JPH02208207A - Production of superconducting thin film and apparatus therefor - Google Patents

Production of superconducting thin film and apparatus therefor

Info

Publication number
JPH02208207A
JPH02208207A JP1029106A JP2910689A JPH02208207A JP H02208207 A JPH02208207 A JP H02208207A JP 1029106 A JP1029106 A JP 1029106A JP 2910689 A JP2910689 A JP 2910689A JP H02208207 A JPH02208207 A JP H02208207A
Authority
JP
Japan
Prior art keywords
thin film
oxygen
based gas
superconducting thin
evaporation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1029106A
Other languages
Japanese (ja)
Inventor
Takeshi Kamata
健 鎌田
Shigenori Hayashi
重徳 林
Masatoshi Kitagawa
雅俊 北川
Takashi Hirao
孝 平尾
Kiyotaka Wasa
清孝 和佐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1029106A priority Critical patent/JPH02208207A/en
Publication of JPH02208207A publication Critical patent/JPH02208207A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Oxygen, Ozone, And Oxides In General (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Vapour Deposition (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To reduce the temperature of a forming process and form a thin film without any damage by irradiating a substrate with evaporation streams from plural evaporation sources and plasma flows, etc., of an oxygen-based gas and simultaneously introducing oxygen gas from the vicinity of the substrate and forming the thin film. CONSTITUTION:A substrate 4 and plural evaporation sources 3 are provided in a vacuum vessel 1. The surface of the above-mentioned substrate 4 is then irradiated with evaporation streams from the evaporation sources 3 and plasma flows or ion flows of an oxygen-based gas from an ion source 2. An oxygen- based gas is simultaneously introduced from an oxygen-based gas introduction pipe 5 in the vicinity of the substrate 4 into the vacuum vessel 1.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、エレクトロニクス用素子に応用される超電導
薄膜、特に酸化物超電導薄膜の製造方法および製造装置
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method and apparatus for producing superconducting thin films, particularly oxide superconducting thin films, which are applied to electronic devices.

従来の技術 Y−Ba−Cu−0系が超電導転移温度90Kをこえる
高温の超電導体であることが提案された[M、に、Wu
等、フィジカル レビュー レターズ(Physica
l Rev−few Letters) Vol、58
.No、9,908−旧0 (1987)]。これによ
り液体窒素の沸点(77K)よりも高くなったことで実
用化が有望となってきた。さらにその後、100に以上
で超電導体となるB i −8r−Ca−Cu−0系材
料、そしてTl−Ba−Ca−Cu−0系材料が相次い
で発見された。これら酸化物超電導材料の超電導機構の
詳細は明かではないが、転移温度が室温以上に高くなる
可能性があり、高温超電導体として従来の2元系化合物
より、より有望な特性が期待される。
Conventional technology It has been proposed that the Y-Ba-Cu-0 system is a high-temperature superconductor with a superconducting transition temperature exceeding 90K [M, in Wu
etc., Physical Review Letters (Physica
l Rev-few Letters) Vol, 58
.. No. 9,908-Old 0 (1987)]. This has made it higher than the boiling point of liquid nitrogen (77K), making it promising for practical use. Furthermore, after that, B i -8r-Ca-Cu-0-based materials and Tl-Ba-Ca-Cu-0-based materials were discovered one after another, which become superconductors at a concentration of 100 or more. Although the details of the superconducting mechanism of these oxide superconducting materials are not clear, their transition temperatures may be higher than room temperature, and they are expected to have more promising properties as high-temperature superconductors than conventional binary compounds.

こうした酸化物超電導体をエレクトロニクス素子として
実用化する場合、薄膜化することが強く望まれる。酸化
物超電導体の薄膜化方法としては、スパッタリング法、
真空蒸着法等がある。
When such oxide superconductors are to be put to practical use as electronic devices, it is strongly desired that they be made into thin films. Methods for thinning oxide superconductors include sputtering,
There are vacuum evaporation methods, etc.

発明が解決しようとする課題 薄膜を素子として実用化する場合、薄膜の特性の安定化
、形成プロセスの低温化が基本的な課題と考えられる。
Problems to be Solved by the Invention When a thin film is put to practical use as an element, stabilizing the characteristics of the thin film and lowering the temperature of the formation process are considered to be fundamental issues.

しかし、スパッタリング法では、プラズマ中に基体をさ
らして膜形成を行うため、膜表面がダメージをうけやす
く、また、プラズマの分布吠態に応じて膜厚分布が生じ
てしまい、膜全体が均一になりに<<、特性の安定化を
実現する点で困難である。基板温度、ガス圧、混合ガス
比、基板とターゲットの距離、入力パワーなどパラメー
タが多く複雑で、膜組成を合わせることがかなり困難で
ある。さらに、単一ターゲットを用いる場合、スパッタ
リング蒸着時間の経過と共に、ターゲット組成に変化が
生じ、再現性が悪い。新しく発見された酸化物超電導体
はその組成の違いにより特性にずれが生じるため、この
点でも特性の安定化実現にはスパッタリング法は不都合
である。
However, in the sputtering method, the film is formed by exposing the substrate to plasma, so the film surface is easily damaged, and the film thickness varies depending on the plasma distribution, so the entire film is not uniform. Therefore, it is difficult to stabilize the characteristics. There are many complicated parameters such as substrate temperature, gas pressure, gas mixture ratio, distance between the substrate and target, and input power, and it is quite difficult to match the film composition. Furthermore, when a single target is used, the target composition changes with the elapse of sputtering deposition time, resulting in poor reproducibility. Newly discovered oxide superconductors vary in their properties due to differences in their composition, so sputtering is also inconvenient in achieving stable properties in this respect.

