JPH02255507A - Production of high-temperature superconducting thin film - Google Patents

Production of high-temperature superconducting thin film

Info

Publication number
JPH02255507A
JPH02255507A JP1077552A JP7755289A JPH02255507A JP H02255507 A JPH02255507 A JP H02255507A JP 1077552 A JP1077552 A JP 1077552A JP 7755289 A JP7755289 A JP 7755289A JP H02255507 A JPH02255507 A JP H02255507A
Authority
JP
Japan
Prior art keywords
sputtering
thin film
discharge power
superconducting thin
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1077552A
Other languages
Japanese (ja)
Inventor
Takashi Hase
隆司 長谷
Hiroshi Kajikawa
梶川 弘
Hiroshi Kawanami
博 河南
Masahiko Okuda
正彦 奥田
Takeo Kawate
川手 剛雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP1077552A priority Critical patent/JPH02255507A/en
Publication of JPH02255507A publication Critical patent/JPH02255507A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Oxygen, Ozone, And Oxides In General (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Physical Vapour Deposition (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To obtain a high-temp. superconducting thin film having superior superconducting characteristics in a relatively short time by setting the RF discharge power density of an RF sputtering device at a specified value or above and using a gaseous He-O2 mixture as a sputtering gas. CONSTITUTION:When a high-temp. superconducting thin film is produced by sputtering with an RF sputtering device, the RF discharge power density (RF discharge power per unit area of a target) of the RF sputtering device is set at >=4.0W/cm<2> and a gaseous He-O2 or Ne-O2 mixture is used as a sputtering gas. In this production process, when RF discharge power is increased, the rate of film formation increases and crystallization for ensuring superconductivity is liable to proceed incompletely. In order to allow crystallization to proceed completely, He or Ne having high ability to supply electrons required to generate oxygen radicals and having a lower rate of sputtering than Ar is used as part of the sputtering gas. Oxygen is sufficiently incorporated into a film during film formation, more active migration is caused just above a substrate and crystallization proceeds completely.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、高温超電導薄膜の製造方法に関し、特に、優
れた超電導特性を有する高温超電導薄膜を比較的短時間
で製造することのできる高温超電導薄膜の製造方法に関
する。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a method for producing a high-temperature superconducting thin film, and particularly to a method for producing a high-temperature superconducting thin film having excellent superconducting properties in a relatively short time. This invention relates to a method for manufacturing a thin film.

〔従来技術〕[Prior art]

現在、例えばReBa2 Cu3 o7−S  CRe
=Y、Laあるいは希土類元素)などの高温超電導薄膜
の製造方法としては、スパッタ法、CVD法。
Currently, for example, ReBa2 Cu3 o7-S CRe
Examples of methods for producing high-temperature superconducting thin films such as Y, La, or rare earth elements include sputtering and CVD.

EB蒸着法、MBE法等が一般的によく行われている。EB evaporation method, MBE method, etc. are commonly used.

この中でもスパッタ法は、その装置が比較的簡単で、成
膜中に酸素の導入も可能であるなどのメリットがあるた
め、盛んに研究が行われている。
Among these, the sputtering method is being actively researched because its equipment is relatively simple and oxygen can be introduced during film formation.

上記スパッタ法とは、化学量論比の原料焼結板をスパッ
タリングターゲットに用い、このターゲットをA「と0
2の混合ガスからなるスパッタガス中でスパッタリング
し、上記ターゲットの対向位置に配置した基板上に薄膜
を形成するというものである。
The above sputtering method uses a sintered plate as a sputtering target with a stoichiometric ratio of raw materials, and this target is
A thin film is formed on a substrate placed opposite the target by sputtering in a sputtering gas consisting of a mixture of two gases.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

このような、従来のスパッタ法を用いた高温超電導薄膜
の製造方法では、成膜中にある程度の超電導結晶化は起
こるが、膜中に充分な酸素を取り込むことができないた
め、超電導結晶化が充分であるとはいえず、超電導特性
に劣る。そのため、成膜後に、例えば400″C以上の
基板温度で酸素雰囲気中において薄膜をアニールし、超
電導結晶化を充分にする必要があった。
In this method of manufacturing high-temperature superconducting thin films using conventional sputtering methods, some degree of superconducting crystallization occurs during film formation, but because sufficient oxygen cannot be incorporated into the film, superconducting crystallization is not sufficient. It cannot be said that the superconducting properties are inferior. Therefore, after film formation, it is necessary to anneal the thin film in an oxygen atmosphere at a substrate temperature of 400''C or higher, for example, to ensure sufficient superconducting crystallization.

