JPS63225599A - Preparation of oxide superconductive thin film - Google Patents

Preparation of oxide superconductive thin film

Info

Publication number
JPS63225599A
JPS63225599A JP62060449A JP6044987A JPS63225599A JP S63225599 A JPS63225599 A JP S63225599A JP 62060449 A JP62060449 A JP 62060449A JP 6044987 A JP6044987 A JP 6044987A JP S63225599 A JPS63225599 A JP S63225599A
Authority
JP
Japan
Prior art keywords
oxide
thin film
substrate
superconductive
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62060449A
Other languages
Japanese (ja)
Inventor
Hidefumi Asano
秀文 浅野
Keiichi Tanabe
圭一 田辺
Yujiro Kato
加藤 雄二郎
Osamu Michigami
修 道上
Shugo Kubo
衆伍 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP62060449A priority Critical patent/JPS63225599A/en
Publication of JPS63225599A publication Critical patent/JPS63225599A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0268Manufacture or treatment of devices comprising copper oxide
    • H10N60/0296Processes for depositing or forming superconductor layers
    • H10N60/0576Processes for depositing or forming superconductor layers characterised by the substrate
    • H10N60/0604Monocrystalline substrates, e.g. epitaxial growth

Abstract

PURPOSE:To prepare the title thin film having high quality of high critical temp. of superconductivity, by carrying out epitaxial growth of oxide super conductive thin film on an insulative oxide substrate having a crystal lattice matching the lattice of an oxide superconductive body of a K2NiF4 type structure which can also donate oxygen. CONSTITUTION:Thin film of an oxide superconductive body is grown epitaxially by the vacuum deposition or sputtering process on a substrate comprising an insulative oxide having a crystal lattice matching a crystal lattice of an oxide superconductive body of K2NiF4 type structure donating also oxygen. The K2NiF4 type oxide superconductive body is one selected from materials expressed by (M11-xM2x)2CuO4 [wherein 0<x<1; M1 is a metal of the group IIIa (Sc, Y, La, Ce, Pr, Nd, Pm, Yb, Lu); M2 is a metal of the group IIa (Be, Mg, Ca, Sr, Ba)]. The insulative oxide is a material expressed by (Zr2)1-m(Y2O3)m (wherein 0<m<1). By this constitution, a superconductive oxide thin film having high uniformity at high critical temp. of superconductivity is obtd. The thin film is useful for the prepn. of a superconductive device.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、各種の超伝導デバイスの20 K以上での高
温動作を可能にする、高い超伝導臨界温度(Tc)を有
する酸化物超伝導薄膜の作製方法に関するものである。
Detailed Description of the Invention (Industrial Application Field) The present invention is directed to an oxide superconductor having a high superconducting critical temperature (Tc) that enables various superconducting devices to operate at high temperatures of 20 K or higher. This invention relates to a method for producing a thin film.

(従来の技術) 超伝導現象を利用する電子デバイスは、高速スイッチン
グ素子、高感度検波素子、高感度磁束計として広範囲の
応用が可能である。これらの超、伝導デバイスは超伝導
薄膜を用いて構成されるが、超伝導薄膜のTcが20 
K程度以下と低いため、デバイスの動作温度が制限され
、通常、液体Heを冷媒として4.2にで使用されてい
た。そこで、■液体Heは非常に高価なため、コストが
高くなる、■システム全体が複雑で、小型化できない、
という問題があった。
(Prior Art) Electronic devices that utilize superconductivity can be widely applied as high-speed switching elements, high-sensitivity detection elements, and high-sensitivity magnetometers. These superconducting devices are constructed using superconducting thin films, but when the Tc of the superconducting thin film is 20
Because it is low, about K or less, the operating temperature of the device is limited, and liquid He is usually used as a coolant in 4.2. Therefore, ■Liquid He is very expensive, so the cost will be high.■The whole system is complicated and cannot be miniaturized.
There was a problem.