また、この種の超電導材料は、構成元素である酸素の含
有量により、その電気伝導特性に大きな影響を与えるこ
とが確認されている。従来の真空蒸着法では、蒸着され
た膜の膜中の酸素濃度が不足してしまう。そこで酸素を
補うために膜形成後に酸素雰囲気中でs o o ’c
以上の高温熱処理を行う。半導体デバイスとの一体化を
考えた場合、プロセス温度が高いと素子等が破壊されて
しまい不都合である。また、この熱処理についても、そ
の処理条件によって微妙な特性の違いが生じ、操作が複
雑であるといった問題も存在する。
Furthermore, it has been confirmed that the electrical conductivity of this type of superconducting material is greatly influenced by the content of oxygen, which is a constituent element. In conventional vacuum deposition methods, the oxygen concentration in the deposited film is insufficient. Therefore, in order to supplement oxygen, after film formation, s o o 'c was carried out in an oxygen atmosphere.
The above high temperature heat treatment is performed. When considering integration with semiconductor devices, high process temperatures are disadvantageous because elements and the like may be destroyed. Further, this heat treatment also has the problem that subtle differences in characteristics occur depending on the treatment conditions, and the operation is complicated.

課題を解決するための手段 こうした課題を解決するために、本発明は、膜組成を比
較的容易に合わせることのできる真空蒸着法と膜に酸素
を供給することが可能な酸素系ガスのプラズマ流あるい
はイオン流の照射の併用方式により薄膜を形成する方法
および装置に関して、酸素濃度の不足がないように酸素
を十分に供給し、また、制御性よくイオンエネルギーを
供給し、低温でダメージレスに超電導薄膜を形成する方
法および装置を提供するものである。
Means for Solving the Problems In order to solve these problems, the present invention employs a vacuum evaporation method that allows the film composition to be adjusted relatively easily, and a plasma flow of an oxygen-based gas that can supply oxygen to the film. Alternatively, regarding a method and apparatus for forming a thin film using a combined method of ion current irradiation, it is possible to supply sufficient oxygen so that there is no shortage of oxygen concentration, supply ion energy with good controllability, and conduct superconducting at low temperatures without damage. A method and apparatus for forming a thin film are provided.

すなわち本発明における超電導薄膜の製造方法は、真空
槽内に少なくとも二種の蒸発源を設置し、前記真空槽内
に設置した基体上に、前記各蒸発源からの蒸発流と酸素
系ガスのプラズマ流あるいはイオン流を照射することに
より薄膜を形成する方法で前記酸素系ガスを基体付近よ
り導入して薄膜形成を行おうとするものである。
That is, in the method for producing a superconducting thin film according to the present invention, at least two types of evaporation sources are installed in a vacuum chamber, and an evaporation flow from each evaporation source and an oxygen-based gas plasma are placed on a substrate installed in the vacuum chamber. In this method, a thin film is formed by irradiating a current or an ion current, and the oxygen-based gas is introduced from near the substrate to form a thin film.

また、本発明における別の超電導薄膜の製造方法は、真
空槽内に少なくとも二種の蒸発源を設置し、前記真空槽
内に設置した基体上に、前記各蒸発源からの蒸発流と酸
素系ガスのプラズマ流あるいはイオン流を照射すること
により薄膜を形成する方法で前記酸素系ガスのイオン流
を直流電界により制御して薄膜形成を行おうとするもの
である。
Another method for producing a superconducting thin film according to the present invention includes installing at least two types of evaporation sources in a vacuum chamber, and placing an evaporation flow from each evaporation source and an oxygen system on a substrate installed in the vacuum chamber. In this method, a thin film is formed by irradiating a gas plasma flow or an ion flow, and the ion flow of the oxygen-based gas is controlled by a DC electric field to form a thin film.

また、本発明における超電導薄膜の製造装置は、少なく
とも二種の蒸発源をもつ真空槽と、酸素系ガスのプラズ
マあるいはイオンを発生させるイオン源を有する真空装
置において、前記真空槽に設定された基体付近に酸素系
ガスを導入することのできるガス導入管を設置した構成
を有するものである。
Further, the superconducting thin film manufacturing apparatus of the present invention includes a vacuum chamber having at least two types of evaporation sources and an ion source for generating oxygen-based gas plasma or ions, in which a substrate is set in the vacuum chamber. It has a configuration in which a gas introduction pipe that can introduce oxygen-based gas is installed nearby.

また、本発明における別の超電導薄膜の製造装置は、少
なくとも二種の蒸発源をもつ真空槽と、酸素系ガスのプ
ラズマあるいはイオンを発生させるイオン源を有する真
空装置において、前記酸素系ガスのイオンを直流電界に
より制御できる機構を有するものである。
Another superconducting thin film manufacturing apparatus according to the present invention includes a vacuum chamber having at least two types of evaporation sources, and an ion source for generating oxygen-based gas plasma or ions. It has a mechanism that allows control of the voltage using a DC electric field.

作用 本発明にかかる超電導薄膜の製造方法は、蒸着時に高電
子温度で解離度の高い酸素系ガスのプラズマあるいはイ
オンの照射を用いるため、形成プロセス温度の低温化な
らびにダメージレスな膜形成が行える上に、基板表面付
近における酸素分圧を高めることにより、膜中における
酸素の取り込み不足を解消することが可能な超電導薄膜
の形成方法を提供できる。これにより、特性の優れた超
電導薄膜を用いたエレクトロニクス素子の形成が可能と
なる。
Function The method for producing a superconducting thin film according to the present invention uses plasma of an oxygen-based gas with a high electron temperature and a high degree of dissociation or ion irradiation during vapor deposition, so that the formation process temperature can be lowered and damage-free film formation can be achieved. Furthermore, it is possible to provide a method for forming a superconducting thin film that can eliminate insufficient oxygen uptake in the film by increasing the oxygen partial pressure near the substrate surface. This makes it possible to form electronic devices using superconducting thin films with excellent properties.

本発明にかかる別の超電導薄膜の製造方法は、前記超電
導薄膜の製造方法と同様に、形成プロセス温度の低温化
ならびにダメージレスな膜形成が行えるとともに、照射
する酸素系ガスのイオンのエネルギーを制御できるため
、膜形成温度のより低温化が可能な超電導薄膜の形成方
法を提供できる。これにより、超電導体と半導体の一体
化したエレクトロニクス素子形成が可能となる。
Another method for producing a superconducting thin film according to the present invention, like the above-mentioned method for producing a superconducting thin film, can lower the formation process temperature and form a film without damage, and can control the energy of ions of the oxygen-based gas to be irradiated. Therefore, it is possible to provide a method for forming a superconducting thin film that can lower the film forming temperature. This makes it possible to form an electronics element in which a superconductor and a semiconductor are integrated.

