element supply source 202, an electron gun 203, a heating device 204, a radical oxygen generating device 205, a gas supply piping 206, an EIES 207, a QCM 208, a vapor deposition controller 209, a shutter controller 210, an RHEED electron gun 213, a main shutter 214, an RHEED screen 215, and a source, etc. By controlling high frequency power applied to the radical oxygen generating device, generation of Oions is suppressed which causes introduction of excessive oxygen of nonstoichiometric proportion composition into an oxide thin film, and only atomic oxygen Ois generated and supplied.

Description

本発明は、超伝導体の作製方法に関し、具体的には、MBE法による銅酸化物超伝導体の作製方法に関する。   The present invention relates to a method for manufacturing a superconductor, and specifically to a method for manufacturing a copper oxide superconductor by MBE.

一般式(AE,RE)CuO2で表される無限層構造銅酸化物(AEは1種類又は複数のアルカリ土類金属元素、REは希土類元素)は、銅酸化物高温超伝導体中最も単純な構造を持つ。従って、高品質単結晶薄膜を作製できればデバイス応用に有望な材料系である。 Infinite layer structure copper oxide represented by the general formula (AE, RE) CuO 2 (AE is one or more alkaline earth metal elements, RE is a rare earth element) is the simplest copper oxide high-temperature superconductor It has a simple structure. Therefore, if a high quality single crystal thin film can be produced, it is a promising material system for device application.

しかしながら、バルク試料の作製においては、常圧下での固相反応で唯一得ることのできるSr0.14Ca0.86CuO2のケースを除き、無限層構造を持つ(AE,RE)CuO2自体が高圧下合成でしか得られないため、単結晶試料の作製が困難な系であることが知られている。 However, in the preparation of bulk samples, (AE, RE) CuO 2 itself, which has an infinite layer structure, is synthesized under high pressure except for the case of Sr 0.14 Ca 0.86 CuO 2 which can only be obtained by solid-phase reaction under normal pressure. Therefore, it is known that the system is difficult to produce a single crystal sample.

この高圧下合成に対し、薄膜合成の場合、非平衡性の高い分子線エピタキシー(Molecular Beam Epitaxy:以下MBEという)法を用い、基板と成長時の基板温度とを適切に選択することにより、高圧下でしか合成できないといった圧力に対する制限が緩和され、真空中で結晶性の高い試料が得られることが実証されている(非特許文献1を参照)。   In contrast to this high-pressure synthesis, in the case of thin-film synthesis, a high non-equilibrium molecular beam epitaxy (hereinafter referred to as MBE) method is used to appropriately select the substrate and the substrate temperature during growth. It has been demonstrated that the restriction on pressure that can only be synthesized under pressure is relaxed, and a sample with high crystallinity can be obtained in a vacuum (see Non-Patent Document 1).

しかしながら、従来のMBE法で得た無限層構造試料には、結晶中の正規の酸素サイトに存在する酸素以外の、非正規サイトに取り込まれた非化学量論比的な酸素が通常存在する。図1に、従来のMBE法で得た無限層構造銅酸化物超伝導体の結晶構造を示す。図1に示す結晶構造は、[001]方向に積層した複数のCuO2層101とCuO2層間の(Sr,La)102とから構成されている。従来の方法では、CuO2層101の正規の酸素サイト103ではない非正規の酸素サイト104に酸素が取り込まれる。 However, infinite layer structure samples obtained by the conventional MBE method usually contain non-stoichiometric oxygen incorporated into non-normal sites other than oxygen existing at normal oxygen sites in the crystal. FIG. 1 shows the crystal structure of an infinite layer structure copper oxide superconductor obtained by the conventional MBE method. The crystal structure shown in FIG. 1 is composed of a plurality of CuO 2 layers 101 stacked in the [001] direction and (Sr, La) 102 between CuO 2 layers. In the conventional method, oxygen is taken into the non-normal oxygen site 104 that is not the normal oxygen site 103 of the CuO 2 layer 101.

よって、非正規サイトに取り込まれた酸素を取り除いて良好な超伝導特性を発現させるためには、成膜後に還元雰囲気下で精密なアニール処理を施す必要があるという問題点があった。   Therefore, in order to remove the oxygen taken into the non-regular site and develop good superconducting characteristics, there has been a problem that it is necessary to perform a precise annealing treatment in a reducing atmosphere after film formation.

