JPH01246355A - Formation of multiple oxides superconducting thin film by counter target-type sputtering method and device therefor - Google Patents

Formation of multiple oxides superconducting thin film by counter target-type sputtering method and device therefor

Info

Publication number
JPH01246355A
JPH01246355A JP7351788A JP7351788A JPH01246355A JP H01246355 A JPH01246355 A JP H01246355A JP 7351788 A JP7351788 A JP 7351788A JP 7351788 A JP7351788 A JP 7351788A JP H01246355 A JPH01246355 A JP H01246355A
Authority
JP
Japan
Prior art keywords
substrate
thin film
sputtering
target
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7351788A
Other languages
Japanese (ja)
Other versions
JP2716138B2 (en
Inventor
Masahiko Naoe
直江 正彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Research Development Corp of Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Development Corp of Japan filed Critical Research Development Corp of Japan
Priority to JP63073517A priority Critical patent/JP2716138B2/en
Publication of JPH01246355A publication Critical patent/JPH01246355A/en
Application granted granted Critical
Publication of JP2716138B2 publication Critical patent/JP2716138B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To easily produce the title thin film with a small deviation in composition from a target material and having low reactivity toward a substrate by using a multiple oxides as the target and a semiconductor substrate as the substrate, and introducing oxygen at the time of cooling the substrate on which the film is formed. CONSTITUTION:In a counter target-type sputtering device, for example, a material contg. a 1/2/3 ratio of Y, Ba and Cu is used, thermally oxidized Si is used for the substrate 6, and a superconducting thin film of Y1Ba2Cu3O7-delta is formed. A magnetic field generated by a magnetic field generating means and vertical to the sputtering plane is formed only in the space between targets. When the substrate 6 is cooled after the film is formed, oxygen is introduced from a sputtering gas and oxygen inlet 10. By this method, a superconducting thin film with a small deviation in composition from the target material, hardly reacting with the substrate, and having excellent uniformity can be formed by as-depo.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は対向ターゲット式スパッタ法により複合酸化物
超電導薄膜を基板上にas−dapo、で形成し得る方
法及び装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method and apparatus for forming a composite oxide superconducting thin film on a substrate as-dapo by a facing target sputtering method.

(従来の技術) 最近、超電導薄膜の研究開発にはめざましいものがみら
れ、真空蒸着、スパッタリング、CVD、スクリーン印
刷等々の方法により超電導性の各種物質が探索されてい
る。
(Prior Art) Recently, research and development of superconducting thin films has been remarkable, and various superconducting substances are being searched for by methods such as vacuum evaporation, sputtering, CVD, and screen printing.

特に高温超電導薄膜の材料の研究が著しく、例えば、Y
−Ba−Cu−○系超電導体(YBC○)は、臨界温度
90に以上を示す物質であり、その実用化には弱電、強
電両分野より熱い期待がかけられている。
In particular, research into materials for high-temperature superconducting thin films has been remarkable; for example, Y
A -Ba-Cu-○ system superconductor (YBC○) is a substance exhibiting a critical temperature of 90 or higher, and its practical application is highly anticipated in both the weak and strong electric fields.

また、ごく最近では、Bi系のB1−5r−Ca−O系
超電導体は臨界温度が120Kに達するとの報告もされ
ている。
Also, very recently, it has been reported that a Bi-based B1-5r-Ca-O superconductor has a critical temperature of 120K.

薄膜形成法の代表的な方法の1つであるスパッタリング
においても、超電導体物質の探索と共にスパッタ装置の
実用化に向けて精力的に研究がなされている。
Sputtering, which is one of the representative methods for forming thin films, is also being actively researched to find superconducting materials and to put sputtering equipment into practical use.

例えば、スパッタ装置としては、特開昭57−1583
00号公報に提案されているように、対向ターゲット式
スパッタ装置があり、ターゲットのスパッタされる面を
広く且つ均一にしてターゲットの使用効率を向上させ、
ターゲットの冷却効率を向上して低温且つ高速に薄膜を
形成できると共に、外部コイルを設ける必要がなくコン
パクトで安価な装置が開発された。
For example, as a sputtering device, JP-A-57-1583
As proposed in Japanese Patent Application No. 00, there is a facing target type sputtering device, which improves the usage efficiency of the target by making the sputtered surface of the target wide and uniform.
A compact and inexpensive device has been developed that can improve the cooling efficiency of the target and form thin films at low temperatures and at high speed, and does not require an external coil.