しかし、上述のように、成膜後に更にアニールするとい
うのは、製造工程が増え、製造時間が長くなる、あるい
はアニール時にチャンバ内を酸素雰囲気にする必要があ
るため、アニール後、チャンバ内の壁面が酸化されクリ
ーニングする必要があるなどの問題点がある。
However, as mentioned above, further annealing after film formation increases the number of manufacturing steps and production time, or it is necessary to create an oxygen atmosphere in the chamber during annealing. There are problems such as oxidation and the need for cleaning.

そこで、成膜中に充分超電導結晶化を行わせ、成膜後の
アニール工程を省略する方法が研究されている。成膜中
に充分超電導結晶化を行わせるとは、成膜中の膜中に酸
素を充分取り込むということで、これには、■成膜中の
02分圧を高くする■基板直上の酸素を励起状態(高エ
ネルギー状態)にして、酸素ラジカルを発生させ、他の
元素(例えばRe、Ba、Cu)と反応させるというこ
とが重要であると考えられている。
Therefore, research is being conducted on methods that allow sufficient superconducting crystallization during film formation and omit the annealing step after film formation. Sufficient superconducting crystallization during film formation means that enough oxygen is incorporated into the film being formed. It is considered important to bring it into an excited state (high energy state), generate oxygen radicals, and react with other elements (for example, Re, Ba, Cu).

しかし、上記のの点については、従来のスパッタ法で、
02分圧を高くした場合、第3図(この場合、膜組成Y
13a2 Cu30X、%板温度650℃、ガス021
00%、RF放電電力密度4.0W / c+1 、膜
厚0.5μm、基板MgO(100)(7)条件下で行
った。尚、第1図の一方の縦軸であるX線回折強度は結
晶の量に相当する。)に示すように、確かに膜中の酸素
含有量は増加するが、成膜速度の上昇に伴って、基板直
上でのマイグレーションが充分ではなくなるため超電導
結晶化が充分に行われず、超電導特性に劣るという問題
点がある。
However, regarding the above points, with conventional sputtering method,
02 When the partial pressure is increased, Figure 3 (in this case, the film composition Y
13a2 Cu30X, % plate temperature 650℃, gas 021
00%, RF discharge power density 4.0 W/c+1, film thickness 0.5 μm, and substrate MgO(100)(7). Note that the X-ray diffraction intensity, which is one vertical axis in FIG. 1, corresponds to the amount of crystals. ), it is true that the oxygen content in the film increases, but as the film formation rate increases, migration directly above the substrate becomes insufficient, so superconducting crystallization does not occur sufficiently, and the superconducting properties deteriorate. There is a problem that it is inferior.

次に、上記■の点については、従来のスパッタ法で酸素
ラジカルを発生させるためにRF放電電力を増大させ、
プラズマ電流を増加させた場合、第4図(この場合、膜
組成YBa2 Cu30.。
Next, regarding point (2) above, in order to generate oxygen radicals using the conventional sputtering method, the RF discharge power is increased.
When the plasma current is increased, as shown in FIG. 4 (in this case, the film composition is YBa2Cu30.

基板温度650℃、゛チャンバ圧2Pa、ガス0210
0%、膜厚0.5μm、基板MgO(100)の条件下
で行った。)に示すように、従来のスパッタ法では酸素
含有量が目標(目標組成YB a2CLI:l OG、
l 7 )である53%以上に到達しておらず、またR
F放電電力を増大することにより成膜速度も上昇するた
め、マイグレーションが充分でなくなり超電導結晶化が
充分に行われないため、上記■の場合と同じく超電導特
性に劣るという問題点があった。
Substrate temperature 650°C, chamber pressure 2Pa, gas 0210
The test was carried out under the conditions of MgO (100)%, film thickness of 0.5 μm, and MgO (100) substrate. ), in the conventional sputtering method, the oxygen content is the target (target composition YB a2CLI: l OG,
l 7 ) has not reached 53% or more, and R
As the film formation rate increases by increasing the F discharge power, migration is not sufficient and superconducting crystallization is not performed sufficiently, resulting in the problem of inferior superconducting properties as in case (2) above.