アニール処理により、非化学量論比的な酸素を取り除くプロセスは拡散過程であるため、薄膜の膜厚が増すほど、また薄膜を用いた素子構造が複雑化するほど困難になる。この課題は、例えば、結晶性の高い薄膜を用いて、サンドイッチ型の接合を作るといった場合により重大な問題になり、ジョセフソン接合をベースとする銅酸化物超伝導デバイス作製上の大きな障壁となっていた。   Since the process of removing non-stoichiometric oxygen by annealing is a diffusion process, it becomes more difficult as the thickness of the thin film increases and the device structure using the thin film becomes more complicated. This problem becomes a more serious problem when, for example, a sandwich-type junction is formed by using a thin film with high crystallinity, and becomes a large barrier in the production of a copper oxide superconducting device based on a Josephson junction. It was.

特開2008−78200号公報JP 2008-78200 A

S.Karimoto and M.Naito, "Electron-doped infinite-layer thin films with Tc over 40K grown on DyScO3 substrates", Appl.Phys.Lett., Vol.84, No.12, pp.2136-2138, (2004).S.Karimoto and M.Naito, "Electron-doped infinite-layer thin films with Tc over 40K grown on DyScO3 substrates", Appl.Phys.Lett., Vol.84, No.12, pp.2136-2138, (2004 ).

本発明の目的は、上記の課題を鑑みて、無限層構造を持つ銅酸化物超伝導体又はその薄膜若しくは薄膜素子の作製において、試料作製後に還元雰囲気下でのアニール処理を行うことなく、酸素組成を化学量論組成に合わせることが可能な方法を提供することである。これにより、良好な超伝導特性を持つ銅酸化物超伝導体又はその薄膜若しくは薄膜素子を効率良く得ることができる。   In view of the above-described problems, an object of the present invention is to produce a copper oxide superconductor having an infinite layer structure or a thin film or thin film element thereof without performing annealing treatment in a reducing atmosphere after sample preparation. It is to provide a method capable of adjusting the composition to the stoichiometric composition. Thereby, a copper oxide superconductor having good superconducting properties, or a thin film or thin film element thereof can be obtained efficiently.

本発明は、ラジカル酸素発生装置を備えた酸化物薄膜成長装置を用いたMBE法により、銅酸化物超伝導体を作製する方法であって、ラジカル酸素発生装置に印加する高周波電力を制御するステップを備えたことを特徴とすることを特徴とする。   The present invention relates to a method for producing a copper oxide superconductor by MBE using an oxide thin film growth apparatus equipped with a radical oxygen generator, and the step of controlling the high-frequency power applied to the radical oxygen generator It is characterized by having provided.

本発明の一実施形態において、ラジカル酸素発生装置に印加する高周波電力を制御するステップは、ラジカル酸素発生装置よりO2 +イオンが供給される値から、ラジカル酸素発生装置よりO*のみが供給される値まで、高周波電力を下げることを特徴とする。 In one embodiment of the present invention, the step of controlling the high frequency power applied to the radical oxygen generator is such that only O * is supplied from the radical oxygen generator from the value at which O 2 + ions are supplied from the radical oxygen generator. The high-frequency power is reduced to a certain value.

本発明の一実施形態は、成膜後の還元雰囲気下でのアニール処理を要さないことを特徴とする。   One embodiment of the present invention is characterized in that an annealing process under a reducing atmosphere after film formation is not required.

本発明の一実施形態において、銅酸化物超伝導体は、(AE,RE)CuO2で表される無限層構造銅酸化物(AEは1種類又は複数のアルカリ土類金属元素、REは希土類元素)であることを特徴とする。 In one embodiment of the present invention, the copper oxide superconductor is an infinite layer structure copper oxide represented by (AE, RE) CuO 2 (AE is one or more alkaline earth metal elements, RE is a rare earth element) Element).

本発明により、銅酸化物超伝導体中で最も簡単な構造を持つが、バルクで単結晶が作製されていない無限層構造超伝導体の単結晶高品質超伝導薄膜を、成膜後のアニール処理なしに、1回のMBE成長のみで作製できるようになった。   According to the present invention, a single-crystal high-quality superconducting thin film of an infinite layer structure superconductor, which has the simplest structure among copper oxide superconductors but has not yet been produced in bulk, is annealed after deposition. It became possible to produce only one MBE growth without treatment.