(発明が解決しようとする課題) しかし乍ら、前記対向ターゲット式スパッタ装置によれ
ば、ターゲット材料と薄膜との組成ずれは少なくなるも
のの、セラミック系基板との反応性の問題があり、また
as−depo、で超電導薄膜を得るには、少なくとも
600℃以上の高い基板温度を必要とし、またアニール
が必要である等の問題もある。
(Problem to be Solved by the Invention) However, although the facing target type sputtering apparatus described above reduces the compositional deviation between the target material and the thin film, there is a problem of reactivity with the ceramic substrate, and Obtaining a superconducting thin film by -depo requires a high substrate temperature of at least 600° C., and also requires annealing.

本発明は、前記対向ターゲット式スパッタ法により複合
酸化物超電導薄膜を形成する際の問題点を解決するため
になされたものであって、ターゲット材料との組成ずれ
が少なく、基板との反応性が小さく均一性に優れた複合
酸化物超電導薄膜を簡易なプロセスにより得ることがで
きる方法及び装置を提供することを目的とするものであ
る。
The present invention was made in order to solve the problems encountered when forming a composite oxide superconducting thin film by the facing target sputtering method. The object of the present invention is to provide a method and apparatus that can produce a small and highly uniform composite oxide superconducting thin film through a simple process.

(課題を解決するための手段) 前記目的を達成するため、本発明者らは、先の提案に係
る対向ターゲット式スパッタ装置を使用することを前提
として、基板上に、as−depo、で。
(Means for Solving the Problems) In order to achieve the above object, the present inventors applied an as-depo method to a substrate on the premise of using the facing target type sputtering apparatus according to the previous proposal.

良好なC軸配向を有し、高いTc、 Jc、 Hc、を
示す複合酸化物超電導薄膜をできる限り低い基板温度で
形成し得る方式を見い出すべく鋭意研究を重ねた。
We have conducted extensive research to find a method for forming composite oxide superconducting thin films with good C-axis orientation and high Tc, Jc, and Hc at the lowest possible substrate temperature.

まず、従来は、基板材料として5rTiO,、Mgo、
yszのようなセラミック系に限られていた点に着目し
、Si、Sin、のようなシリカ系の基板を使用するこ
とを試みた。その結果、半導体である熱酸化Siを基板
とすることにより、ターゲット材料との組成ずれが殆ど
なく、表面平滑性に優れた薄膜を基板温度500℃で得
られることが判明した。しかし、得られた薄膜はすべて
絶縁体であった。
First, conventionally, 5rTiO, Mgo,
Focusing on the point that it was limited to ceramic-based substrates such as ysz, we attempted to use silica-based substrates such as Si and Sin. As a result, it was found that by using thermally oxidized Si, which is a semiconductor, as a substrate, a thin film with almost no compositional deviation from the target material and excellent surface smoothness could be obtained at a substrate temperature of 500°C. However, all of the obtained thin films were insulators.

そこで1、これは酸素が膜中に有効に取り込まれていな
いためであると考察し、真空中では基板温度が100℃
においても酸素が膜中から抜は出てしまうことを勘案し
た結果、基板冷却中の機素の解離を防ぐために、基板冷
却時に酸素を導入するプロセスをここに確立したもので
ある。
Therefore, we consider that this is because oxygen is not effectively incorporated into the film, and that the substrate temperature is 100°C in vacuum.
Taking into account that oxygen is also extracted from the film, we established a process to introduce oxygen during cooling of the substrate in order to prevent dissociation of elements during cooling of the substrate.

すなわち、要するに、本発明に係る方法は、対向ターゲ
ット式スパッタ法により複合酸化物超電導薄膜を基板上
に形成するに際し、ターゲットとして複合酸化物を用い
ると共に基板として半導体基板を用い、スパッタによる
膜形成後、基板冷却時に酸素を導入することにより、ス
パッタままで超電導薄膜を得ることを特徴とするもので
あり。
That is, in short, the method according to the present invention uses a complex oxide as a target and a semiconductor substrate as a substrate when forming a composite oxide superconducting thin film on a substrate by facing target sputtering method, and after forming the film by sputtering. The method is characterized in that a superconducting thin film can be obtained by sputtering by introducing oxygen during cooling of the substrate.

更に必要に応じて、得られた薄膜にアニールを施すこと
により超電導性を向上させることを特徴とするものであ
る。
Furthermore, if necessary, the obtained thin film is annealed to improve its superconductivity.