従って、本発明の目的とするところは、スパッタ法によ
る成膜後に、更にアニール等の02を用いた処理を施さ
なくとも、優れた超電導特性を示す高温超電導薄膜が得
られるような、高温超電導薄膜の製造方法を捷供するこ
とである。
Therefore, an object of the present invention is to provide a high-temperature superconducting thin film that exhibits excellent superconducting properties without the need for further treatment using 02 such as annealing after film formation by sputtering. The purpose is to provide a manufacturing method.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために、本発明が採用する第一の製
造方法は、RFスパッタ装置を用いたスパッタ法による
高温超電導薄膜の製造方法において、上記RFスパッタ
装置のRF放電電力密度(RF放電電力/ターゲット面
積)を4.OW/c−以上に設定すると共に、スパッタ
ガスとしてHeと02の混合ガスを用いた点を構成上の
特徴とするものである。
In order to achieve the above object, the first manufacturing method adopted by the present invention is a method for manufacturing a high temperature superconducting thin film by sputtering using an RF sputtering device, in which the RF discharge power density (RF discharge power /target area) to 4. It is characterized in that it is set at OW/c- or higher and a mixed gas of He and 02 is used as the sputtering gas.

また、第二の製造方法は、上記スパッタガスとしてNe
と02の混合ガスを用いた点を構成上の特徴とするもの
である。
Further, in the second manufacturing method, Ne is used as the sputtering gas.
The structural feature is that a mixed gas of and 02 is used.

〔作用〕[Effect]

本発明の高温超電導薄膜の製造方法では、2掻型あるい
はマグネトロン型等のRFスパッタ装置のRF放電電力
密度(RF放電電力/ターゲット面積)を4.0 W 
/ c4以上に設定することにより、成膜中にピンチ効
果で酸素ラジカルを効率的に発生させて、膜中に充分酸
素を取り込ませることができると共に、装置のチャンバ
圧を低圧に押さえることにより、基板直上でのマイグレ
ーションが活発に生じて超電導結晶化が充分に進行する
In the method for producing a high-temperature superconducting thin film of the present invention, the RF discharge power density (RF discharge power/target area) of the RF sputtering apparatus such as a two-screw type or magnetron type is set to 4.0 W.
By setting the value to /c4 or higher, oxygen radicals can be efficiently generated by the pinch effect during film formation, and sufficient oxygen can be incorporated into the film. By keeping the chamber pressure of the device low, Migration directly above the substrate occurs actively and superconducting crystallization progresses sufficiently.

また、RF放電電力を増加させると成膜速度が上昇し、
超電導結晶化が充分に進行しない傾向があるため、スパ
ッタガスとして、酸素ラジカルの発生に必要な電子の供
給能力が高く、且つArよりも低スパツタ率でスパッタ
するHeあるいはNeを用いることにより、成膜中の膜
中に充分酸素が取り込まれると共に、基板直上でのマイ
グレーションが一層活発に生じ超電導結晶化が充分に進
行する。
In addition, increasing the RF discharge power increases the deposition rate,
Since superconducting crystallization tends not to proceed sufficiently, it is possible to achieve this by using He or Ne as the sputtering gas, which has a high ability to supply the electrons necessary for generating oxygen radicals and sputters at a lower sputtering rate than Ar. As sufficient oxygen is incorporated into the film, migration directly above the substrate occurs more actively, and superconducting crystallization progresses sufficiently.

〔実施例〕〔Example〕

以下、図面を参照し、本発明についてさらに説明する。 The present invention will be further described below with reference to the drawings.