また、成膜後のアニール処理を要さず、MBE成長のみで超伝導薄膜を作製できるようになったことから、この超伝導薄膜上に絶縁体薄膜を積層し、さらに対向超伝導体を積むことにより、銅酸化物ベースのジョセフソン接合作製を可能ならしめると考えられる。   In addition, since a superconducting thin film can be produced only by MBE growth without the need for annealing after film formation, an insulating thin film is stacked on this superconducting thin film, and an opposing superconductor is further stacked. Thus, it is considered possible to produce a copper oxide-based Josephson junction.

従来のMBE法で得た無限層構造銅酸化物超伝導体の結晶構造を示す図である。It is a figure which shows the crystal structure of the infinite layer structure copper oxide superconductor obtained by the conventional MBE method. 本発明で使用する酸化物薄膜成長装置の構成例を示す構成図である。It is a block diagram which shows the structural example of the oxide thin film growth apparatus used by this invention. ラジカル酸素発生装置に印加する高周波電力Pを変化させて成膜したSr0.9La0.1CuO2薄膜の温度(K)と抵抗率(mΩcm)との関係の高周波電力P依存性を示すグラフである。It is a graph showing a high-frequency power P dependencies of changing the high frequency power P and the formed Sr 0.9 La 0.1 CuO 2 thin film temperature (K) and resistivity to be applied to the radical oxygen generator and (mΩcm). 高周波電力Pの夫々に対する、ラジカル酸素発生装置からの発光スペクトルを示すグラフである。It is a graph which shows the emission spectrum from a radical oxygen generator with respect to each of the high frequency electric power P. ラジカル酸素発生装置に印加する高周波電力Pを変化させて成膜したSr0.9La0.1CuO2薄膜のX線回折パターンを示すグラフである。Is a graph showing the X-ray diffraction pattern of Sr 0.9 La 0.1 CuO 2 thin film formed by changing the high frequency power P applied to the radical oxygen generating apparatus.

以下、本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図2は、本発明で使用する酸化物薄膜成長装置の構成例を示す構成図である。図2に示す酸化物薄膜成長装置は、成長室201,元素供給源202,電子銃203,加熱装置204,ラジカル酸素発生装置205,ガス供給配管206,電子衝撃発光分光法センサー(以下EIESという)207,水晶振動子式膜厚計(以下QCMという)208,蒸着コントローラー209,シャッターコントローラー210,フィードバックループ211,シャッターコントロールライン212,反射高速電子回折(以下RHEEDという)電子銃213,メインシャッター214,RHEEDスクリーン215,Laソース216,Srソース217,Cuソース218から構成される。   FIG. 2 is a configuration diagram showing a configuration example of an oxide thin film growth apparatus used in the present invention. 2 includes a growth chamber 201, an element supply source 202, an electron gun 203, a heating device 204, a radical oxygen generator 205, a gas supply pipe 206, an electron impact emission spectroscopy sensor (hereinafter referred to as EIES). 207, crystal oscillator type film thickness meter (hereinafter referred to as QCM) 208, vapor deposition controller 209, shutter controller 210, feedback loop 211, shutter control line 212, reflection high-energy electron diffraction (hereinafter referred to as RHEED) electron gun 213, main shutter 214, RHEED screen 215, La source 216, Sr source 217, and Cu source 218 are configured.

成長室201の内部は、真空ポンプ(図示せず)により排気することが可能である。元素供給源202には、Laソース216,Srソース217,Cuソース218が収容されている。電子銃203が各ソースに対して1個設けられ、電子銃203より放射される加速・収束した電子線は、偏向されて各ソースに照射可能とされている。この電子線の照射により、各ソースが局所的に加熱されて蒸発する。   The inside of the growth chamber 201 can be exhausted by a vacuum pump (not shown). The element supply source 202 accommodates a La source 216, a Sr source 217, and a Cu source 218. One electron gun 203 is provided for each source, and an accelerated and converged electron beam emitted from the electron gun 203 is deflected so that each source can be irradiated. By irradiation with this electron beam, each source is locally heated and evaporated.