また、スパッタ装置に係る本発明は、陰極となる一対の
ターゲットをそのスパッタされる面が空間を隔てて平行
に対面するように設けると共に、該スパッタされる面に
垂直な方向の磁界を発生する磁界発生手段を設け、前記
ターゲット間の空間の側方に該空間に対面するように配
置した基板上にスパッタにより薄膜を形成する構成にし
た対向ターゲット式スパッタ装置において、前記磁界発
生手段を前記ターゲット間のみに発生するように配置す
ると共に、スパッタによる膜形成後の基板冷却時に酸素
を導入する手段を設け、かつ、ターゲット材料として複
合酸化物を用い、基板として半導体基板を用いることを
特徴とするものである。
Further, the present invention relating to a sputtering apparatus provides a pair of targets serving as cathodes so that their surfaces to be sputtered face each other in parallel with a space in between, and generate a magnetic field in a direction perpendicular to the surfaces to be sputtered. In a facing target sputtering apparatus configured to form a thin film by sputtering on a substrate which is provided with a magnetic field generating means and is disposed on the side of a space between the targets so as to face the space, the magnetic field generating means is provided with a thin film formed by sputtering on a substrate that is arranged to face the space between the targets. The present invention is characterized in that it is arranged so that oxygen is generated only between the layers, is provided with a means for introducing oxygen during cooling of the substrate after film formation by sputtering, and uses a composite oxide as the target material and a semiconductor substrate as the substrate. It is something.

以下に本発明を更に詳細に説明する。The present invention will be explained in more detail below.

(作用) 第1図は本発明の対向ターゲット式スパッタ装置の概略
を示す図である。
(Function) FIG. 1 is a diagram schematically showing a facing target type sputtering apparatus of the present invention.

まず、真空槽1内に一対のターゲットT1、T2をスパ
ッタされる面が空間を隔てて平行になるように配置され
ている。ターゲットホルダー2.3は空洞構造であって
絶縁部材を介して真空槽1に取り付けられていると共に
、冷却水の供給管4a、5a及び排出管4b、5bによ
り冷却可能である。
First, a pair of targets T1 and T2 are arranged in a vacuum chamber 1 so that the surfaces on which the sputtering targets T1 and T2 are sputtered are parallel to each other with a space between them. The target holder 2.3 has a hollow structure, is attached to the vacuum chamber 1 via an insulating member, and can be cooled by cooling water supply pipes 4a, 5a and discharge pipes 4b, 5b.

一方、基板6は両ターゲットの側方に設けた基板ホルダ
ー7によりターゲット間の空間の側方に該空間に対面す
るように配置されている。この基板ホルダーは基板6の
被着部にヒーター8を有し、基板温度を調節可能となっ
ている。
On the other hand, the substrate 6 is arranged on the side of the space between the targets so as to face the space by a substrate holder 7 provided on the sides of both targets. This substrate holder has a heater 8 on the part where the substrate 6 is attached, so that the temperature of the substrate can be adjusted.

磁界発生手段は、永久磁石11.12にすると同時に、
各ターゲットの後方のターゲットホルダー内にその磁極
により形成される磁界がすべてターゲットのスパッタ面
の垂直方向で同じ向きとなるように、かつ、ターゲット
の周辺部に配置しである。したがって、磁界はターゲッ
ト間の空間のみに形成される。
The magnetic field generation means are permanent magnets 11 and 12, and at the same time,
The magnetic fields formed by the magnetic poles in the target holder behind each target are all oriented in the same direction perpendicular to the sputtering surface of the target, and are arranged at the periphery of the target. Therefore, a magnetic field is created only in the space between the targets.

9は排気系に接続されている排気口、1oはスパッタガ
ス導入系に接続されている導入口である。
9 is an exhaust port connected to an exhaust system, and 1o is an inlet port connected to a sputtering gas introduction system.

なお、この導入口10は、酸素導入系にも接続されてお
り、スパッタガス導入系と酸素導入系を切り替え可能と
なっている。
Note that this introduction port 10 is also connected to an oxygen introduction system, and can be switched between the sputtering gas introduction system and the oxygen introduction system.