最近、(Lad−Jaw )tcuoaと(La I 
−、Sr 11’ ) tcuOeという酸化物が30
−50 Kという高いTcを示すことが見いだされた。
Recently, (Lad-Jaw) tcuoa and (La I
-, Sr 11') The oxide called tcuOe is 30
It was found to exhibit a high Tc of −50 K.

(Z、 Phys、 B64(1986)189、 P
hys、 Rev、 Lett、 58(1986)4
08)これらの物質の作製には、構成元素であるLad
 Ba+ Sr、 Cuを含む水酸化物あるいは、炭酸
化物、酸化物の粉末を混合し、酸素雰囲気中あるいは大
気中で1000℃程度の高温で焼結するという方法が用
いられており、作製された物質はバルク状のものにすぎ
ない、この物質を超伝導デバイスに用いるためには、絶
縁基板上に薄膜状に形成することが必要である。
(Z, Phys, B64 (1986) 189, P
hys, Rev. Lett, 58 (1986) 4
08) In the production of these materials, the constituent element Lad
A method is used in which powders of hydroxides, carbonates, and oxides containing Ba+ Sr and Cu are mixed and sintered at a high temperature of about 1000°C in an oxygen atmosphere or air. In order to use this material in a superconducting device, it is necessary to form a thin film on an insulating substrate.

従来、この種の酸化物薄膜の作製法として、真空蒸着法
、あるいはスパッタ法により高温に加熱した熱酸化シリ
コン基板、あるいはサファイア基板上に薄膜を堆積する
という方法が知られていた。しかしながら、この方法で
、(La 、 −xBax )zcuOnと(Lad−
1ISrg )1CuO*という酸化物薄膜を作製する
場合、次のような問題点が存在した。第一は、これらの
酸化物と用いる基板の結晶学的整合性が取れないために
、酸化物薄膜のエピタキシャル成長が生じず、成長する
薄膜の結晶性が劣ることである。例えば、(Lad−X
Ba。
Conventionally, as a method for producing this type of oxide thin film, a method has been known in which a thin film is deposited on a thermally oxidized silicon substrate or a sapphire substrate heated to a high temperature by vacuum evaporation or sputtering. However, with this method, (La, -xBax)zcuOn and (Lad-
When producing an oxide thin film of 1ISrg)1CuO*, the following problems existed. First, because these oxides and the substrate used are not crystallographically consistent, epitaxial growth of the oxide thin film does not occur, and the crystallinity of the grown thin film is poor. For example, (Lad-X
Ba.

)ICu04、(Lad−xsrx )tcuoaは、
結晶系は立方晶で、格子定数aoは5.3OAであるの
に対し、熱酸化シリコン基板は、その表面層(Sin、
 )は、非晶質であるから、格子整合性はない。また、
サファイア基板では、その結晶系が六方晶で、いずれの
方位(A面、0面、R面)でも格子定数が上記酸化物と
一敗しないため、格子整合を取ることができない。この
ため、これらの基板上に成長する酸化物薄膜は、結晶性
が非常に劣ったものとなり、必然的にTcは低いものと
なる。
)ICu04, (Lad-xsrx)tcuoa,
The crystal system is cubic and the lattice constant ao is 5.3OA, whereas the thermally oxidized silicon substrate has a surface layer (Sin,
) is amorphous and therefore has no lattice matching. Also,
In the sapphire substrate, the crystal system is hexagonal, and the lattice constant is the same as that of the oxide in any orientation (A-plane, 0-plane, R-plane), so lattice matching cannot be achieved. Therefore, the oxide thin films grown on these substrates have very poor crystallinity and inevitably have a low Tc.