ここに第1図は、本発明の一実施例に用いる2極型RF
スパツタ装置の模式図、第2図は、本実施例方法により
製造された高温部、電導薄膜の酸素含有量及びX線回折
強度とRF放電電力密度との相関特性図である。尚、以
下の実施例により本発明が限定されるものではない。
Here, FIG. 1 shows a bipolar RF system used in one embodiment of the present invention.
FIG. 2, which is a schematic diagram of the sputtering device, is a diagram showing the correlation between the high temperature section, the oxygen content and X-ray diffraction intensity of the conductive thin film, and the RF discharge power density produced by the method of this embodiment. Note that the present invention is not limited to the following examples.

第1図に示す2極型RFスパツタ装置1において、チャ
ンバ2内に、(100)面MgO単結晶の基板3を入れ
、ヒータ4で加熱し、基板温度を650℃にした。また
、スパッタガスとして、Heと02の混合ガスを用い、
Heと02の流量比が50 : 50となるようにチャ
ンバ2に供給し、チャンバ圧は2Paとした。そして、
RF放電電力密度(RF放電電力/ターゲット面積)を
いろいろ変えて、膜厚が0.5μmの膜組成YBa2 
Cu30X高温超電導薄膜を成膜した。
In a bipolar RF sputtering apparatus 1 shown in FIG. 1, a (100)-plane MgO single crystal substrate 3 was placed in a chamber 2 and heated with a heater 4 to bring the substrate temperature to 650°C. In addition, using a mixed gas of He and 02 as the sputtering gas,
He and 02 were supplied to chamber 2 at a flow rate ratio of 50:50, and the chamber pressure was set at 2 Pa. and,
By varying the RF discharge power density (RF discharge power/target area), the film composition YBa2 with a film thickness of 0.5 μm was obtained.
A Cu30X high temperature superconducting thin film was formed.

成膜終了後、02の供給を停止し、再度高真空引きを行
いながら基板3を冷却して室温状態に戻し、得られた高
温超電導薄膜を取り出して、そのlI!組成をI CP
 (Induction Coupled Plass
a)を用いて測定し、X線回折を行うと共に、その膜中
の酸素含有量を測定した結果を第2図に示す。
After the film formation is completed, the supply of 02 is stopped, the substrate 3 is cooled to room temperature while drawing a high vacuum again, and the obtained high-temperature superconducting thin film is taken out and its lI! Composition I CP
(Induction Coupled Plus
Figure 2 shows the results of X-ray diffraction and measurement of the oxygen content in the film.

尚、ここで5はターゲット、6.7は質量流量計、8は
真空ポンプ、9はRF電源、10はマツチングボックス
をそれぞれ示す。
Here, 5 is a target, 6.7 is a mass flow meter, 8 is a vacuum pump, 9 is an RF power source, and 10 is a matching box.

これによると、RF放電電力密度が4.0 W/cd以
上の場合は、その膜中の酸素含有量が目標である53%
以上に充分達しており、基板直上でのマイグレーション
も充分に行われているためX線回折強度も高い値(超電
導結晶化が充分に行われている)を示した。
According to this, when the RF discharge power density is 4.0 W/cd or more, the oxygen content in the film is 53%, which is the target.
The above was sufficiently achieved, and the migration directly above the substrate was also sufficiently performed, so that the X-ray diffraction intensity also showed a high value (superconducting crystallization was sufficiently performed).

また、上記のようにして得られた薄膜の超電導特性を調
べたところ、Tcend(抵抗0温度)=90に、at
77にでのJc(FE界電流密度)=4.0X10“A
/c−dと優れた超電導特性を示した。
In addition, when the superconducting properties of the thin film obtained as described above were investigated, it was found that Tcend (resistance 0 temperature) = 90, at
Jc (FE field current density) at 77 = 4.0X10"A
/c-d, showing excellent superconducting properties.

次に、Heと02の流量比をパラメータとして成膜を行
った場合の超電導特性の結果を表1に示す。この場合、
流量比以外の製造条件は、上記第1図の場合と同一で、
RF放電電力密度は4.OW/cdである。
Next, Table 1 shows the results of superconducting properties when film formation was performed using the flow rate ratio of He and 02 as parameters. in this case,
The manufacturing conditions other than the flow rate ratio are the same as in the case of Fig. 1 above.
RF discharge power density is 4. It is OW/CD.

これによると、He102の流量比が20/80.50
150あるいは80/20の場合には、成膜後に、02
リーク、02アニール等の0.を用いた処理を施さなく
とも、優れた超電導特性の高温超電導薄膜が得られるこ
とがわかる。
According to this, the flow rate ratio of He102 is 20/80.50
In the case of 150 or 80/20, after film formation, 02
0. Leakage, 02 annealing, etc. It can be seen that a high-temperature superconducting thin film with excellent superconducting properties can be obtained even without treatment using .

また、スパッタガスとして、上記Heの代わりにNeを
用いて、Neと02の流量比をパラメータとして高温超
電導薄膜を製造した場合の薄膜の超電導特性を表2に示
す。
Further, Table 2 shows the superconducting properties of the thin film when a high-temperature superconducting thin film was manufactured using Ne instead of He as the sputtering gas and using the flow rate ratio of Ne and O2 as a parameter.

この場合も、上記Heをスパッタガスとして用いた場合
と同様に、成膜後に02を用いた処理を施さなくとも優
れた超電導特性の高温超電導薄膜が得られた。
In this case, as in the case where He was used as the sputtering gas, a high-temperature superconducting thin film with excellent superconducting properties was obtained without performing any treatment using O2 after film formation.

表1 表2 〔発明の効果〕 本発明によれば、RFスパッタ装置を用いたスパッタ法
による高温超電導薄膜の製造方法において、上記RFス
パッタ装置のRF放電電力密度(RF放電電力/ターゲ
ット面積)を4.0W/cd以上に設定すると共に、ス
パッタガスとしてHeと02の混合ガスを用いたことを
特徴とする高温超電導薄膜の製造方法及び上記スパッタ
ガスとしてNeと02の混合ガスを用いた請求項(1)
記載の高温超電導薄膜の製造方法ごとを特徴とする高温
超電導薄膜の製造方法が提供され、これにより、成膜後
に02を用いたアニール等の処理を行わなくても、超電
導特性に優れた高温超電導f!膜が製造できるようにな
る。
Table 1 Table 2 [Effects of the Invention] According to the present invention, in a method for manufacturing a high temperature superconducting thin film by sputtering using an RF sputtering device, the RF discharge power density (RF discharge power/target area) of the RF sputtering device is A method for manufacturing a high temperature superconducting thin film, characterized in that the heating rate is set at 4.0 W/cd or more, and a mixed gas of He and 02 is used as a sputtering gas, and a claim is made in which a mixed gas of Ne and 02 is used as the sputtering gas. (1)
A method for producing a high-temperature superconducting thin film characterized by each of the above-described methods for producing a high-temperature superconducting thin film is provided, and thereby, a high-temperature superconducting film with excellent superconducting properties can be produced without performing a treatment such as annealing using 02 after film formation. f! Membranes can now be manufactured.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の一実施例に用いる2極型RFスパツ
タ装置の模式図、第2図は、本実施例方法により製造さ
れた高温超電導薄膜の酸素含有量及びX線回折強度とR
F放電電力密度との相関特性図、第3図は、本発明の背
景となる従来のスパッタ法を用いた高温超電導薄膜の製
造方法により製造された薄膜の酸素含有量及びX線回折
強度と02圧力との相関特性図、第4図は、その薄膜の
酸素含有量及びX線回折強度とRF放電電力密度との相
関特性図である。 〔符号の説明〕 1・・・2極型RFスパツタ装置 2・・・チャンバ 3・・・基板。
FIG. 1 is a schematic diagram of a bipolar RF sputtering apparatus used in an embodiment of the present invention, and FIG. 2 shows the oxygen content, X-ray diffraction intensity, and R
Figure 3 shows the relationship between the oxygen content and the X-ray diffraction intensity of the thin film produced by the conventional method for producing a high temperature superconducting thin film using the sputtering method, which is the background of the present invention. FIG. 4 is a diagram showing the correlation between the oxygen content and X-ray diffraction intensity of the thin film and the RF discharge power density. [Explanation of symbols] 1... Two-pole RF sputtering device 2... Chamber 3... Substrate.