第2図は本発明の対向ターゲット式スパッタ法の原理を
説明する図である。2枚のターゲットを向かい合わせ、
ターゲットに垂直に磁場を印加する。シールドリングと
ターゲットにスパッタ電源よりスパッタ電力を供給する
ことにより、スパッタが行われる。ターゲットから放出
されたγ電子や負のイオンの大部分は、EXBドリフト
により両ターゲット間の空間に閉じ込められるため、プ
ラズマは両ターゲット間の空間に形成される。したがっ
て、基板がプラズマに曝されることがないため、高エネ
ルギー粒子の基Fi衝突のない状態で成膜が可能である
FIG. 2 is a diagram illustrating the principle of the facing target sputtering method of the present invention. Place two targets facing each other,
Apply a magnetic field perpendicular to the target. Sputtering is performed by supplying sputtering power to the shield ring and target from a sputtering power source. Most of the γ electrons and negative ions emitted from the target are confined in the space between the two targets due to EXB drift, so that plasma is formed in the space between the two targets. Therefore, since the substrate is not exposed to plasma, film formation is possible without collision of high-energy particles with the Fi group.

このことによって、他のスパッタ法と比較して、低い基
板温度で表面平滑性に優れた組成ずれの殆どない薄膜が
得られる。
As a result, compared to other sputtering methods, a thin film with excellent surface smoothness and almost no composition deviation can be obtained at a lower substrate temperature.

しかも、本発明では、ターゲットとして複合酸化物を用
い、基板として半導体基板(例、表面熱酸化Si)を用
いるが、得られた薄膜は、膜中原子と基板原子との相互
拡散の問題はない。
Moreover, in the present invention, although a composite oxide is used as a target and a semiconductor substrate (e.g., surface thermally oxidized Si) is used as a substrate, the obtained thin film does not have the problem of interdiffusion between the atoms in the film and the atoms of the substrate. .

ターゲット材料としては、超電導性を示す種々の複合酸
化物及び組成を用いることが可能である。
As the target material, it is possible to use various composite oxides and compositions that exhibit superconductivity.

例えば、Y−Ba−Cu−0系の場合、Y:Ba:Cu
=1:2:3、Bi −5r−Ca−Cu−0系の場合
、Bi: Sr: Ca: Cu=1 : 2 : 3
 : 4.1:1:1:1.1:1:1:2などの組成
比のものを挙げることができる。
For example, in the case of Y-Ba-Cu-0 system, Y:Ba:Cu
= 1:2:3, in the case of Bi-5r-Ca-Cu-0 system, Bi: Sr: Ca: Cu = 1: 2: 3
: 4.1:1:1:1.1:1:1:2.

第3図は本発明の対向ターゲット式スパッタ法による複
合酸化物超電導薄膜の形成プロセスの一例を示しており
、第1図に示したスパッタ装置において、真空槽を排気
後、所定の基板温度に設定し、スパッタガス(例、A 
r +02 )を導入した後、プレスパツタを所定時間
行い、次いでメインスパッタを行った後、スパッタガス
の導入を停止し、酸素ガスを導入しつつ基板を冷却し、
ベーキング後、試料を取り出す。なお、スパッタ条件は
特に制限されない。
FIG. 3 shows an example of the process of forming a composite oxide superconducting thin film using the facing target sputtering method of the present invention. In the sputtering apparatus shown in FIG. 1, the vacuum chamber is evacuated and then set to a predetermined substrate temperature. and sputter gas (e.g. A
r+02), press sputtering is performed for a predetermined time, then main sputtering is performed, the introduction of sputtering gas is stopped, and the substrate is cooled while introducing oxygen gas,
After baking, remove the sample. Note that sputtering conditions are not particularly limited.

(実施例) 次に本発明の実施例を示す。(Example) Next, examples of the present invention will be shown.

失胤■よ 第1図に示した対向ターゲット式スパッタ装置において
、ターゲットにY:Ba:Cu=1:2:3の組成比を
有するものを使用し、基板に表面熱酸化Siを使用して
、第3図に示すプロセスによりYiBa、Cu30□−
8超電導薄膜を形成した。
In the facing target type sputtering apparatus shown in Fig. 1, a target having a composition ratio of Y:Ba:Cu=1:2:3 is used, and a surface thermally oxidized Si is used for the substrate. , YiBa, Cu30□- by the process shown in FIG.
8 superconducting thin films were formed.

第4図は得られた薄膜におけるC面配向指数f oak
の基板温度(Ts)に対する変化を示したものである。
Figure 4 shows the C-plane orientation index f oak in the obtained thin film.
This figure shows the change in temperature (Ts) of the substrate.