加熱装置204上に固定された、処理対象の基板は、加熱装置204により加熱される。加熱装置204は、例えば、白金より成る電熱線から構成された発熱体を備える。   The substrate to be processed fixed on the heating device 204 is heated by the heating device 204. The heating device 204 includes a heating element composed of, for example, a heating wire made of platinum.

成長室201の内部には、原子状酸素(以下ラジカル酸素ともいう)発生装置205により生成される酸化ガスが、ガス供給配管206により供給可能とされている。供給される酸化ガスは、ガス供給配管206により、基板の近傍に吐出される。ラジカルガスは、例えば、プラズマによりイオン化された酸素や原子酸素などの活性化酸素を含む酸素ガスである。ラジカル酸素発生装置205は、例えば、高周波放電管やコイルより構成されている。   An oxidizing gas generated by an atomic oxygen (hereinafter also referred to as radical oxygen) generator 205 can be supplied into the growth chamber 201 through a gas supply pipe 206. The supplied oxidizing gas is discharged to the vicinity of the substrate through the gas supply pipe 206. The radical gas is an oxygen gas containing activated oxygen such as oxygen ionized by plasma or atomic oxygen, for example. The radical oxygen generator 205 is composed of, for example, a high-frequency discharge tube or a coil.

本発明は、ラジカル酸素発生装置205に印加する高周波電力を制御することにより、酸化物薄膜中に過剰な非化学量論比組成の酸素を導入する原因となるO2 +イオンの生成を抑制し、原子状酸素O*のみを生成・供給する(*はラジカル性活性種を表す)。これにより、成膜後の還元雰囲気下でのアニール処理をすることなく、良好な超伝導特性を持つ無限層構造銅酸化物超伝導体薄膜を得ることができる。 The present invention controls the high-frequency power applied to the radical oxygen generator 205 to suppress the generation of O 2 + ions that cause the introduction of excess non-stoichiometric oxygen into the oxide thin film. Only produces and supplies atomic oxygen O * (* represents radically active species). Thereby, an infinite layer structure copper oxide superconductor thin film having good superconducting properties can be obtained without annealing in a reducing atmosphere after film formation.

図2に示す酸化物薄膜成長装置では、基板に蒸着する金属を効率よく酸化させるために、より酸化力の高い活性酸素を用い、また、基板の近傍で酸化ガスが吐出されるように、ラジカル酸素発生装置205及びガス供給配管206が配置されている。   In the oxide thin film growth apparatus shown in FIG. 2, in order to efficiently oxidize the metal deposited on the substrate, active oxygen having a higher oxidizing power is used, and an oxidizing gas is discharged in the vicinity of the substrate. An oxygen generator 205 and a gas supply pipe 206 are arranged.

成長室201の内部には、基板の配置されている近傍に、EIES207が配置される。これにより、成膜室201の内部における原子フラックスの供給レートを計測することができる。EIES207では、電子放出源より放出された電子がアノード電極に捕捉されるまでの間に原子と衝突したことにより放出される光の強度を測定し、原子フラックスの供給レートを測定する。   In the growth chamber 201, an EIES 207 is disposed in the vicinity of the substrate. Thereby, the supply rate of the atomic flux inside the film forming chamber 201 can be measured. In EIES207, the intensity | strength of the light emitted when it collides with an atom until the electron discharge | released from the electron emission source is captured by an anode electrode is measured, and the supply rate of an atomic flux is measured.

蒸着コントローラー209は、EIES207により測定された各材料の原子の分圧及びQCM208により測定された膜厚に従って、フィードバックループ211を介して電子銃203の出力を制御し、Laソース216,Srソース217,Cuソース218からの蒸発量を制御する。   The vapor deposition controller 209 controls the output of the electron gun 203 via the feedback loop 211 in accordance with the partial pressure of each material atom measured by the EIES 207 and the film thickness measured by the QCM 208, and the La source 216, the Sr source 217, The amount of evaporation from the Cu source 218 is controlled.

シャッターコントローラー210は、EIES207により測定された各材料の原子フラックスの供給レート及びQCM208により測定された膜厚に従って、シャッターコントロールライン212を介してメインシャッター214を制御し、La,Sr,Cuの蒸着量及び膜厚を制御する。   The shutter controller 210 controls the main shutter 214 via the shutter control line 212 according to the supply rate of the atomic flux of each material measured by the EIES 207 and the film thickness measured by the QCM 208, and the deposition amount of La, Sr, Cu And control the film thickness.