第二は、酸化物薄膜の堆積過程で、酸化物薄膜中の酸素
量が減少することである。これは、薄膜堆積中の雰囲気
が、真空蒸着法では、10−’T。
Second, during the deposition process of the oxide thin film, the amount of oxygen in the oxide thin film decreases. This means that the atmosphere during thin film deposition is 10-'T in the vacuum evaporation method.

rr以下、 スパッタ法では、10−’Torr以下と
低いために、酸素が薄膜中から蒸発、あるいは脱離する
ことによる。酸化物中の酸素量の変化は、その電気的性
質に大きな影響を及ぼし、超伝導性の劣化をもたらす、
一方、この様な酸素量の減少を抑えるため、薄膜堆積雰
囲気に酸素ガスを導入する等の処置を取ることが知られ
ているが、導入ガスの圧力の制御、適正化が困難であり
、また、過剰な酸素ガスの導入は薄膜の結晶性に悪影響
を及ぼすため、好ましくない。
In the sputtering method, since the pressure is as low as 10-'Torr or less, oxygen evaporates or desorbs from the thin film. Changes in the amount of oxygen in the oxide have a large effect on its electrical properties, leading to deterioration of superconductivity.
On the other hand, in order to suppress such a decrease in the amount of oxygen, it is known to take measures such as introducing oxygen gas into the thin film deposition atmosphere, but it is difficult to control and optimize the pressure of the introduced gas, and The introduction of an excessive amount of oxygen gas is undesirable because it adversely affects the crystallinity of the thin film.

以上説明したような問題点が存在するため、従来の方法
ではTcの高い高品質の酸化物超伝導薄膜を得ることは
、困難であった。
Due to the problems described above, it has been difficult to obtain a high-quality oxide superconducting thin film with a high Tc using conventional methods.

(発明が解決しようとする問題点) 本発明は、従来の作製方法では酸化物薄膜の超伝導性が
劣化するという欠点を解決し、超伝導デバイスに適用可
能なTcの高い高品質の超伝導酸化物薄膜を提供しよう
とするものである。
(Problems to be Solved by the Invention) The present invention solves the drawback that the superconductivity of oxide thin films deteriorates with conventional production methods, and produces high-quality superconductors with high Tc that can be applied to superconducting devices. The aim is to provide an oxide thin film.

(問題点を解決するための手段及び作用)本発明は・酸
化物超伝導薄膜と格子整合性を有し、かつ酸素を供給す
る絶縁体酸化物を基板として用いて、その基板上に酸化
物超伝導薄膜をエピタキシャル成長させることを最も主
要な特徴とする。
(Means and effects for solving the problems) The present invention uses an insulating oxide that has lattice matching with the oxide superconducting thin film and supplies oxygen as a substrate, and forms an oxide layer on the substrate. The main feature is epitaxial growth of superconducting thin films.