C面配向指数1のとき完全にC面配向であり、0のとき
ランダム配向であるから、同図より、480〜500℃
までの20℃という狭い範囲でランダム配向からC面配
向へと遷移していることがわかる。マグネトロンスパッ
タ法等ではエピタキシャル的な成長が期待できるセラミ
ック基板を使用した時でさえC面配向膜を得るには60
0℃以上の基板温度Tsが必要であり、本例で使用した
基板は非晶質であることを考えると、この基板温度Ts
の減少は、高エネルギー粒子の基板衝突が他の方法より
も非常に少ないことによるものである。
When the C-plane orientation index is 1, it is completely C-plane oriented, and when it is 0, it is random orientation, so from the same figure, 480-500℃
It can be seen that there is a transition from random orientation to C-plane orientation in a narrow range of 20°C. Even when using a ceramic substrate on which epitaxial growth can be expected using magnetron sputtering, it takes 60 mL to obtain a C-plane oriented film.
A substrate temperature Ts of 0°C or higher is required, and considering that the substrate used in this example is amorphous, this substrate temperature Ts
The reduction in is due to the fact that the substrate is bombarded with much less energetic particles than other methods.

第5図は膜組成の基板温度(Ts)依存性を示したもの
であり、他のスパッタ法と比較すると組成ずれは非常に
少ないことがわかる。
FIG. 5 shows the dependence of the film composition on the substrate temperature (Ts), and it can be seen that the composition deviation is very small compared to other sputtering methods.

第6図は酸素導入圧とC軸長の関係を示したものであり
、明らかに酸素導入を行うことによりC軸の縮小が起き
ており、膜中の酸素量とC軸長は負の相関にあり、酸素
導入により膜中に酸素が有効に取り込まれていることを
示している。事実、酸素導入した膜は室温での抵抗率が
極端に減少し、数〜数十…Ω・cmの値を示すようにな
った。なお、酸素導入圧は1〜100 X 10−’T
orrが適当である。
Figure 6 shows the relationship between the oxygen introduction pressure and the C-axis length. It is clear that the C-axis shrinks due to oxygen introduction, and there is a negative correlation between the amount of oxygen in the film and the C-axis length. , indicating that oxygen is effectively incorporated into the film by introducing oxygen. In fact, the resistivity of the oxygen-introduced film at room temperature was extremely reduced, reaching a value of several to several tens of Ω·cm. In addition, the oxygen introduction pressure is 1 to 100 x 10-'T
orr is appropriate.

なお、C軸長の大きさは基板冷却速度にも依存し、第7
図に示すように、基板冷却速度が速いほどC軸は短くな
ることがわかる。
Note that the size of the C-axis length also depends on the substrate cooling rate;
As shown in the figure, it can be seen that the faster the substrate cooling rate is, the shorter the C-axis becomes.

このように、基板冷却時に酸素を導入することにより、
得られた薄膜はC軸が短くなり、膜中の酸素量の減少を
防ぐことができ、超電導を示すようになる。
In this way, by introducing oxygen during substrate cooling,
The resulting thin film has a short C-axis, can prevent a decrease in the amount of oxygen in the film, and exhibits superconductivity.

第8図は得られた薄膜の抵抗率の温度変化を示したもの
で、膜組成はY : Ba: Cu 〜1 : 2.1
9:3.05であり、Tc(オンセット)= 70 K
、Tc(ゼロ)=32K、ΔTc=38Kを示した。
Figure 8 shows the temperature change in resistivity of the obtained thin film, and the film composition was Y:Ba:Cu~1:2.1
9:3.05 and Tc (onset) = 70 K
, Tc (zero) = 32K, and ΔTc = 38K.

第9図は膜の深さ方向のオージェプロファイルであり、
明らかに膜中原子と基板のSiとの相互拡散は起こって
いないことがわかる。
Figure 9 shows the Auger profile in the depth direction of the membrane.
It can be seen that interdiffusion between atoms in the film and Si of the substrate does not occur.

大息■又 実施例1で得られた超電導薄膜について、種々の温度で
アニールを施した。アニールは1気圧の酸素雰囲気で、
500℃から900’Cで1時間保持し、その後400
℃で4時間保持した。
In addition, the superconducting thin film obtained in Example 1 was annealed at various temperatures. Annealing is done in an oxygen atmosphere of 1 atm.
Hold at 500°C to 900'C for 1 hour, then 400°C
It was kept at ℃ for 4 hours.