本発明にかかる超電導薄膜の製造装置は、少なくとも二
種以上の蒸発源を備えているため、各構成元素について
必要量蒸発させることにより組成を合わせることが可能
であり、かつ、低電子エネルギーで解離度の高いイオン
・プラズマ照射機構を備えているために形成プロセス温
度の低温化ならびにダメージレスな膜形成が行える上に
、酸素系ガスの導入管を基板付近に設置しているため、
基板付近の酸素分圧を高くすることができ、膜中におけ
る酸素の取り込み不足を解消することが可能な装置を提
供できる。この装置を用いることにより、特性の優れた
超電導薄膜を用いたエレクトロニクス素子の形成が可能
となる。
Since the superconducting thin film manufacturing apparatus according to the present invention is equipped with at least two types of evaporation sources, it is possible to match the composition by evaporating the required amount of each constituent element, and it is possible to dissociate with low electron energy. Equipped with a high-performance ion/plasma irradiation mechanism, it is possible to lower the formation process temperature and form a film without damage, and because the oxygen-based gas introduction tube is installed near the substrate,
It is possible to provide a device that can increase the oxygen partial pressure near the substrate and solve the problem of insufficient oxygen uptake in the film. By using this device, it is possible to form electronic devices using superconducting thin films with excellent properties.

本発明にかかる別の超電導薄膜の製造装置は、前記超電
導薄膜の製造装置と同様に、組成合わせが容易で、かつ
、形成温度の低温化ならびにダメージレスな膜形成が行
える機能を備えている上に、照射する酸素系ガスのイオ
ンのエネルギーを制御できる機構を備えており、形成温
度のより低温化が可能な装置を提供できる。この装置を
用いることにより、超電導体と半導体の一体化したエレ
クトロニクス素子の形成が可能となる。
Another superconducting thin film manufacturing apparatus according to the present invention, like the superconducting thin film manufacturing apparatus described above, has the ability to easily adjust the composition, reduce the formation temperature, and form a film without damage. Additionally, it is equipped with a mechanism that can control the energy of the ions of the oxygen-based gas to be irradiated, making it possible to provide an apparatus that can lower the formation temperature. By using this device, it is possible to form an electronics element that integrates a superconductor and a semiconductor.

実施例 本発明の実施例を図面を用いて説明する。Example Embodiments of the present invention will be described using the drawings.

本°発明における超電導薄膜の製造装置の概念図を第1
図に示す。真空槽1には酸素系ガスのプラズマあるいは
イオンを発生させるイオン源2と二種以上の蒸発源3を
有する。さらに真空槽1内に設定された基体4付近に酸
素系ガスを導入できるようにガス導入管5を設定した構
成となっている。
The first conceptual diagram of the superconducting thin film manufacturing apparatus according to the present invention is shown below.
As shown in the figure. The vacuum chamber 1 includes an ion source 2 that generates oxygen-based gas plasma or ions, and two or more evaporation sources 3. Further, a gas introduction pipe 5 is provided so that oxygen-based gas can be introduced into the vicinity of the substrate 4 set in the vacuum chamber 1.

本装置を用いる場合、あらかじめ10−7Torr程度
に矢印6の方向に真空排気する。
When using this apparatus, it is evacuated to about 10<-7 >Torr in the direction of arrow 6 in advance.

イオン源2として電子サイクロトロン共鳴条件を滴たす
ように磁界およびマイクロ波を印加してプラズマを発生
させるプラズマ処理装置を用いた場合について第2図に
示す。マイクロ波電源7で発生させた周波数2.45G
Hzのマイクロ波を導波管8を介してプラズマ生成室9
に導入する。この場合、プラズマ生成室9の周囲に配置
したソレノイド型の電磁石10により中心磁界が875
0aUSSとなるように磁界をかけることにより、プラ
ズマ生成室9内に電子サイクロトロン共鳴を生じさせる
。酸素系ガスはガス導入管5および11によりそれぞれ
基体4近傍およびプラズマ生成室θ内に導入できる構成
となっている。プラズマ生成室9内の酸素系ガスのガス
圧を10−6〜10−’T。
FIG. 2 shows a case where a plasma processing apparatus is used as the ion source 2, which generates plasma by applying a magnetic field and microwaves in a dropwise manner under electron cyclotron resonance conditions. Frequency 2.45G generated by microwave power supply 7
A Hz microwave is passed through a waveguide 8 to a plasma generation chamber 9.
to be introduced. In this case, a solenoid-type electromagnet 10 placed around the plasma generation chamber 9 generates a central magnetic field of 875
By applying a magnetic field to 0aUSS, electron cyclotron resonance is generated in the plasma generation chamber 9. The oxygen-based gas is configured to be introduced into the vicinity of the substrate 4 and into the plasma generation chamber θ through gas introduction pipes 5 and 11, respectively. The gas pressure of the oxygen-based gas in the plasma generation chamber 9 is set to 10-6 to 10-'T.

rrに設定することにより、高活性9高イオン化率の酸
素プラズマが得られる。この酸素プラズマは電磁石10
の発散磁界により真空槽1内に引き出される。
By setting to rr, a highly active 9 high ionization rate oxygen plasma can be obtained. This oxygen plasma is electromagnet 10
is pulled out into the vacuum chamber 1 by the divergent magnetic field.