高品質な酸化物超伝導薄膜(La1−xBax )zC
uOイ(Lal−Jrg )zcuOnを得るためには
、基板との結晶学的整合性を保ちエピタキシーを生じさ
せることにより、薄膜の結晶性を高めれば良い。このた
め、基板(a6(S))としては、酸化物超伝導薄膜(
ao(F) ”3.70−3.8OA)との格子整合条
件(ao(S)rao(F) 、またはao (S) 
g、 ff X a6(F)・5.23−5.37 A
、ここで格子定数の差は約10%まで許容される。)を
満たすものを選ぶ。また、基板には、エピタキシーが生
じるに十分高い温度(>500℃)で使用するため、高
融点物質であることが必要である。これらの観点からは
、基板としては、Zr0z (ao=5.07^)、 
Y2O3(ao−5,3OA)などの絶縁体酸化物が好
ましい、また、酸化物超伝導薄膜の堆積過程で欠ける酸
素量を基板側から補って、組成ずれによる酸化物超伝導
薄膜の電気的性質劣化を抑制するために、酸素を放出す
る性質を持つ絶縁体酸化物を基板として用いる。この点
からは、イツトリア安定化ジルコニアすなわち(ZrO
□)+−(lhO8)、が適当である。このようにして
選んだ絶縁体酸化物基板上に、真空蒸着法あるいはスパ
ッタ法により(La+−xBax )tcu04あるい
は(La 、 −X5rX )zcu04の薄膜を堆積
すれば良い。ここで、薄膜堆積法として、真空蒸着法を
用いる場合には、10− ’Torr以下の真空中で、
目的とする組成に混合した酸化物の粉末を蒸着原料とし
て、抵抗加熱あるいは電子ビーム加熱により蒸発させる
、あるいは構成元素を含むの酸化物(例えばCuO1L
a203、Ba1t)をそれぞれ蒸着原料として、目的
とする割合に応じた堆積速度で抵抗加熱あるいは電子ビ
ーム加熱により蒸発させるという方法を取る。また、ス
パッタ法を用いる場合には、10−’〜10−’ To
rrのArあるいはAr+Otなどの不活性ガス雰囲気
中で、目的とする組成に混合した酸化物をスパッタター
ゲットとして高周波印加によりスパッタする、あるいは
構成元素を含むの酸化物(例えばCuO1La、02、
Ba1t)をそれぞれスパッタターゲットとして高周波
印加により目的とする割合に応じた堆積速度でスパッタ
するという方法を取る。
High quality oxide superconducting thin film (La1-xBax)zC
In order to obtain uOi(Lal-Jrg)zcuOn, it is sufficient to improve the crystallinity of the thin film by maintaining crystallographic consistency with the substrate and causing epitaxy. Therefore, the substrate (a6(S)) is an oxide superconducting thin film (
lattice matching condition (ao(S)rao(F), or ao(S)
g, ff X a6(F)・5.23-5.37 A
, where a difference in lattice constants of up to about 10% is allowed. ). The substrate also needs to be a high melting point material since it is used at temperatures high enough (>500° C.) for epitaxy to occur. From these points of view, as a substrate, Zr0z (ao=5.07^),
Insulating oxides such as Y2O3 (ao-5,3OA) are preferable, and the amount of oxygen lacking during the deposition process of the oxide superconducting thin film can be supplemented from the substrate side to improve the electrical properties of the oxide superconducting thin film due to compositional deviation. In order to suppress deterioration, an insulating oxide that releases oxygen is used as a substrate. From this point, it is clear that ittria-stabilized zirconia, i.e. (ZrO
□)+-(lhO8) is suitable. A thin film of (La+-xBax)tcu04 or (La,-X5rX)zcu04 may be deposited on the insulating oxide substrate thus selected by vacuum evaporation or sputtering. Here, when using a vacuum evaporation method as a thin film deposition method, in a vacuum of 10-' Torr or less,
Oxide powder mixed to the desired composition is used as a vapor deposition raw material and evaporated by resistance heating or electron beam heating, or oxides containing constituent elements (for example, CuO1L) are evaporated by resistance heating or electron beam heating.
A203, Ba1t) are used as evaporation raw materials and evaporated by resistance heating or electron beam heating at a deposition rate depending on the desired ratio. Moreover, when using the sputtering method, 10-' to 10-' To
In an inert gas atmosphere such as Ar or Ar+Ot, sputtering is performed by applying high frequency using an oxide mixed with the desired composition as a sputtering target, or sputtering is performed using an oxide containing constituent elements (for example, CuO1La, 02,
A method is adopted in which sputtering is performed at a deposition rate corresponding to a desired ratio by applying high frequency to each sputtering target.

このようにすれば、酸化物超伝導薄膜を、組成ずれのな
い状態で、エピタキシャル的に成長させることができる
のであるから、Tcの高い高品質な酸化物超伝導薄膜を
作製できる。
In this way, the oxide superconducting thin film can be epitaxially grown without any compositional deviation, so that a high quality oxide superconducting thin film with a high Tc can be produced.