図2に示す酸化物薄膜成長装置は、RHEED電子銃213を備え、RHEED電子銃213より放出された電子による回折像をRHEEDスクリーン215により観察可能としている。RHEEDスクリーン215により観察される電子線回折像により、基板上に成長している薄膜の表面構造と組成の状態とが把握可能となる。例えば、基板に蒸着されている各元素の組成比が、化学量論的組成からずれると、薄膜表面に析出物が形成されるようになる。この状態が電子線回折像に反映されるので、組成のずれを確認することができる。   The oxide thin film growth apparatus shown in FIG. 2 includes an RHEED electron gun 213, and a diffraction image by electrons emitted from the RHEED electron gun 213 can be observed by an RHEED screen 215. An electron diffraction image observed by the RHEED screen 215 makes it possible to grasp the surface structure and composition state of the thin film grown on the substrate. For example, when the composition ratio of each element deposited on the substrate deviates from the stoichiometric composition, precipitates are formed on the thin film surface. Since this state is reflected in the electron diffraction image, a composition shift can be confirmed.

[実施例]
図3に、ラジカル酸素発生装置に印加する高周波電力Pを変化させて成膜したSr0.9La0.1CuO2薄膜の温度(K)と抵抗率(mΩcm)との関係の高周波電力P依存性を示す。本実施例では、ラジカル酸素発生装置に対し、酸素は、1.5sccmのレートで供給した。成長した薄膜に対し、還元雰囲気下でのアニール処理は施していない。
[Example]
FIG. 3 shows the dependency of the relationship between the temperature (K) and the resistivity (mΩcm) of the Sr 0.9 La 0.1 CuO 2 thin film formed by changing the high frequency power P applied to the radical oxygen generator on the high frequency power P. . In this example, oxygen was supplied to the radical oxygen generator at a rate of 1.5 sccm. The grown thin film is not annealed in a reducing atmosphere.

図3に示すように、P=300Wのとき、薄膜は超伝導転移を示さない。従って、P=300Wの設定で作製した試料で超伝導性を発現するためには追加のアニール処理が必要である。一方、P=150Wのときは、37Kにおいて超伝導転移が観測される。このように、良好な超伝導性を示す薄膜をアニール処理なしで得られることを確認することができた。   As shown in FIG. 3, when P = 300 W, the thin film does not show a superconducting transition. Therefore, an additional annealing process is required in order to develop superconductivity in a sample manufactured at a setting of P = 300 W. On the other hand, when P = 150 W, a superconducting transition is observed at 37K. Thus, it was confirmed that a thin film exhibiting good superconductivity can be obtained without annealing.

図4に、高周波電力Pの夫々に対する、ラジカル酸素発生装置からの発光スペクトルを示す。この発光スペクトルから、ラジカル酸素発生装置内で発生している酸素種を同定することができる。   In FIG. 4, the emission spectrum from a radical oxygen generator with respect to each of the high frequency electric power P is shown. From this emission spectrum, the oxygen species generated in the radical oxygen generator can be identified.

図4に示すように、P=300Wのときには波長605nm付近等で見られるピークが、P=150Wのときには見られない。このことから、ラジカル酸素発生装置への供給電力を下げることによって酸素分子イオン(O2 +イオン)の量を減少させ、ラジカル酸素(O*)のみを供給したことが分かった。ラジカル酸素(O*)のみを供給したことによって成膜時に非化学量論比的酸素の取り込みが抑制され、アニール処理なしで良好な超伝導特性を有する薄膜を形成することができる。 As shown in FIG. 4, a peak seen near the wavelength of 605 nm or the like when P = 300 W is not seen when P = 150 W. From this, it was found that the amount of molecular oxygen ions (O 2 + ions) was reduced by lowering the power supplied to the radical oxygen generator, and only radical oxygen (O * ) was supplied. By supplying only radical oxygen (O * ), non-stoichiometric oxygen uptake is suppressed during film formation, and a thin film having good superconducting characteristics can be formed without annealing.