第10図はC軸長のアニール温度(Ta)依存性を示し
ており、C軸長はアニール温度の上昇と共に大きくなっ
ている。各アニール温度(500℃、600℃、700
℃、800℃、900’C1)での膜の抵抗率の温度変
化は、第11図〜第14図に示すように、Ta=500
℃ではas−depo、の膜よりTcは向上しているが
、アニール温度の上昇と共に超電導性が劣化し、Ta=
900℃では常温での抵抗がIOMΩ以上であり、絶縁
体となった。
FIG. 10 shows the dependence of the C-axis length on the annealing temperature (Ta), and the C-axis length increases as the annealing temperature increases. Each annealing temperature (500℃, 600℃, 700℃
℃, 800℃, 900'C1), as shown in FIGS. 11 to 14, Ta=500
℃, the Tc is improved compared to the as-depo film, but as the annealing temperature increases, the superconductivity deteriorates, and Ta=
At 900°C, the resistance at room temperature was more than IOMΩ, making it an insulator.

このように、Ta=500℃でTcが向上したのはアニ
ールにより膜が酸素を取り込んだためと考えられ、適当
なアニール処理を施すことにより膜の超電導性を向上さ
せることができる。しかし、過剰なアニール温度の上昇
は膜と基板との反応を促進し、超電導性を劣化させる。
Thus, the reason why Tc was improved when Ta=500° C. is thought to be because the film took in oxygen through annealing, and the superconductivity of the film can be improved by performing an appropriate annealing treatment. However, an excessive increase in annealing temperature promotes the reaction between the film and the substrate, degrading superconductivity.

なお、上記実施例ではYBCO超電導薄膜の例を示した
が、超電導性を示す他の複合酸化物の薄膜形成も同様に
可能である。
In the above embodiment, an example of a YBCO superconducting thin film was shown, but it is also possible to form a thin film of other composite oxides exhibiting superconducting properties.

(発明の効果) 以上詳述したように、本発明によれば、ターゲット材料
との組成ずれが少なく、基板との反応性が殆どなく均一
性に優れ、表面平滑性に優れた複合酸化物超電導薄膜を
as−depo、ままで得ることができる。しかもスパ
ッタ後に適当なアニールを施すと超電導性を更に向上さ
せることも可能である。特に高温超電導薄膜の形成に有
効である。
(Effects of the Invention) As detailed above, according to the present invention, a composite oxide superconductor with little compositional deviation from the target material, almost no reactivity with the substrate, excellent uniformity, and excellent surface smoothness. Thin films can be obtained as-depo. Furthermore, superconductivity can be further improved by performing appropriate annealing after sputtering. It is particularly effective for forming high-temperature superconducting thin films.