(実施例)− 〔実施例1〕 (ZrOt)o、1s(YzOs)o、+sの(100
)面単結晶およびサファイアのR面単結晶を用意し、こ
れらの基板上に、(Lao、 qBao、 +) tc
uoaターゲットを用いた^rガス中でのRFマグネト
ロンスパッタにより、酸化物薄膜を2000^厚堆積し
た。その堆積条件は、Arガス圧が4 Pas電力が4
00W、基板温度が1000℃であっ゛た。作製した薄
膜の超伝導転移温度Tcを4端子電気抵抗法で測定した
(Example) - [Example 1] (ZrOt) o, 1s (YzOs) o, +s (100
) plane single crystal and R plane single crystal of sapphire were prepared, and (Lao, qBao, +) tc were prepared on these substrates.
An oxide thin film was deposited to a thickness of 2000^ by RF magnetron sputtering in^r gas using a uoa target. The deposition conditions are: Ar gas pressure is 4 Pa, power is 4
00W, and the substrate temperature was 1000°C. The superconducting transition temperature Tc of the produced thin film was measured by a four-probe electrical resistance method.

表1に本発明により形成した(ZrOz)o、 1s(
YtOl)。、、5基板上の薄膜と従来法により形成し
たサファイア基板上の薄膜のT’cを示す。ここでTc
。、Tc力、Tc、はそれぞれ超伝導転移の開始点、中
間点、終了点であり、ΔTcは転移幅(=Tc。
Table 1 shows (ZrOz)o, 1s(
YtOl). , , T'c of a thin film on a 5-substrate and a thin film on a sapphire substrate formed by a conventional method. Here Tc
. , Tc force, and Tc are the starting point, middle point, and ending point of superconducting transition, respectively, and ΔTc is the transition width (=Tc.

−Tc、)である。従来法で作製した膜では、Tc0は
25.9 Kと比較的高いがTc、は14.9 Kと低
く、ΔTcは5にと広く、膜の均一性が悪いのに対し、
本発明により作製した膜では、ΔTcが0.1 Kと非
常に狭(、膜の均一性が優れていることが分かる。
-Tc, ). In the film prepared by the conventional method, Tc0 is relatively high at 25.9 K, Tc is low at 14.9 K, ΔTc is wide at 5, and the film has poor uniformity.
The film produced according to the present invention has a very narrow ΔTc of 0.1 K (it can be seen that the film has excellent uniformity).

表1 作製した(Lao、 gBao、 +)zcuo
4Fl膜のTc〔実施例2〕 (Zr(h) o、 s (Yz(h) o、 sの(
100)面単結晶および熱酸化シリコンを基板として、
(Lao、 qsSro、。、)ZCL104を蒸着原
料として真空蒸着法により、基板温度500℃で100
OA厚の酸化物薄膜を堆積した。作製した薄膜表面の結
晶性観察を、反射高速電子線回折(RHEED)により
行った。従来法によりサファイア多結晶基板上に形成し
た薄膜では、リング状の回折パターンが得られ、多結晶
であることが分かった。一方、本発明により(ZrO□
)。、5(YzOs)。、、基板上に形成した薄膜では
、(001)方位を示すシャープなスポット状の回折パ
ターンが得られ、(001)単結晶であり、エピタキシ
ャル成長が生じていることが分かった。
Table 1 Prepared (Lao, gBao, +)zcuo
Tc of 4Fl film [Example 2] (Zr(h) o, s (Yz(h) o, s(
100) plane single crystal and thermally oxidized silicon as a substrate,
(Lao, qsSro, .,) By vacuum evaporation method using ZCL104 as the evaporation raw material, the substrate temperature was 500°C.
A thin oxide film of OA thickness was deposited. The crystallinity of the surface of the produced thin film was observed by reflection high energy electron diffraction (RHEED). The thin film formed on a sapphire polycrystalline substrate using the conventional method had a ring-shaped diffraction pattern, indicating that it was polycrystalline. On the other hand, according to the present invention (ZrO□
). , 5 (YzOs). In the thin film formed on the substrate, a sharp spot-like diffraction pattern showing the (001) orientation was obtained, indicating that it was a (001) single crystal and epitaxial growth had occurred.