図5に、ラジカル酸素発生装置に印加する高周波電力Pを変化させて成膜したSr0.9La0.1CuO2薄膜のX線回折パターンを示す。図5に示すX線回折パターンから計算される(001)方向の格子定数c0は、P=300Wで成膜した場合には0.3426nmであり、P=150Wで成膜した場合には0.3412nmであった。従って、(001)方向の格子定数c0は、P=300Wで成膜した場合の方が、P=150Wで成膜した場合に比べて長くなる。これは、P=300Wで成膜した場合に、非正規サイトに酸素が入ってくることを示している。 FIG. 5 shows an X-ray diffraction pattern of a Sr 0.9 La 0.1 CuO 2 thin film formed by changing the high frequency power P applied to the radical oxygen generator. The lattice constant c 0 in the (001) direction calculated from the X-ray diffraction pattern shown in FIG. 5 is 0.3426 nm when the film is formed at P = 300 W, and 0.3412 nm when the film is formed at P = 150 W. Met. Therefore, the lattice constant c 0 in the (001) direction is longer when the film is formed at P = 300 W than when the film is formed at P = 150 W. This indicates that oxygen enters the non-regular site when the film is formed at P = 300 W.

ラジカル供給源に印加する電力を変化させることで発生する化学種を変え、MBE成長した窒化物半導体薄膜の品質を改良した例は報告されている(例えば、特許文献1を参照)。しかし、酸化物のMBE成長ではこのような報告例はなく、本発明により、従来必要不可欠であったアニール処理なしに、無限層構造銅酸化物超伝導薄膜を形成できるようになった効果は極めて大きいと考えられる。   An example of improving the quality of a nitride semiconductor thin film grown by MBE by changing the chemical species generated by changing the power applied to the radical supply source has been reported (see, for example, Patent Document 1). However, there has been no such report in the MBE growth of oxides, and the present invention has the effect that an infinite layer structure copper oxide superconducting thin film can be formed without annealing treatment which has been indispensable in the past. It is considered large.

101 CuO2
102 (Sr,La)
103 正規の酸素サイト
104 非正規の酸素サイト
201 成長室
202 元素供給源
203 電子銃
204 加熱装置
205 ラジカル酸素発生装置
206 ガス供給配管
207 EIES
208 QCM
209 蒸着コントローラー
210 シャッターコントローラー
211 フィードバックループ
212 シャッターコントロールライン
213 RHEED電子銃
214 メインシャッター
215 RHEEDスクリーン
216 Laソース
217 Srソース
218 Cuソース
101 CuO 2 layer 102 (Sr, La)
103 Regular oxygen site 104 Non-regular oxygen site 201 Growth chamber 202 Element supply source 203 Electron gun 204 Heating device 205 Radical oxygen generator 206 Gas supply piping 207 EIES
208 QCM
209 Deposition controller 210 Shutter controller 211 Feedback loop 212 Shutter control line 213 RHEED electron gun 214 Main shutter 215 RHEED screen 216 La source 217 Sr source 218 Cu source

Claims (4)

ラジカル酸素発生装置を備えた酸化物薄膜成長装置を用いたMBE法により、銅酸化物超伝導体を作製する方法であって、
前記ラジカル酸素発生装置に印加する高周波電力を制御するステップを備えたことを特徴とする銅酸化物超伝導体を作製する方法。
A method of producing a copper oxide superconductor by MBE using an oxide thin film growth apparatus equipped with a radical oxygen generator,
A method for producing a copper oxide superconductor, comprising a step of controlling high-frequency power applied to the radical oxygen generator.
前記ラジカル酸素発生装置に印加する高周波電力を制御するステップは、ラジカル酸素発生装置よりO2 +イオンが供給される値から、ラジカル酸素発生装置よりO*のみが供給される値まで、高周波電力を下げることを特徴とする請求項1に記載の銅酸化物超伝導体を作製する方法。 The step of controlling the high-frequency power applied to the radical oxygen generator is performed by changing the high-frequency power from a value at which O 2 + ions are supplied from the radical oxygen generator to a value at which only O * is supplied from the radical oxygen generator. The method for producing a copper oxide superconductor according to claim 1, wherein 成膜後の還元雰囲気下でのアニール処理を要さないことを特徴とする請求項1又は2に記載の銅酸化物超伝導体を作製する方法。   The method for producing a copper oxide superconductor according to claim 1 or 2, wherein an annealing treatment in a reducing atmosphere after film formation is not required. 前記銅酸化物超伝導体は、(AE,RE)CuO2で表される無限層構造銅酸化物(AEは1種類又は複数のアルカリ土類金属元素、REは希土類元素)であることを特徴とする請求項1乃至3の何れか1項に記載の銅酸化物超伝導体を作製する方法。 The copper oxide superconductor is an infinite layer structure copper oxide represented by (AE, RE) CuO 2 (AE is one or more alkaline earth metal elements and RE is a rare earth element). A method for producing a copper oxide superconductor according to any one of claims 1 to 3.
JP2012121146A 2012-05-28 2012-05-28 Superconductor fabrication method Active JP5801755B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012121146A JP5801755B2 (en) 2012-05-28 2012-05-28 Superconductor fabrication method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012121146A JP5801755B2 (en) 2012-05-28 2012-05-28 Superconductor fabrication method