本装置を用いて、Gd−Ba−Cu−0系超電導薄膜を
形成する例について説明する。 (100)面MgOを
基体4として用い、電子ビーム加熱により蒸発源3のG
d1 Bat  Cuの各金属を蒸着しつつ、電子サイ
クロトロン共鳴を用いたイオン源2からの高活性の酸素
プラズマ流あるいはイオン流を照射することにより、基
体4上にGd−Ba−Cu−0系薄膜を形成できる。こ
の場合、水晶式膜厚モニターを用いることにより、電子
ビーム蒸着制御電源の出力を制御し、形成膜の組成をG
dBa2CusOxとした。 基体4の温度を600℃
とし、酸素系ガスとして酸素を用い、導入管5により基
体4に対して吹き付けるようにして基体4から2cmの
距離より導入した。マイクロ波電力400W1 酸素ガ
ス流量5 SCCMl 酸素ガス圧IX 10−’To
rrの条件で、各金属のトータル蒸着速度を2.OA/
secとした。この条件下で膜厚約2O00A形成した
G d B a a Cu s Ox膜は超電導を示し
、その超電導転移温度はオンセット94に1ゼロ抵抗温
度82にであった。また、形成膜はC軸配向を示し、結
晶性が良好であった。比較のために、イオン源を用いな
い真空蒸着のみで形成した膜について説明する。形成条
件は、基体として(100)面MgOを用い、ガス圧I
 X 10−’T。
An example of forming a Gd-Ba-Cu-0 based superconducting thin film using this apparatus will be described. Using (100) plane MgO as the substrate 4, the G of the evaporation source 3 is heated by electron beam heating.
d1 A Gd-Ba-Cu-0 based thin film is formed on the substrate 4 by irradiating a highly active oxygen plasma flow or ion flow from the ion source 2 using electron cyclotron resonance while vapor depositing each metal of Bat Cu. can be formed. In this case, by using a crystal film thickness monitor, the output of the electron beam evaporation control power supply is controlled and the composition of the formed film is
It was set as dBa2CusOx. Temperature of base 4 is 600℃
Oxygen was used as the oxygen-based gas, and was introduced from a distance of 2 cm from the substrate 4 by spraying it against the substrate 4 through the introduction pipe 5. Microwave power 400W1 Oxygen gas flow rate 5 SCCMl Oxygen gas pressure IX 10-'To
Under the conditions of rr, the total deposition rate of each metal was set to 2. OA/
sec. The G d B a a Cu s Ox film formed to a thickness of about 2000 Å under these conditions exhibited superconductivity, and its superconducting transition temperature was 1 at onset 94 and 82 at zero resistance temperature. Further, the formed film showed C-axis orientation and had good crystallinity. For comparison, a film formed only by vacuum evaporation without using an ion source will be described. The formation conditions were as follows: (100) plane MgO was used as the substrate, and the gas pressure I
X 10-'T.

rrの酸素雰囲気中で基体温度700℃、トータル蒸着
速度2.OA/secで膜厚およそ2O0OAである。
rr oxygen atmosphere, substrate temperature 700°C, total deposition rate 2. The film thickness is approximately 200OA in OA/sec.

先と同様に、形成膜はC軸配向を示しているものの超電
導転移温度オンセラ)93にではあったが、ゼロ抵抗に
はならなかった。これは、膜中の酸素濃度が超電導を示
すものに比べ不足していることがX線回折により同定さ
れるC軸の長さを比較することにより確認された。従っ
て、金属成分を蒸着しつつ、酸素系ガスのイオンあるい
はプラズマを照射して膜形成を行うことにより、lOO
度程鹿の結晶化温度の低温化が実現したとともに、酸素
系ガスの導入を基体付近で行っているため、形成膜中の
酸素の取り込み不足が解消されている。
As before, although the formed film showed C-axis orientation, the superconducting transition temperature was 93), but it did not reach zero resistance. This was confirmed by comparing the lengths of the C-axes identified by X-ray diffraction, which showed that the oxygen concentration in the film was insufficient compared to those exhibiting superconductivity. Therefore, by forming a film by irradiating oxygen-based gas ions or plasma while depositing metal components, lOO
In addition to achieving a lower crystallization temperature, the introduction of oxygen-based gas near the substrate eliminates the lack of oxygen uptake in the formed film.

また、酸素ガスの導入を導入管5に加えて導入管11か
らも行う場合の例について説明する。すなわちプラズマ
生成室θにも酸素ガスが導入される場合である。この場
合も基体4として(100)面MgOを用い、マイクロ
波電力400 Wl  酸素のトータルガス圧I X 
10−’Torrの条件で、各金属のトータル蒸着速度
を2.OA/secとしてGdBa2cusox膜を膜
厚約2O00A形成した。
Further, an example in which oxygen gas is introduced from the introduction pipe 11 in addition to the introduction pipe 5 will be described. That is, this is a case where oxygen gas is also introduced into the plasma generation chamber θ. In this case as well, (100) plane MgO is used as the substrate 4, microwave power is 400 Wl, total gas pressure of oxygen is
Under the condition of 10-'Torr, the total deposition rate of each metal was set to 2. A GdBa2cusox film with a thickness of about 2000A was formed at an OA/sec.

基体温度が600℃で、形成膜はC軸配向膜でしかも超
電導を示し、超電導転移温度はオンセット94に1 ゼ
ロ抵抗温度85にであった。これにより、ゼロ抵抗温度
が少し改善されているといえる。
The substrate temperature was 600° C., the formed film was a C-axis oriented film and exhibited superconductivity, and the superconducting transition temperature was 94 at onset and 85 at zero resistance temperature. As a result, it can be said that the zero resistance temperature is slightly improved.

これは、プラズマ生成室9内にも酸素ガスが導入される
ため、プラズマ生成室内のガス圧が上昇し、基体付近に
のみ酸素ガスを導入する場合よりもプラズマ生成室内で
酸素がより高活性にプラズマおよびイオンに分解されて
基体4に照射されているためど考えられる。
This is because oxygen gas is also introduced into the plasma generation chamber 9, so the gas pressure inside the plasma generation chamber increases, and oxygen becomes more active in the plasma generation chamber than when oxygen gas is introduced only near the substrate. This is thought to be because the light is decomposed into plasma and ions and irradiated onto the substrate 4.

次に、本発明における別の超電導薄膜の製造装置の概念
図を第3図に示す。真空槽1には酸素のプラズマあるい
はイオンを発生させるイオン源2と二種以上の蒸発源3
を宵する。さらに、イオン源2は真空槽1とは同電位に
ならないように絶縁体12により電気的に浮かし、直流
電源13により基体4との間に直流電界がかけられる構
成となっている。
Next, FIG. 3 shows a conceptual diagram of another superconducting thin film manufacturing apparatus according to the present invention. The vacuum chamber 1 includes an ion source 2 that generates oxygen plasma or ions and two or more evaporation sources 3.
evening. Further, the ion source 2 is electrically floated by an insulator 12 so as not to have the same potential as the vacuum chamber 1, and a DC electric field is applied between it and the substrate 4 by a DC power source 13.