〔実施例3〕 (ZrOz) o、 y(YzOs) o、 sの多結
晶およびサファイア(ランダム配向)を基板に用いて、
(Lao、。Bao、 2) zcu04をターゲット
とした4 PaのAr+20vo1.%0□ガス中での
RFスパッタ(電カフ00すにより、1200℃で50
0OA厚の酸化物薄膜を作製した。作製した薄膜につい
て、オージェ電子分光法ヲ用いArイオンガンでエツチ
ングを行うことにより、膜厚方向の元素分析を行った。
[Example 3] (ZrOz) o, y (YzOs) o, s polycrystals and sapphire (random orientation) were used as the substrate,
(Lao, .Bao, 2) 4 Pa Ar+20vo1. targeting zcu04. %0□RF sputtering in gas (electronic cuff 00S at 1200℃
An oxide thin film with a thickness of 0OA was produced. The produced thin film was etched with an Ar ion gun using Auger electron spectroscopy to perform elemental analysis in the film thickness direction.

第1図にその結果を示す、比較のために、従来法により
作製した膜についての分析結果を第2図に示す。両者を
比較すると、本発明の方法により(Zrot)。、 ?
 (YzOs)。、、基板上に作製した酸化物薄膜は従
来法によりサファイア基板上に作製した酸化物薄膜と、
La4anCu量に関しては差が認められないが、酸素
量については、本発明により作製した薄膜では膜厚方向
で一定であるのに対して、従来法で作製した薄膜では存
在量が本発明の薄膜より少なく、また膜表面はど存在量
が少ないという膜厚依存性があった。
The results are shown in FIG. 1, and for comparison, FIG. 2 shows the analysis results for a film produced by the conventional method. Comparing both, by the method of the present invention (Zrot). , ?
(YzOs). ,,The oxide thin film produced on the substrate is different from the oxide thin film produced on the sapphire substrate by the conventional method.
Although there is no difference in the amount of La4anCu, the amount of oxygen is constant in the film thickness direction in the thin film produced by the present invention, whereas the amount in the thin film produced by the conventional method is higher than that in the thin film of the present invention. There was also a dependence on film thickness, with the amount present being small on the film surface.

〔実施例4〕 (ZrOz) o、 hs (YzO3) o、 ss
の(100)簡単結晶基板を用意し、(Yo、 7M2
11.2) ICLI04 (M2 : Be、Mg、
Ca、Sr、Ba)および(?11@、 Jao、 s
) *Cu0n (Ml : Sc、La。
[Example 4] (ZrOz) o, hs (YzO3) o, ss
Prepare a (100) simple crystal substrate of (Yo, 7M2
11.2) ICLI04 (M2: Be, Mg,
Ca, Sr, Ba) and (?11@, Jao, s
) *Cu0n (Ml: Sc, La.

Ce+Pr+Nd+Pm+Yb、Lu)を蒸着原料とし
て真空蒸着により、酸化物薄膜を基板温度1000℃で
200OA厚堆積した0作製した薄膜の超伝導転移温度
Tcを4端子電気抵抗法で測定した。表2に本発明によ
り形成した(Yo、 J2a、 3) ZCLI04薄
膜のTcを、表3に(Mlo、 Jao、 s”) g
cuo4薄膜のTcを示す。
An oxide thin film was deposited to a thickness of 200 OA at a substrate temperature of 1000°C by vacuum evaporation using Ce+Pr+Nd+Pm+Yb, Lu) as a deposition raw material.The superconducting transition temperature Tc of the prepared thin film was measured by a four-terminal electrical resistance method. Table 2 shows the Tc of the (Yo, J2a, 3) ZCLI04 thin film formed according to the present invention, and Table 3 shows the (Mlo, Jao, s”) g
The Tc of the cuo4 thin film is shown.