Publications (2)

Publication Number Publication Date
JP2013245388A true JP2013245388A (en) 2013-12-09
JP5801755B2 JP5801755B2 (en) 2015-10-28

Family

ID=49845405

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012121146A Active JP5801755B2 (en) 2012-05-28 2012-05-28 Superconductor fabrication method

Country Status (1)

Country Link
JP (1) JP5801755B2 (en)

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5004721A (en) * 1988-11-03 1991-04-02 Board Of Regents, The University Of Texas System As-deposited oxide superconductor films on silicon and aluminum oxide
JPH03197306A (en) * 1989-12-26 1991-08-28 Sumitomo Electric Ind Ltd Equipment for producing oxide superconducting thin film and method therefor
JPH03285804A (en) * 1990-03-30 1991-12-17 Toshiba Corp Production of oxide superconductor thin film
JPH04132604A (en) * 1990-09-25 1992-05-06 Rikagaku Kenkyusho Production of oxide superconductor thin film
JPH04265206A (en) * 1991-02-18 1992-09-21 Nippon Telegr & Teleph Corp <Ntt> Method for manufacturing high temperature oxide superconductor thin film and device therefor
JPH04357198A (en) * 1991-02-20 1992-12-10 Sanyo Electric Co Ltd Production of superconducting oxide thin film
JPH05170437A (en) * 1991-12-24 1993-07-09 Toshiba Corp Production of oxide superconductor
JPH05194095A (en) * 1992-01-20 1993-08-03 Matsushita Electric Ind Co Ltd Production of thin-film electric conductor
US5264413A (en) * 1990-03-07 1993-11-23 Ivan Bozovic Bi-Sr-Ca-Cu-O compounds and methods
JPH0632612A (en) * 1992-07-14 1994-02-08 Kobe Steel Ltd Oxide superconductor and its production
JPH07101797A (en) * 1993-10-06 1995-04-18 Sumitomo Electric Ind Ltd Formation of oxide superconducting thin film
JPH07161495A (en) * 1993-12-08 1995-06-23 Osaka Prefecture Radical source
JPH07206592A (en) * 1993-12-29 1995-08-08 Toshiba Corp Method for producing oxide thin film
JP2002068894A (en) * 2000-09-01 2002-03-08 Japan Science & Technology Corp Method and device for producing compound oxide-based thin film and compound oxide-based thin film produced by the same
JP2007214512A (en) * 2006-02-13 2007-08-23 Tokyo Electron Ltd Substrate processing chamber, cleaning method thereof, and storage medium
JP2008303119A (en) * 2007-06-08 2008-12-18 Nippon Light Metal Co Ltd HIGHLY FUNCTIONAL Ga2O3 SINGLE CRYSTAL FILM AND METHOD FOR PRODUCING THE SAME