イオン源2として電子サイクロトロン共鳴条件を満たす
ように磁界およびマイクロ波を印加してプラズマを発生
させるプラズマ処理装置を用いた場合について第4図に
示す。プラズマおよびイ第ンの生成は前述の通りで、生
成された酸素イオンを直流電界により加速させて基体4
に照射することができる。すなわち直流電源13を用い
ることにより酸素イオンの入射エネルギーを制御するこ
とが可能である。
FIG. 4 shows a case where a plasma processing apparatus is used as the ion source 2, which generates plasma by applying a magnetic field and microwaves so as to satisfy the electron cyclotron resonance conditions. The plasma and the second generation are as described above, and the generated oxygen ions are accelerated by a direct current electric field to form the base 4.
can be irradiated. That is, by using the DC power supply 13, it is possible to control the incident energy of oxygen ions.

第4図の装置を用いてGd−Ba−Cu−○系超電導薄
膜を形成する例について説明する。基体4は前述と同様
に(100)面MgOを用い、Gd1 Ba、Cuの各
金属を電子ビーム加熱により蒸着源3より蒸着しつつ、
電子サイクロトロン共鳴を用いたイオン源2で生成され
、発散磁界により引き出された酸素プラズマおよびイオ
ンを照射する際、引き出された酸素イオンを直流電界に
より加速している。この場合、基体温度550℃、酸素
ガスは導入管11より導入し、流量53CCM。
An example of forming a Gd-Ba-Cu-○ superconducting thin film using the apparatus shown in FIG. 4 will be described. The substrate 4 is made of (100) plane MgO as described above, and each metal of Gd1 Ba and Cu is deposited from the deposition source 3 by electron beam heating.
When irradiating oxygen plasma and ions generated by an ion source 2 using electron cyclotron resonance and extracted by a divergent magnetic field, the extracted oxygen ions are accelerated by a DC electric field. In this case, the substrate temperature was 550° C., oxygen gas was introduced through the introduction pipe 11, and the flow rate was 53 CCM.

ガス圧I X 10−’Torr、  マイクロ波電力
400W。
Gas pressure I x 10-'Torr, microwave power 400W.

直流電源12によりプラズマ生成室9と基体4の間に5
0Vの加速電圧をかけ、約250OA蒸着した。形成膜
はC軸配向膜で超電導を示し、超電導転移温度はオンセ
ラ) 93 K、  ゼロ抵抗温度81にであった。比
較のために他の条件を同様にして加速電圧を印加しない
場合、C軸配向は見られるものの、 (103)、 (
110)面配向も見られ、多結晶配向であった。超電導
転移温度もオンセットは91にであるものの、ゼロ抵抗
温度は45にであった。同様のC軸配向性、超電導特性
を得るには基板温度を62O°C程度にしなければなら
なかった。従って、酸素イオンに50Vの加速電圧を印
加することにより、形成基板温度の低温化が実現できた
5 between the plasma generation chamber 9 and the base 4 by the DC power supply 12
Approximately 250 OA was deposited by applying an accelerating voltage of 0 V. The formed film was a C-axis oriented film and exhibited superconductivity, with a superconducting transition temperature of 93 K and a zero resistance temperature of 81 K. For comparison, when other conditions are the same and no accelerating voltage is applied, although C-axis orientation is observed, (103), (
110) Planar orientation was also observed, indicating polycrystalline orientation. Although the superconducting transition temperature was 91 at onset, the zero resistance temperature was 45. In order to obtain similar C-axis orientation and superconducting properties, the substrate temperature had to be about 620°C. Therefore, by applying an accelerating voltage of 50 V to oxygen ions, it was possible to lower the temperature of the forming substrate.

また、このように加速電圧を印加する際に、酸素ガスの
導入を導入管11に加えて導入管5からも行なう場合の
例について説明する。すなわち、プラズマ生成室9とと
もに、基体4に対して吹き付けるようにして酸素ガスが
導入される場合である。基体4として(100)面Mg
Oを用い、マイクロ波電力400W、  ガス圧I X
 10−’Torr。
Furthermore, an example in which oxygen gas is introduced from the introduction tube 5 in addition to the introduction tube 11 when applying the acceleration voltage in this manner will be described. That is, this is a case in which oxygen gas is introduced into the plasma generation chamber 9 and in a manner such that it is blown onto the base 4 . (100) plane Mg as the base 4
Using O, microwave power 400W, gas pressure I
10-'Torr.

基体温度550 ’Cの条件下で、プラズマ生成室9と
基体4の間に50Vの加速電圧を印加した。形成された
G d B a 2 Cu a Ox膜は約2O00A
の膜厚でC軸配向を示し、その超電導転移温度は、オン
セット94に1 ゼロ抵抗温度84にであった。
An accelerating voltage of 50 V was applied between the plasma generation chamber 9 and the substrate 4 under the condition that the substrate temperature was 550'C. The formed G d B a 2 Cu a Ox film has a thickness of about 2000A
It exhibited C-axis orientation at a film thickness of , and its superconducting transition temperature was 1 at onset 94 and zero resistance temperature 84.

従って、酸素ガスを基体4に吹き付けるように導入する
ことにより、形成膜中の酸素がある程度溝たされ、その
結果、ゼロ抵抗温度に改善がみられた。
Therefore, by blowing oxygen gas onto the substrate 4, the oxygen in the formed film was reduced to some extent, and as a result, the zero resistance temperature was improved.