ここでT’l1% Tc、、Tc、はそれぞれ超伝導転
移の開始点、中間点、終了点であり、ΔTcは転移幅(
−Tea−Tea )である。表2、表3から、本発明
により作製したこれらの膜は、いずれも20 K以上の
高いTcを示し、またΔTcも1−3にと狭く、膜の品
質、均一性が優れていることが分かる。
Here, T'l1% Tc, , Tc are the starting point, middle point, and ending point of the superconducting transition, respectively, and ΔTc is the transition width (
-Tea-Tea). From Tables 2 and 3, these films produced according to the present invention all exhibited a high Tc of 20 K or more, and also had a narrow ΔTc of 1-3, indicating that the films had excellent quality and uniformity. I understand.

表2 作製した(Y(1,J2c+、 3) gcuo
4薄膜のTc表3 作製した(Mlo、Jao、5)z
cuOnfll!m膜のTc (発明の効果) 以上説明したように、本発明によれば、酸化物超伝導薄
膜をエピタキシャル成長させ、その酸素欠乏を抑制する
ことができるので、高T、cで均一性の高い超伝導酸化
物薄膜を作製できる利点がある。
Table 2 Prepared (Y(1, J2c+, 3) gcuo
Tc Table 3 of 4 thin films Fabricated (Mlo, Jao, 5)z
cuOnflll! Tc of m film (Effect of the invention) As explained above, according to the present invention, an oxide superconducting thin film can be grown epitaxially and its oxygen deficiency can be suppressed. It has the advantage of being able to produce superconducting oxide thin films.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明を用いて作製した酸化物超伝導薄膜に
ついて、オージェ電子分光法を用いて膜厚方向の元素分
析を行った結果、第2図は、従来法を用いて作製した酸
化物超伝導薄膜について・オージェ電子分光法を用いて
膜厚方向の元素分析を行った結果である。
Figure 1 shows the results of elemental analysis in the film thickness direction using Auger electron spectroscopy for the oxide superconducting thin film produced using the present invention. Regarding superconducting thin films, these are the results of elemental analysis in the film thickness direction using Auger electron spectroscopy.

Claims (3)

【特許請求の範囲】[Claims] (1)K_2NiF_4型構造酸化物超伝導体と格子整
合性を有し、かつ酸素を供給する絶縁体酸化物を基板と
して、該基板上に酸化物超伝導体を薄膜としてエピタキ
シャル成長させること特徴とする酸化物超伝導薄膜の作
製方法。
(1) Using an insulating oxide that has lattice matching with the K_2NiF_4 type structured oxide superconductor and supplies oxygen as a substrate, the oxide superconductor is epitaxially grown as a thin film on the substrate. Method for producing oxide superconducting thin films.
(2)上記K_2NiF_4型構造酸化物超伝導体が(
M1_1_−_xM2_x)_2CuO_4(0<X<
1、M1はIIIa族金属(Sc、Y、La、Ce、Pr
、Nd、Pm、Yb、Lu)、M2はIIa族金属(Be
、Mg、Ca、Sr、Ba))の中から選ばれた一つで
あることを特徴とする特許請求の範囲第1項記載の酸化
物超伝導薄膜の作製方法。
(2) The above K_2NiF_4 type structured oxide superconductor (
M1_1_−_xM2_x)_2CuO_4(0<X<
1, M1 is a group IIIa metal (Sc, Y, La, Ce, Pr
, Nd, Pm, Yb, Lu), M2 is a group IIa metal (Be
, Mg, Ca, Sr, Ba)).
(3)上記絶縁酸化物基板として(ZrO_2)_1_
−_m(Y_2O_3)_m(0<m<1)を用いるこ
とを特徴とする特許請求の範囲第1項または第2項記載
の酸化物超伝導薄膜の作製方法。
(3) As the above insulating oxide substrate (ZrO_2)_1_
3. The method for producing an oxide superconducting thin film according to claim 1 or 2, characterized in that −_m(Y_2O_3)_m (0<m<1) is used.
JP62060449A 1987-03-16 1987-03-16 Preparation of oxide superconductive thin film Pending JPS63225599A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62060449A JPS63225599A (en) 1987-03-16 1987-03-16 Preparation of oxide superconductive thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62060449A JPS63225599A (en) 1987-03-16 1987-03-16 Preparation of oxide superconductive thin film