また、そのためのスパッタ装置は複雑な電源装置等が不
要となり、装置全体の信頼性が向上し安価である。
Further, the sputtering apparatus for this purpose does not require a complicated power supply device, etc., and the reliability of the entire apparatus is improved and the cost is low.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の対向ターゲット式スパッタ装置の一例
を示す説明図。 第2図は本発明による対向ターゲット式スパッタ法の原
理を示す説明図、 第3図は本発明による複合酸化物超電導薄膜の形成プロ
セスを示す図、 第4図はC面配向指数の基板温度依存性を示す図、 第5図は膜組成の基板温度依存性を示す図、第6図はC
軸長の酸素導入圧依存性を示す図、第7図はC軸長の基
板冷却速度依存性を示す図、第8図はas−dapo、
での膜の抵抗率の温度変化を示す図、 第9図は膜の深さ方向のオージェプロファイルを示す図
、 第10図はC軸長のアニール温度依存性を示す図、 第11図〜第14図はそれぞれ異なるアニール温度での
膜の抵抗率の温度変化を示す図である。 1・・・真空槽、2.3・・・ターゲットホルダー、4
a、5a・・・冷却水供給管、4b、5b・・・冷却水
排出管、6・・・基板、7・・・基板ホルダー、8・・
・ヒーター。 9・・・排気口、10・・・スパッタガス、酸素導入口
、11.12・・・永久磁石、13.14・・・シール
ドリング、T、、T、・・・ターゲット。 特許出願人   新技術開発事業団 代理人弁理士  中  村   尚 第1図 第2図 第3図 #rM (’4k< 2 X 10  丁o r r)
↓ ↓ プレ又パブ7 (1h) ↓ メインスノ(a 、り ↓ がス導入#上 ↓ ↓ へ゛−ヤン72 ↓ 課°台取“1工し 第6図 第7図 基板冷却む、(仏I^) Bへ/Y、 Cu/Y c11!l配向11数 第8図 シ:L屓 (に) 第9図 傾理ご(鵡− 第10図 アニールシ1鷹  (°C) 第11図 シ1!ち、  度  (にン 第12図 98度(K) 第13図 シ晃 s、 (に) 第14図 温 /i  (K)
FIG. 1 is an explanatory diagram showing an example of a facing target type sputtering apparatus of the present invention. Fig. 2 is an explanatory diagram showing the principle of the facing target sputtering method according to the present invention. Fig. 3 is a diagram showing the formation process of a composite oxide superconducting thin film according to the present invention. Fig. 4 is a diagram showing the dependence of C-plane orientation index on substrate temperature. Figure 5 is a diagram showing the dependence of film composition on substrate temperature, and Figure 6 is a diagram showing the dependence of film composition on substrate temperature.
A diagram showing the dependence of the axial length on oxygen introduction pressure, FIG. 7 is a diagram showing the dependence of the C-axis length on the substrate cooling rate, and FIG. 8 is a diagram showing the dependence of the C-axis length on the substrate cooling rate.
Figure 9 is a diagram showing the Auger profile in the depth direction of the film, Figure 10 is a diagram showing the dependence of the C-axis length on the annealing temperature, and Figures 11- FIG. 14 is a diagram showing temperature changes in film resistivity at different annealing temperatures. 1... Vacuum chamber, 2.3... Target holder, 4
a, 5a... Cooling water supply pipe, 4b, 5b... Cooling water discharge pipe, 6... Board, 7... Board holder, 8...
·heater. 9...Exhaust port, 10...Sputter gas, oxygen inlet, 11.12...Permanent magnet, 13.14...Shield ring, T,,T,...Target. Patent applicant Takashi Nakamura, Patent attorney representing the New Technology Development Corporation Figure 1 Figure 2 Figure 3
↓ ↓ Premata Pub 7 (1h) ↓ Main snowboard (a, ri↓ Gasu introduction #1↓ ↓ He-yang 72 ↓ Section ``1 work, Figure 6 Figure 7 Board cooling, (French I^ ) to B/Y, Cu/Y c11!l orientation 11 number Fig. 8 si: L 屓 (to) Fig. 9 inclination (parrot - Fig. 10 annealing si 1 hawk (°C) Fig. 11 si 1! Figure 12: 98 degrees (K) Figure 13: Temperature /i (K)

Claims (4)

【特許請求の範囲】[Claims] (1)対向ターゲット式スパッタ法により複合酸化物超
電導薄膜を基板上に形成するに際し、ターゲットとして
複合酸化物を用いると共に基板として半導体基板を用い
、スパッタによる膜形成後、基板冷却時に酸素を導入す
ることにより、スパッタままで超電導薄膜を得ることを
特徴とする対向ターゲット式スパッタ法による複合酸化
物超電導薄膜の形成方法。
(1) When forming a composite oxide superconducting thin film on a substrate using the facing target sputtering method, a composite oxide is used as the target and a semiconductor substrate is used as the substrate, and after the film is formed by sputtering, oxygen is introduced during cooling of the substrate. A method for forming a composite oxide superconducting thin film by a facing target sputtering method, which is characterized by obtaining a superconducting thin film as sputtered.
(2)複合酸化物がY−Ba−Cu−O系複合酸化物で
あり、基板が熱酸化Si基板である請求項1記載の方法
(2) The method according to claim 1, wherein the composite oxide is a Y-Ba-Cu-O-based composite oxide, and the substrate is a thermally oxidized Si substrate.
(3)得られた薄膜にアニールを施す請求項1記載の方
法。
(3) The method according to claim 1, wherein the obtained thin film is annealed.
(4)陰極となる一対のターゲットをそのスパッタされ
る面が空間を隔てて平行に対面するように設けると共に
、該スパッタされる面に垂直な方向の磁界を発生する磁
界発生手段を設け、前記ターゲット間の空間の側方に該
空間に対面するように配置した基板上にスパッタにより
薄膜を形成する構成にした対向ターゲット式スパッタ装
置において、前記磁界発生手段を前記ターゲット間のみ
に発生するように配置すると共に、スパッタによる膜形
成後の基板冷却時に酸素を導入する手段を設け、かつ、
ターゲット材料として複合酸化物を用い、基板として半
導体基板を用いることを特徴とする複合酸化物超電導薄
膜を形成するための対向ターゲット式スパッタ装置。
(4) A pair of targets serving as cathodes are provided so that their surfaces to be sputtered face each other in parallel with a space between them, and a magnetic field generating means for generating a magnetic field in a direction perpendicular to the surfaces to be sputtered is provided, and In a facing target type sputtering apparatus configured to form a thin film by sputtering on a substrate disposed on the side of a space between the targets so as to face the space, the magnetic field generating means is configured to generate the magnetic field only between the targets. At the same time, a means for introducing oxygen during cooling of the substrate after film formation by sputtering is provided, and
A facing target sputtering apparatus for forming a composite oxide superconducting thin film, characterized in that a composite oxide is used as a target material and a semiconductor substrate is used as a substrate.
JP63073517A 1988-03-28 1988-03-28 Method and apparatus for forming composite oxide superconducting thin film by facing target type sputtering method Expired - Fee Related JP2716138B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63073517A JP2716138B2 (en) 1988-03-28 1988-03-28 Method and apparatus for forming composite oxide superconducting thin film by facing target type sputtering method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63073517A JP2716138B2 (en) 1988-03-28 1988-03-28 Method and apparatus for forming composite oxide superconducting thin film by facing target type sputtering method