次に、酸素系ガスとして、03(オゾン)やN2O(亜
酸化窒素)を用いた場合について説明する。
Next, a case where O3 (ozone) or N2O (nitrous oxide) is used as the oxygen-based gas will be described.

o3は02をオゾナイザ−により5%濃度で発生させた
ものを用いた。o3やN2oと酸素のみとの違いは、例
えば、イオン源2として、電子サイクロトロン共鳴を用
いたマイクロ波プラズマ源を用いた場合、そのマイクロ
波電力が、より低電力で形成膜中の酸素濃度を供給でき
るという効果がある。
O3 was generated by generating O2 at a concentration of 5% using an ozonizer. The difference between O3, N2O and oxygen alone is that, for example, when a microwave plasma source using electron cyclotron resonance is used as the ion source 2, the microwave power can lower the oxygen concentration in the formed film with lower power. This has the effect of being able to supply

例えば、5%o3を用いた場合、 GdBa2Cu30
8薄膜は、基体温度550°C1)−タルガス圧I X
 10 ”’Torr、  ガス導入を導入管5および
11で行ない、生成イオンに50Vの加速電圧を加えた
条件では、マイクロ波電力は、最小2O0Wで、超電導
転移温度がオンセラ) 94 K1  ゼロ抵抗温度8
5にの特性の膜が形成できた。また、N2Oを用いた場
合、150Wのマイクロ波電力で前記と同程度の膜特性
が得られるが、マイクロ波電力を300W以上にすると
窒素のプラズマやイオンの影響により超電導特性が悪く
なる。しかし、150〜300Wの範囲では超電導特性
や膜の配向性にはなんら影響のないことを確認した。
For example, when using 5% o3, GdBa2Cu30
8 thin film, substrate temperature 550°C1) - Tal gas pressure I
10''Torr, under the conditions that gas is introduced through introduction tubes 5 and 11 and an accelerating voltage of 50V is applied to the generated ions, the microwave power is a minimum of 200W and the superconducting transition temperature is ONCERA) 94 K1 Zero resistance temperature 8
A film having the characteristics shown in No. 5 was formed. Further, when N2O is used, film properties comparable to those described above can be obtained with a microwave power of 150 W, but when the microwave power is increased to 300 W or more, the superconducting properties deteriorate due to the influence of nitrogen plasma and ions. However, it was confirmed that in the range of 150 to 300 W, there was no effect on the superconducting properties or the orientation of the film.

また、酸素ガス導入の際、プラズマ生成室9と基体4と
の間に印加する直流電圧を100vにした場合、基体温
度490℃でC軸配向を示し、超電導特性もその転移温
度は、オンセット81に1ゼロ抵抗部度79Kが得られ
た。直流電圧が2O0Vの場合、基体温度400°Cで
C軸配向を示し、オンセット温度92にではあるものの
、ゼロ抵抗温度は48にと低い値を示した。しかし、基
体温度400℃でも超電導を示すことが確認された。
Furthermore, when the DC voltage applied between the plasma generation chamber 9 and the substrate 4 is set to 100 V when oxygen gas is introduced, the C-axis orientation is exhibited at the substrate temperature of 490°C, and the transition temperature of the superconducting property is One zero resistance section of 79K was obtained in 81. When the DC voltage was 200 V, C-axis orientation was exhibited at a substrate temperature of 400° C., and although the onset temperature was 92, the zero resistance temperature was as low as 48. However, it was confirmed that superconductivity was exhibited even at a substrate temperature of 400°C.

発明の効果 本発明の超電導薄膜の製造方法は、形成プロセス温度の
低温化とダメージレスな膜形成が行える蒸着、プラズマ
・イオン照射の併用方式を用いており、酸素系ガスを基
体表面付近の酸素分圧を高めるように導入し、膜に十分
な酸素を供給することにより、特性の優れた超電導薄膜
の形成が実現できる。この超電導薄膜を用いることによ
り、安定した特性の素子実現が可能となる。
Effects of the Invention The method for producing a superconducting thin film of the present invention uses a combined method of evaporation and plasma ion irradiation that can lower the formation process temperature and form a film without damage. By introducing oxygen at a high partial pressure and supplying sufficient oxygen to the film, it is possible to form a superconducting thin film with excellent properties. By using this superconducting thin film, it is possible to realize an element with stable characteristics.

本発明の別の超電導薄膜の製造方法は、前記蒸着、プラ
ズマ・イオン照射の併用方式で、酸素系ガスのイオンの
エネルギーを加速することにより、膜形成温度のより低
温化が実現できる。これにより、半導体素子との一体化
が実現できるなど応用範囲が広くなった。
Another method for producing a superconducting thin film according to the present invention is a combined method of vapor deposition and plasma ion irradiation, and by accelerating the energy of oxygen-based gas ions, the film forming temperature can be lowered. This has widened the range of applications, such as integration with semiconductor devices.

本発明の超電導薄膜の製造装置は、組成合わせが容易な
蒸着源を備え、かつ、低電子エネルギーで解離度の高い
イオン・プラズマ照射機構を備えているために形成プロ
セス温度の低温化ならびにダメージレスな膜形成が行え
る上に、酸素系ガスの導入管を基板付近に設置している
ため、基板付近の酸素分圧を高くすることができ、膜に
十分な酸素を供給することにより、特性の優れた超電導
薄膜の形成が実現できる。
The superconducting thin film manufacturing apparatus of the present invention is equipped with an evaporation source that allows for easy composition adjustment and an ion/plasma irradiation mechanism with low electron energy and high degree of dissociation. In addition, since the oxygen-based gas introduction tube is installed near the substrate, the oxygen partial pressure near the substrate can be increased, and by supplying sufficient oxygen to the film, the characteristics can be improved. Formation of excellent superconducting thin films can be achieved.

本発明の別の超電導薄膜の製造装置は、上記と同様に、
蒸着、プラズマ会イオン照射の併用方式の機能を備えて
いる土に、照射する酸素系ガスのイオンのエネルギーを
加速できる機構を備えており、膜形成温度のより低温化
が実現できる。この装置を用いることにより、超電導素
子と半導体素子の一体化が実現できる。
Another superconducting thin film manufacturing apparatus of the present invention is similar to the above,
The soil has the function of combining vapor deposition and plasma ion irradiation, and is equipped with a mechanism that can accelerate the energy of the ions of the irradiated oxygen-based gas, making it possible to lower the film formation temperature. By using this device, it is possible to integrate a superconducting element and a semiconductor element.