Publications (1)

Publication Number Publication Date
JPS63225599A true JPS63225599A (en) 1988-09-20

Family

ID=13142594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62060449A Pending JPS63225599A (en) 1987-03-16 1987-03-16 Preparation of oxide superconductive thin film

Country Status (1)

Country Link
JP (1) JPS63225599A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63230526A (en) * 1987-03-18 1988-09-27 Kazuo Fueki Compound superconductor and production thereof
JPS6463224A (en) * 1987-03-18 1989-03-09 Sumitomo Electric Industries Manufacture of superconductive thin film
US5338416A (en) * 1993-02-05 1994-08-16 Massachusetts Institute Of Technology Electrochemical etching process
US5464509A (en) * 1994-05-20 1995-11-07 Massachusetts Institute Of Technology P-N junction etch-stop technique for electrochemical etching of semiconductors
US7674399B2 (en) * 2003-10-30 2010-03-09 Japan Science And Technology Agency Electroluminescent material and electroluminescent element using the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63230526A (en) * 1987-03-18 1988-09-27 Kazuo Fueki Compound superconductor and production thereof
JPS6463224A (en) * 1987-03-18 1989-03-09 Sumitomo Electric Industries Manufacture of superconductive thin film
US5338416A (en) * 1993-02-05 1994-08-16 Massachusetts Institute Of Technology Electrochemical etching process
US5464509A (en) * 1994-05-20 1995-11-07 Massachusetts Institute Of Technology P-N junction etch-stop technique for electrochemical etching of semiconductors
US7674399B2 (en) * 2003-10-30 2010-03-09 Japan Science And Technology Agency Electroluminescent material and electroluminescent element using the same

Similar Documents

Publication Publication Date Title
JP2567460B2 (en) Superconducting thin film and its manufacturing method
JPH03150218A (en) Production of superconductive thin film
CA2194400A1 (en) Epitaxial thallium high temperature superconducting films formed via a nucleation layer
JPH04295015A (en) Production of bi-base oxide superconducting thin film
JPS63225599A (en) Preparation of oxide superconductive thin film
JPH01167221A (en) Production of superconducting thin film
JP2530492B2 (en) Method for producing oxide superconducting thin film and substrate used therefor
JPS63236794A (en) Production of superconductive thin film of oxide
US5141919A (en) Superconducting device and method of producing superconducting thin film
JPH03183698A (en) Oxide single crystal base plate and superconductor device utilized therewith and production thereof
JPH0278282A (en) Josephson element
JPH01166419A (en) Manufacture of superconductive membrane
JP2852753B2 (en) Oxide superconductor element and method for producing oxide superconductor thin film
JPH03275504A (en) Oxide superconductor thin film and its production
JP2844207B2 (en) Oxide superconductor element and method for producing oxide superconductor thin film
JP2844206B2 (en) Oxide superconductor element and method for producing oxide superconductor thin film
JP2976427B2 (en) Method of manufacturing Josephson device
JP2545422B2 (en) Composite oxide superconducting thin film and method for producing the same
JP2501609B2 (en) Method for producing complex oxide superconducting thin film
JP3230329B2 (en) Method for cleaning surface of substrate for superconducting device
JP2913653B2 (en) Oxide superconducting thin film structure
JP2544760B2 (en) Preparation method of superconducting thin film
JP2544761B2 (en) Preparation method of superconducting thin film
JPH042697A (en) Oxide single crystal base, superconductor device using thereof and production of same device
JPH02237082A (en) Semiconductor substrate provided with superconductor thin film and manufacture thereof