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5004721A (en) * 1988-11-03 1991-04-02 Board Of Regents, The University Of Texas System As-deposited oxide superconductor films on silicon and aluminum oxide
JPH03197306A (en) * 1989-12-26 1991-08-28 Sumitomo Electric Ind Ltd Equipment for producing oxide superconducting thin film and method therefor
US5264413A (en) * 1990-03-07 1993-11-23 Ivan Bozovic Bi-Sr-Ca-Cu-O compounds and methods
JPH03285804A (en) * 1990-03-30 1991-12-17 Toshiba Corp Production of oxide superconductor thin film
JPH04132604A (en) * 1990-09-25 1992-05-06 Rikagaku Kenkyusho Production of oxide superconductor thin film
JPH04265206A (en) * 1991-02-18 1992-09-21 Nippon Telegr & Teleph Corp <Ntt> Method for manufacturing high temperature oxide superconductor thin film and device therefor
JPH04357198A (en) * 1991-02-20 1992-12-10 Sanyo Electric Co Ltd Production of superconducting oxide thin film
JPH05170437A (en) * 1991-12-24 1993-07-09 Toshiba Corp Production of oxide superconductor
JPH05194095A (en) * 1992-01-20 1993-08-03 Matsushita Electric Ind Co Ltd Production of thin-film electric conductor
JPH0632612A (en) * 1992-07-14 1994-02-08 Kobe Steel Ltd Oxide superconductor and its production
JPH07101797A (en) * 1993-10-06 1995-04-18 Sumitomo Electric Ind Ltd Formation of oxide superconducting thin film
JPH07161495A (en) * 1993-12-08 1995-06-23 Osaka Prefecture Radical source
JPH07206592A (en) * 1993-12-29 1995-08-08 Toshiba Corp Method for producing oxide thin film
JP2002068894A (en) * 2000-09-01 2002-03-08 Japan Science & Technology Corp Method and device for producing compound oxide-based thin film and compound oxide-based thin film produced by the same
JP2007214512A (en) * 2006-02-13 2007-08-23 Tokyo Electron Ltd Substrate processing chamber, cleaning method thereof, and storage medium
JP2008303119A (en) * 2007-06-08 2008-12-18 Nippon Light Metal Co Ltd HIGHLY FUNCTIONAL Ga2O3 SINGLE CRYSTAL FILM AND METHOD FOR PRODUCING THE SAME

Also Published As

Publication number Publication date
JP5801755B2 (en) 2015-10-28

Similar Documents

Publication Publication Date Title
Kim et al. Fabrication of ZnO quantum dots embedded in an amorphous oxide layer
US7935616B2 (en) Dynamic p-n junction growth
US8012822B2 (en) Process for forming dielectric films
JP4994235B2 (en) ZnO crystal and method for growing the same, and method for manufacturing light-emitting element
US20180226472A1 (en) Semiconductor device and manufacturing method for same, crystal, and manufacturing method for same
US20150030846A1 (en) Crystal film, method for manufacturing crystal film, vapor deposition apparatus and multi-chamber apparatus
JP2008270749A (en) Method for forming epitaxial thin film, method for manufacturing semiconductor substrate, semiconductor element, light emitting element and electronic element
US5227363A (en) Molecular beam epitaxy process of making superconducting oxide thin films using an oxygen radical beam
JP2013138090A (en) Method for manufacturing light-emitting diode
JP5801755B2 (en) Superconductor fabrication method
JP7176977B2 (en) Method for producing gallium oxide
US11682556B2 (en) Methods of improving graphene deposition for processes using microwave surface-wave plasma on dielectric materials
JP2007063618A (en) Apparatus for growing oxide thin film
JP6212741B2 (en) Alignment substrate
JPH0688207A (en) Production of yba2cu3ox superconducting thin film
JPH11274567A (en) Method for forming electrode of semiconductor element
JP4744266B2 (en) Gd—Ba—Cu oxide superconducting elongated body and method for producing the same
Bornand et al. Phase development in pulsed laser deposited Pb [Yb1/2Nb1/2] O3-PbTiO3 thin films
JP6718413B2 (en) Method for forming Eu-doped ZnGa2O4 phosphor film
JP2018141205A (en) Method for forming single crystalline thin film
JP2013170098A (en) Method and apparatus for producing transition metal nitride thin film
JP2533233B2 (en) Manufacturing method of oxide superconducting thin film
JP5764404B2 (en) Superconducting wire manufacturing method
JPH0331482A (en) Manufacture of material contain- ing either one or both of alkali earth metal and alkali earth metal oxide
KR20070080627A (en) Method of manufacturing thin film using icp-mocvd method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140620

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150825

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150827

R150 Certificate of patent or registration of utility model

Ref document number: 5801755

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150