特に、酸化物超電導体の転移温度が室温以上になる可能
性もあり、実用の範囲は広く本発明の工業的価値は極め
て高い。
In particular, there is a possibility that the transition temperature of the oxide superconductor is higher than room temperature, so the practical scope of the present invention is wide and the industrial value of the present invention is extremely high.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の超電導薄膜の製造装置の概念図、第2
図は第1図におけるイオン源として電子サイクロトロン
共鳴条件を溝だすように磁界およびマイクロ波を印加し
てプラズマを発生させるプラズマ処理装置を用いた場合
の概念図、第3図は本発明の別の超電導薄膜の製造装置
の概念図、第4図は第3図におけるイオン源として電子
サイクロトロン共鳴条件を満たすように磁界およびマイ
クロ波を印加してプラズマを発生させるプラズマ処理装
置を用いた場合の概念図である。 1働・・真空槽、2・・・イオン源、3・・・蒸発源、
4・・・基体、5ゆ・り酸素系ガス導入管、7・・・マ
イクロ波電源、8・・・導波管、9・・・プラズマ生成
室、10−・番磁石、11・・・酸素系ガス導入管、1
2・φ・絶縁体、工3・・拳直流電圧源。
Figure 1 is a conceptual diagram of the superconducting thin film manufacturing apparatus of the present invention, Figure 2
The figure is a conceptual diagram of a plasma processing apparatus that generates plasma by applying a magnetic field and microwaves so as to set the electron cyclotron resonance conditions as the ion source in Figure 1, and Figure 3 is a conceptual diagram of another embodiment of the present invention. A conceptual diagram of a superconducting thin film manufacturing apparatus. Figure 4 is a conceptual diagram of a plasma processing apparatus that generates plasma by applying a magnetic field and microwaves to satisfy the electron cyclotron resonance conditions as the ion source in Figure 3. It is. 1. Vacuum chamber, 2. Ion source, 3. Evaporation source,
4...Base body, 5-shaped oxygen-based gas introduction tube, 7...Microwave power source, 8...Waveguide, 9...Plasma generation chamber, No. 10 magnet, 11... Oxygen gas introduction pipe, 1
2, φ, insulator, work 3, fist DC voltage source.

Claims (1)

【特許請求の範囲】 (1)真空槽内に少なくとも二種の蒸発源を設置し、前
記真空槽内に設置した基体上に、前記各蒸発源からの蒸
発流と酸素系ガスのプラズマ流あるいはイオン流を照射
することにより薄膜を形成する方法を用いるとともに、
前記酸素系ガスを基体付近より導入して薄膜形成を行う
ことを特徴とする超電導薄膜の製造方法。 (2)酸素系ガスをイオン源装置内に導入して薄膜形成
を行うことを特徴とする特許請求の範囲第1項記載の超
電導薄膜の製造方法。 (3)酸素系ガスのイオン流を直流電界により制御して
薄膜形成を行うことを特徴とする特許請求の範囲第1項
記載の超電導薄膜の製造方法。 (4)真空槽内に少なくとも二種の蒸発源を設置し、前
記真空槽内に設置した基体上に、前記各蒸発源からの蒸
発流と酸素系ガスのプラズマ流あるいはイオン流を照射
することにより薄膜を形成する方法を用いるとともに、
前記酸素系ガスのイオン流を直流電界により制御して薄
膜形成を行うことを特徴とする超電導薄膜の製造方法。 (5)酸素系ガスを基体付近より導入することを特徴と
する特許請求の範囲第4項記載の超電導薄膜の製造方法
。 (8)酸素系ガスとして、O_2、O_3、N_2Oの
少なくとも一種を用いることを特徴とする特許請求の範
囲第1項または第4項記載の超電導薄膜の製造方法。 (7)蒸発源を蒸発させる方法として、電子ビーム加熱
あるいは抵抗加熱による蒸発方法を用いることを特徴と
する特許請求の範囲第1項または第4項記載の超電導薄
膜の製造方法。 (8)イオン源装置として、電子サイクロトロン共鳴条
件を満たすように磁界およびマイクロ波を印加してプラ
ズマを発生させるプラズマ処理装置を用いることを特徴
とする特許請求の範囲第1項または第4項記載の超電導
薄膜の製造方法。 (9)薄膜形成時の基体の温度を400〜700℃の所
定の温度とすることを特徴とする特許請求の範囲第1項
または第4項記載の超電導薄膜の製造方法。 (10)少なくとも二種の蒸発源をもつ真空槽と、酸素
系ガスのプラズマあるいはイオンを発生させるイオン源
を有する真空装置において、前記真空槽に設定された基
体付近に酸素系ガスを導入することのできるガス導入管
を設置した構成を有することを特徴とする超電導薄膜の
製造装置。 (11)酸素系ガスの導入管をイオン源装置内に設定し
たことを特徴とする特許請求の範囲第10項記載の超電
導薄膜の製造装置。 (12)酸素系ガスのイオン流を直流電界により制御で
きる機構を設けたことを特徴とする特許請求の範囲第1
0項記載の超電導薄膜の製造装置。 (13)少なくとも二種の蒸発源をもつ真空槽と、酸素
系ガスのプラズマあるいはイオンを発生させるイオン源
を有する真空装置において、前記酸素系ガスのイオンを
直流電界により制御できる機構を有することを特徴とす
る超電導薄膜の製造装置。 (14)酸素系ガスの導入管を基体付近に設けたことを
特徴とする特許請求の範囲第13項記載の超電導薄膜の
製造装置。 (15)蒸発源の蒸発装置として、電子ビーム加熱ある
いは抵抗加熱による蒸発装置より構成したことを特徴と
する特許請求の範囲第10項または第13項記載の超電
導薄膜の製造装置。 (16)イオン源装置として、電子サイクロトロン共鳴
条件を満たすように磁界およびマイクロ波を印加してプ
ラズマを発生させるプラズマ処理装置より構成したした
ことを特徴とする特許請求の範囲第10項または第13
項記載の超電導薄膜の製造装置。
[Scope of Claims] (1) At least two types of evaporation sources are installed in a vacuum chamber, and an evaporation flow from each evaporation source and a plasma flow of oxygen-based gas or In addition to using a method of forming a thin film by irradiating an ion stream,
A method for producing a superconducting thin film, characterized in that the oxygen-based gas is introduced from near a substrate to form a thin film. (2) A method for producing a superconducting thin film according to claim 1, characterized in that the thin film is formed by introducing an oxygen-based gas into an ion source device. (3) The method for producing a superconducting thin film according to claim 1, wherein the thin film is formed by controlling the ion flow of oxygen-based gas using a DC electric field. (4) At least two types of evaporation sources are installed in a vacuum chamber, and the substrate installed in the vacuum chamber is irradiated with an evaporation flow and an oxygen-based gas plasma flow or ion flow from each of the evaporation sources. In addition to using a method of forming a thin film by
A method for producing a superconducting thin film, comprising forming the thin film by controlling the ion flow of the oxygen-based gas using a DC electric field. (5) The method for producing a superconducting thin film according to claim 4, characterized in that the oxygen-based gas is introduced from near the substrate. (8) The method for producing a superconducting thin film according to claim 1 or 4, characterized in that at least one of O_2, O_3, and N_2O is used as the oxygen-based gas. (7) The method for manufacturing a superconducting thin film according to claim 1 or 4, wherein an evaporation method using electron beam heating or resistance heating is used as a method for evaporating the evaporation source. (8) The ion source device is a plasma processing device that generates plasma by applying a magnetic field and microwaves so as to satisfy electron cyclotron resonance conditions. A method for manufacturing superconducting thin films. (9) A method for producing a superconducting thin film according to claim 1 or 4, characterized in that the temperature of the substrate during thin film formation is set to a predetermined temperature of 400 to 700°C. (10) In a vacuum apparatus having a vacuum chamber having at least two types of evaporation sources and an ion source that generates oxygen-based gas plasma or ions, introducing an oxygen-based gas into the vicinity of a substrate set in the vacuum chamber. What is claimed is: 1. A superconducting thin film manufacturing apparatus characterized by having a configuration in which a gas inlet pipe is installed that allows for. (11) The apparatus for producing a superconducting thin film as set forth in claim 10, characterized in that an oxygen-based gas introduction pipe is set within the ion source device. (12) Claim 1, characterized in that it is provided with a mechanism that can control the ion flow of oxygen-based gas using a DC electric field.
The superconducting thin film manufacturing apparatus according to item 0. (13) A vacuum apparatus having a vacuum chamber having at least two types of evaporation sources and an ion source that generates oxygen-based gas plasma or ions is provided with a mechanism that can control the oxygen-based gas ions using a DC electric field. Features: Superconducting thin film manufacturing equipment. (14) The apparatus for producing a superconducting thin film according to claim 13, characterized in that an oxygen-based gas introduction pipe is provided near the base. (15) The apparatus for manufacturing a superconducting thin film according to claim 10 or 13, wherein the evaporation device for the evaporation source is an evaporation device using electron beam heating or resistance heating. (16) Claim 10 or 13, characterized in that the ion source device is constituted by a plasma processing device that generates plasma by applying a magnetic field and microwaves so as to satisfy electron cyclotron resonance conditions.
An apparatus for producing a superconducting thin film as described in 2.
JP1029106A 1989-02-08 1989-02-08 Production of superconducting thin film and apparatus therefor Pending JPH02208207A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1029106A JPH02208207A (en) 1989-02-08 1989-02-08 Production of superconducting thin film and apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1029106A JPH02208207A (en) 1989-02-08 1989-02-08 Production of superconducting thin film and apparatus therefor

Publications (1)

Publication Number Publication Date
JPH02208207A true JPH02208207A (en) 1990-08-17

Family

ID=12267084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1029106A Pending JPH02208207A (en) 1989-02-08 1989-02-08 Production of superconducting thin film and apparatus therefor

Country Status (1)

Country Link
JP (1) JPH02208207A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02248302A (en) * 1989-03-22 1990-10-04 Agency Of Ind Science & Technol Method and device for producing oxide superconductor
JP2014189874A (en) * 2013-03-28 2014-10-06 Sumitomo Heavy Ind Ltd Film deposition device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02248302A (en) * 1989-03-22 1990-10-04 Agency Of Ind Science & Technol Method and device for producing oxide superconductor
JP2014189874A (en) * 2013-03-28 2014-10-06 Sumitomo Heavy Ind Ltd Film deposition device

Similar Documents

Publication Publication Date Title
KR910007382B1 (en) Superconductor material and method of manufacturing super-conductor film
US3892650A (en) Chemical sputtering purification process
JPH0284782A (en) Manufacture of josephson element
JPH02208207A (en) Production of superconducting thin film and apparatus therefor
TW201027781A (en) Method and apparatus for fabricating IB-IIIA-VIA2 compound semiconductor thin films
JP2854623B2 (en) Method for producing oxide superconductor thin film
Yu‐Jahnes et al. A high‐flux atomic oxygen source for the deposition of high T c superconducting films
RU2476373C1 (en) Method of making superconducting single-photon detectors
JPH03197321A (en) Production of superconductor of thin film
JPH04219301A (en) Production of oxide superconductor thin film
JP2001244511A (en) Method of manufacturing josephson device having ramp edge structure and film-forming device
JPH03197306A (en) Equipment for producing oxide superconducting thin film and method therefor
JP2533233B2 (en) Manufacturing method of oxide superconducting thin film
JP2605148B2 (en) Manufacturing method of oxide thin film
JP2868526B2 (en) Method and apparatus for producing thin layer of oxide high-temperature superconductor
JP2889677B2 (en) Method for producing oxide superconducting thin film
JPS63245829A (en) Manufacture of oxide superconductive thin film
JP2818701B2 (en) Surface treatment method for oxide high-temperature superconductor
JPH02255507A (en) Production of high-temperature superconducting thin film
JPH03285804A (en) Production of oxide superconductor thin film
JPS63211628A (en) Plasma treatment device
JPH04164811A (en) Production of superconducting thin film
JPH0243357A (en) Production of thin superconducting film
JPH04171873A (en) Manufacture of superconducting thin film
JPH0442895A (en) Production of thin film superconductor