Claims (2)

【特許請求の範囲】[Claims] (1)RFスパッタ装置を用いたスパッタ法による高温
超電導薄膜の製造方法において、 上記RFスパッタ装置のRF放電電力密度 (RF放電電力/ターゲット面積)を4.0W/cm^
2上に設定すると共に、スパッタガスとしてHeとO_
2の混合ガスを用いたことを特徴とする高温超電導薄膜
の製造方法。
(1) In a method for manufacturing a high-temperature superconducting thin film by sputtering using an RF sputtering device, the RF discharge power density (RF discharge power/target area) of the above RF sputtering device is 4.0 W/cm^
2, and He and O_ as sputtering gases.
1. A method for producing a high-temperature superconducting thin film, characterized in that a mixed gas of 2 is used.
(2)上記スパッタガスとしてNeとO_2の混合ガス
を用いた請求項(1)記載の高温超電導薄膜の製造方法
(2) The method for producing a high-temperature superconducting thin film according to claim (1), wherein a mixed gas of Ne and O_2 is used as the sputtering gas.
JP1077552A 1989-03-28 1989-03-28 Production of high-temperature superconducting thin film Pending JPH02255507A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1077552A JPH02255507A (en) 1989-03-28 1989-03-28 Production of high-temperature superconducting thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1077552A JPH02255507A (en) 1989-03-28 1989-03-28 Production of high-temperature superconducting thin film

Publications (1)

Publication Number Publication Date
JPH02255507A true JPH02255507A (en) 1990-10-16

Family

ID=13637181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1077552A Pending JPH02255507A (en) 1989-03-28 1989-03-28 Production of high-temperature superconducting thin film

Country Status (1)

Country Link
JP (1) JPH02255507A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0925571A (en) * 1995-07-06 1997-01-28 Canon Inc Film formation of oxide thin film
JP2003109952A (en) * 2001-09-28 2003-04-11 Ulvac Japan Ltd Dielectric film, insulating film of capacitor and their depositing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0925571A (en) * 1995-07-06 1997-01-28 Canon Inc Film formation of oxide thin film
JP2003109952A (en) * 2001-09-28 2003-04-11 Ulvac Japan Ltd Dielectric film, insulating film of capacitor and their depositing method

Similar Documents

Publication Publication Date Title
JPH01104774A (en) Production of thin film of oxide superconductor
JPH02255507A (en) Production of high-temperature superconducting thin film
KR920007799B1 (en) Method for manufacturing super conducting oxide ceramics materials and deposition apparatus for its
JPH0825742B2 (en) How to make superconducting material
JPH04219301A (en) Production of oxide superconductor thin film
JPH0621344B2 (en) Superconducting thin film production equipment
JPH06291375A (en) Manufacture of thin film superconductor and its manufacture
JP2742418B2 (en) Method for producing oxide superconducting thin film
JPH0238310A (en) Production of oxide high temperature superconductive thin film
JPH01201008A (en) Production of thin film of oxide superconductor
JPH03197321A (en) Production of superconductor of thin film
JPH0196015A (en) Formation of superconducting thin film
JPH02208207A (en) Production of superconducting thin film and apparatus therefor
JPH06280018A (en) Method and device for production of thin film superconductor
JPH03285804A (en) Production of oxide superconductor thin film
JP2879568B2 (en) Method and apparatus for producing oxide superconductor
JPH01112614A (en) Manufacture of super conductive film
JPS63301426A (en) Manufacture of superconductive material
JPH01246355A (en) Formation of multiple oxides superconducting thin film by counter target-type sputtering method and device therefor
JPH01264114A (en) Manufacture of compound oxide superconductor thin film
JPH02210718A (en) Gaseous phase growing method for oxide superconductor
JPH01282122A (en) Production of thin film superconductor
JPH06247715A (en) Production of oxide superconducting thin film
JPH0421504A (en) Production of oxide superconductor thin film
JPS63211628A (en) Plasma treatment device