Publications (2)

Publication Number Publication Date
JPH01246355A true JPH01246355A (en) 1989-10-02
JP2716138B2 JP2716138B2 (en) 1998-02-18

Family

ID=13520515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63073517A Expired - Fee Related JP2716138B2 (en) 1988-03-28 1988-03-28 Method and apparatus for forming composite oxide superconducting thin film by facing target type sputtering method

Country Status (1)

Country Link
JP (1) JP2716138B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04202661A (en) * 1990-11-30 1992-07-23 Toshio Sugita Apparatus for forming superconductor thin film

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5659592B2 (en) 2009-11-13 2015-01-28 ソニー株式会社 Method for manufacturing printed circuit board

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6483659A (en) * 1987-09-24 1989-03-29 Semiconductor Energy Lab Sputtering device for producing oxide superconductive material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6483659A (en) * 1987-09-24 1989-03-29 Semiconductor Energy Lab Sputtering device for producing oxide superconductive material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04202661A (en) * 1990-11-30 1992-07-23 Toshio Sugita Apparatus for forming superconductor thin film

Also Published As

Publication number Publication date
JP2716138B2 (en) 1998-02-18

Similar Documents

Publication Publication Date Title
JP2664066B2 (en) Superconducting thin film and method for producing the same
JP2567460B2 (en) Superconducting thin film and its manufacturing method
CA1330548C (en) Method and apparatus for producing thin film of compound having large area
US4925829A (en) Method for preparing thin film of compound oxide superconductor by ion beam techniques
US5057201A (en) Process for depositing a superconducting thin film
US5126318A (en) Sputtering method for forming superconductive films using water vapor addition
JPH01246355A (en) Formation of multiple oxides superconducting thin film by counter target-type sputtering method and device therefor
KR920007799B1 (en) Method for manufacturing super conducting oxide ceramics materials and deposition apparatus for its
JPH0286014A (en) Composite oxide superconducting thin film and film forming method
Hirata et al. Preparation of high‐T c oxide superconductors at low substrate temperature by facing‐targets sputtering
JPH02167820A (en) Method for forming tl-base multiple oxide superconducting thin film
JP2529347B2 (en) Preparation method of superconducting thin film
JP2975649B2 (en) Sputtering equipment
JPH0764678B2 (en) Method for producing superconducting thin film
JP2502344B2 (en) Method for producing complex oxide superconductor thin film
JP2567446B2 (en) Preparation method of superconducting thin film
JPH02141568A (en) Production of thin superconducting film of multiple oxide
JP2639510B2 (en) Preparation method of superconducting thin film
JP2525852B2 (en) Preparation method of superconducting thin film
JP2668532B2 (en) Preparation method of superconducting thin film
JP2501616B2 (en) Preparation method of superconducting thin film
JP2611332B2 (en) Manufacturing method of thin film superconductor
JP2501614B2 (en) Preparation method of superconducting thin film
JP2501615B2 (en) Preparation method of superconducting thin film
JP2683689B2 (en) Method for producing oxide superconducting thin film

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees