JPH035358A - Production of orientable oxide superconductor - Google Patents

Production of orientable oxide superconductor

Info

Publication number
JPH035358A
JPH035358A JP1137184A JP13718489A JPH035358A JP H035358 A JPH035358 A JP H035358A JP 1137184 A JP1137184 A JP 1137184A JP 13718489 A JP13718489 A JP 13718489A JP H035358 A JPH035358 A JP H035358A
Authority
JP
Japan
Prior art keywords
oxide superconductor
powder
sheet
mixed
temp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1137184A
Other languages
Japanese (ja)
Other versions
JP2767750B2 (en
Inventor
Hiromasa Shimojima
浩正 下嶋
Keizo Tsukamoto
塚本 惠三
Senjo Yamagishi
山岸 千丈
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Nihon Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Cement Co Ltd filed Critical Nihon Cement Co Ltd
Priority to JP1137184A priority Critical patent/JP2767750B2/en
Publication of JPH035358A publication Critical patent/JPH035358A/en
Application granted granted Critical
Publication of JP2767750B2 publication Critical patent/JP2767750B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Press-Shaping Or Shaping Using Conveyers (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To obtain a film of an oxide superconductor having high crystal orientability and superconducting characteristics at the temp. of liq. nitrogen or above by successively subjecting powder of an oxide superconductor to forming into a sheet shape, pressing under specified temp. and pressure conditions and sintering. CONSTITUTION:Powder of an oxide superconductor such as a Bi-Pb-Sr-Ca-Cu-O type oxide superconductor is mixed with a plasticizer such as dibutyl phthalate, a binder such as polyvinyl butyral, a dispersant such as ethyl oleate and a solvent, preferably an alcoholic-arom. mixed solvent. The resulting slurry is defoamed under reduced pressure and this defoamed slurry is formed into a sheet shape, dried at ordinary temp., hot pressed at 65-100 deg.C under 1,000-10,000kg/cm<2> pressure for 10-20min, dewaxed and sintered to obtain an orientable oxide superconductor.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、配向性酸化物超伝導体の製造方法に関し、特
に液体窒素温度以上で超伝導特性を示す酸化物超伝導膜
体の製造方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for producing an oriented oxide superconductor, and in particular a method for producing an oxide superconducting film exhibiting superconducting properties at temperatures above liquid nitrogen temperature. It is related to.

[従来の技術] B1−Pb−3r−(:a−(:u−0系はIOK級)
 、 La−5r−Cu−0系(40に級) 、 La
−Ba−Cu−0系(90に級)及びY−Ha−Cu−
0系(90に級)酸化物は、超伝導を示す材料である。
[Prior art] B1-Pb-3r-(:a-(:u-0 series is IOK class)
, La-5r-Cu-0 system (grade 40), La
-Ba-Cu-0 system (grade 90) and Y-Ha-Cu-
0 series (grade 90) oxides are materials that exhibit superconductivity.

これらの材料を線材等に加工するための厚膜体の製造は
、各種原料酸化物粉末を各組成の所定の配合量で配合し
たり、この配合物を仮焼した粉末材料と可塑剤、バイン
ダ、分散剤及び溶剤とを混合し、ドクターブレード法に
よりシート状に加工した後、このシートを各超伝導酸化
物に適した温度(例えばB1−Pb−5r−Ca−C;
u−0系では840〜850℃)で数百時間、空気中で
強熱処理し、半溶融状態にした後冷却して厚膜を得てい
た。
The production of thick film bodies for processing these materials into wire rods, etc. involves blending various raw material oxide powders in predetermined amounts for each composition, or using a powder material obtained by calcining this blend, a plasticizer, and a binder. , a dispersant, and a solvent are mixed and processed into a sheet by a doctor blade method, and then heated at a temperature suitable for each superconducting oxide (for example, B1-Pb-5r-Ca-C;
In the case of the u-0 series, it was ignited in air at 840 to 850° C. for several hundred hours, brought to a semi-molten state, and then cooled to obtain a thick film.

[発明が解決しようとする問題点] しかしながら、上記の方法で厚膜を製造した場合、酸化
物超伝導体の結晶粒子が板状結晶であったりするため、
強熱処理中に生成した結晶粒子は無秩序な方向に成長す
るため。それ故、緻密な厚膜が得られず、また、超伝導
電流は板状結晶の結晶面に平行に流れるので、無秩序な
結晶配向の結果、臨界電流密度が低いという問題があっ
た。
[Problems to be solved by the invention] However, when a thick film is manufactured by the above method, the crystal grains of the oxide superconductor may be plate-shaped crystals.
This is because the crystal grains generated during the ignition process grow in a disordered direction. Therefore, a dense thick film cannot be obtained, and since the superconducting current flows parallel to the crystal planes of the plate-shaped crystals, there is a problem that the critical current density is low as a result of disordered crystal orientation.

[問題点を解決するための手段] 本発明者等は、この結晶配向を向上させるべく、シート
加工材料、加工条件、熱処理条件等につき研究した結果
、熱プレスによって膜体の結晶配向が大きく改善される
ことを見出した。
[Means for solving the problem] In order to improve this crystal orientation, the present inventors conducted research on sheet processing materials, processing conditions, heat treatment conditions, etc., and as a result, the crystal orientation of the film body was significantly improved by heat pressing. I found out that it can be done.

すなわち本発明は、酸化物超伝導体の粉末を、可塑剤、
バインダ、分散剤及び溶剤と混合し、脱泡した後、シー
ト状に加工し、乾燥し、得られた乾燥シートを65〜l
ロ0℃、1000〜10000 kg/cm2で熱プレ
スしたのち、該シートを焼成することを特徴とする配向
性酸化物超伝導体の製造方法である。
That is, in the present invention, oxide superconductor powder is mixed with a plasticizer,
After mixing with the binder, dispersant and solvent and defoaming, it is processed into a sheet and dried.
(b) A method for producing an oriented oxide superconductor, which comprises hot pressing the sheet at 0° C. and 1000 to 10000 kg/cm 2 and then firing the sheet.

本発明において原料化合物として用いられる酸化物や炭
酸塩の配合は、作製しようとする超伝導体により異なる
が、例えばB1−Pb−5r−Ca−Cu−0系ではそ
の金属原子比が次のような範囲になるよう配合される。
The composition of oxides and carbonates used as raw material compounds in the present invention varies depending on the superconductor to be produced, but for example, in the B1-Pb-5r-Ca-Cu-0 system, the metal atomic ratio is as follows. It is blended in such a way that it falls within a certain range.

Bi:  0.6〜1.1 Pb:  0.2〜0.4 Sr:  0.7〜1.1 Ca:  0.7〜1.1 Cu:  1.4〜2.2 また、Ba−Y−Cu−0系ではBa:Y:(:um 
2:1:3の原子比になるように配合すればよい。
Bi: 0.6-1.1 Pb: 0.2-0.4 Sr: 0.7-1.1 Ca: 0.7-1.1 Cu: 1.4-2.2 Also, Ba-Y -Cu-0 system Ba:Y:(:um
They may be blended in an atomic ratio of 2:1:3.

上記の範囲外の配合では、得られた超伝導体の臨界温度
が低くなる。
If the composition is outside the above range, the critical temperature of the resulting superconductor will be low.

上記配合比の各化合物を混合するに当たっては、アルコ
ール(メタノール、エタノール、イソプロパツール等)
と共に24時間混合した後、 100℃で乾燥するのが
好ましい。
When mixing each compound in the above mixing ratio, use alcohol (methanol, ethanol, isopropanol, etc.)
Preferably, the mixture is mixed for 24 hours and then dried at 100°C.

得られた混合粉末を、適度な温度で(例えば例えばB1
−Pb−5r−Ca−Cu−0系では780〜820°
C1Ba−Y−Cu−0系では850〜900℃程度)
で10〜20時間仮焼して炭酸成分を分解させ、次いで
この仮焼粉末を845〜860℃の温度で、酸素の存在
下1通常空気中で10〜100時間強熱処理する。
The obtained mixed powder is heated at an appropriate temperature (for example, B1
-780 to 820° for Pb-5r-Ca-Cu-0 system
(about 850-900℃ for C1Ba-Y-Cu-0 system)
The powder is calcined for 10 to 20 hours to decompose the carbonic acid component, and then the calcined powder is ignited for 10 to 100 hours in the presence of oxygen at a temperature of 845 to 860°C.

この強熱処理された焼成粉末にバインダ、可塑剤、分散
剤及び溶剤を配合し、十分に粉砕混合してスラリーとす
る。
A binder, a plasticizer, a dispersant, and a solvent are added to this ignited fired powder, and the powder is thoroughly ground and mixed to form a slurry.

上記で用いるバインダは、シート成形に際して保形性を
与えるもので、例えばポリビニルブチラール、ポリビニ
ルアルコール、ポリアクリル酸エステル、ニトロセルロ
ース、ポリメタクリル酸エステル、エチルセルロース等
が用いられ、可塑剤はバインダを軟らかくし、例えばジ
ブチルフタレート、ブチルベンジルフタレート、ブチル
ステアレート、ジメチルフタレート等が用いられる。
The binder used above provides shape retention during sheet forming, such as polyvinyl butyral, polyvinyl alcohol, polyacrylic ester, nitrocellulose, polymethacrylic ester, ethyl cellulose, etc., and the plasticizer softens the binder. For example, dibutyl phthalate, butylbenzyl phthalate, butyl stearate, dimethyl phthalate, etc. are used.

また、分散剤はスラリーの凝集を防ぎ、例えばオレイン
酸エチル、脂肪酸(グリセリントリオレエート)、天然
魚油、オクタジエン等が用いられる。
Further, the dispersant prevents agglomeration of the slurry, and for example, ethyl oleate, fatty acid (glycerol trioleate), natural fish oil, octadiene, etc. are used.

また溶剤としては、メタノール、エタノール、ブタノー
ル、イソプロパツール等の低級アルコール、キシレン、
トルエン等の芳香族系溶媒、その他トリクロロエチレン
、酢酸エチル、メチルエチルケトン等が挙げられ、特に
溶剤としてアルコール系溶剤と芳香族系溶剤との混合溶
剤、例えばトルエン/酢酸エチル、エチルアルコール/
トリクロロエチレン等の混合溶媒を用いることが好まし
し)。
Solvents include lower alcohols such as methanol, ethanol, butanol, isopropanol, xylene,
Examples include aromatic solvents such as toluene, trichlorethylene, ethyl acetate, methyl ethyl ketone, etc. Particular solvents include mixed solvents of alcohol solvents and aromatic solvents, such as toluene/ethyl acetate, ethyl alcohol/
It is preferable to use a mixed solvent such as trichlorethylene).

これらの配合割合は、 焼成粉末:100重量部 パインダニ2〜5重量部 可塑剤=  2〜5重量部 分散剤:  1〜2重量部 溶剤:40〜60重量部 である。The mixing ratio of these is Calcined powder: 100 parts by weight Pine mites 2-5 parts by weight Plasticizer = 2-5 parts by weight Dispersant: 1 to 2 parts by weight Solvent: 40-60 parts by weight It is.

焼成粉末とバインダ等の混合はボールミル中で行ない、
混合時間は少なくとも10時間以上行なうことが望まし
い。
The firing powder and binder are mixed in a ball mill.
It is desirable that the mixing time be at least 10 hours.

混合粉砕して得られたスラリー状の混合物を、ロータリ
ーポンプ等で減圧しながら撹拌することによって脱泡し
た後、厚さ100〜300 umのシート状に加工する
The slurry-like mixture obtained by mixing and pulverizing is degassed by stirring while reducing the pressure using a rotary pump or the like, and then processed into a sheet having a thickness of 100 to 300 um.

このシート成形は、ポリエチレン、ポリプロピレン等の
プラスチックシート上にドクターブレード法ににより延
展して行なうが、カレンダーロール法、押出法等の方法
を採用してもよい。
This sheet forming is carried out by spreading the sheet on a plastic sheet such as polyethylene or polypropylene by a doctor blade method, but methods such as a calender roll method and an extrusion method may also be employed.

成形されたシートは、常温で乾燥させた後、1000〜
10000 kg/cn+”の荷重をかけ、その状態を
10〜20分間維持する。荷重は通常油圧プレスが用い
られる。1000kg/cm”未満の荷重では結晶配向
の改善効果が少なく、 10000kg/cm2以上の
荷重をかけても効果の向上は少ない。
After drying the formed sheet at room temperature,
Apply a load of 10,000 kg/cm2 and maintain that state for 10 to 20 minutes. A hydraulic press is usually used to apply the load. A load of less than 1000 kg/cm2 has little effect on improving crystal orientation, and a load of 10,000 kg/cm2 or more Even if a load is applied, there is little improvement in effectiveness.

加圧処理が終了したら、400〜500℃の温度で配合
添加物を揮発又は燃焼させて除去(脱脂処理)した後、
空気中又は適当な酸素分圧中で、各種酸化物超伝導体が
合成できる温度(例えばB1−Pb−3r−Ca−(:
u−0系の場合845〜860℃)で10〜120時間
強熱処理し、その後焼成炉内で放冷する。
After the pressure treatment is completed, the additives are removed by volatilization or combustion at a temperature of 400 to 500°C (degreasing treatment).
Temperatures at which various oxide superconductors can be synthesized in air or at an appropriate oxygen partial pressure (for example, B1-Pb-3r-Ca-(:
In the case of u-0 series, ignition treatment is performed at 845 to 860° C. for 10 to 120 hours, and then allowed to cool in a firing furnace.

得られた膜体は臨界温度が高く、その臨界電流密度も高
いので、膜体にまま又は線材に加工して超伝導体として
の各種の用途に利用することができる。
Since the obtained membrane has a high critical temperature and a high critical current density, it can be used as a membrane or processed into a wire for various purposes as a superconductor.

[実施例] 実施例I Biz03. PbO、SrCO3,CaC01及びC
uOの粉末を、金属原子比が Bi:Pb:Sr:Ca:fl;u= 0.96:0.
24:1:1:1.6となるように配合し、メタノール
を加えて24時間混合した後、 100℃で乾燥した。
[Example] Example I Biz03. PbO, SrCO3, CaC01 and C
The uO powder was prepared in a metal atomic ratio of Bi:Pb:Sr:Ca:fl; u=0.96:0.
The mixture was blended in a ratio of 24:1:1:1.6, methanol was added, mixed for 24 hours, and then dried at 100°C.

乾燥粉末を空気中800°C仮焼して炭酸成分を分解し
た。仮焼粉末を20mmφX 10mmtに成形し、空
気中850℃で60時間処理して焼結させた。
The dry powder was calcined in air at 800°C to decompose the carbonic acid component. The calcined powder was molded into a size of 20 mmφ x 10 mmt, and sintered in air at 850° C. for 60 hours.

焼結体を粉砕し、得られた粉末100重量部に対して ポリビニルブチラール    3重量部ジブチルフタレ
ート      3重量部オレイン酸エチル     
 1重量部エタノール          23重量部
キシレン          23重量部を加え、24
時間混合粉砕し、次いで減圧下において脱泡した。
3 parts by weight of polyvinyl butyral 3 parts by weight of dibutyl phthalate ethyl oleate per 100 parts by weight of powder obtained by pulverizing the sintered body
Add 1 part by weight of ethanol, 23 parts by weight of xylene, and add 24 parts by weight of
The mixture was mixed and ground for a period of time, and then defoamed under reduced pressure.

得られたペーストをポリエチレンシート上に延ばして厚
さ200μmのシートに加工した。このシトを室温で乾
燥し、20mmX 10mmの角片に切り出した。
The resulting paste was spread on a polyethylene sheet to form a sheet with a thickness of 200 μm. This sheet was dried at room temperature and cut into square pieces of 20 mm x 10 mm.

この角片からポリエチレンシートを外し、70’Cに加
熱しながら油圧プレスで20トンの荷重を10分間加え
た。
The polyethylene sheet was removed from this square piece, and a load of 20 tons was applied for 10 minutes using a hydraulic press while heating it to 70'C.

加圧した角片を空気中850°Cで14時間強熱処理し
た後、炉内で放冷した。
The pressurized square pieces were ignited in air at 850°C for 14 hours, and then allowed to cool in the furnace.

得られた膜について液体ヘリウムによる冷却下で四端子
法で臨界温度、臨界電流密度を測定した。また、膜の配
向性をX線回折計により、(002)面目折線強度fb
。。2))と(200)面目折線強度[1tool )
とから、以下の式により求めた。
The critical temperature and critical current density of the obtained film were measured by the four-terminal method while cooling with liquid helium. In addition, the orientation of the film was measured using an X-ray diffractometer, and the (002) plane fold line strength fb
. . 2)) and (200) plane fold line strength [1tool)
It was calculated using the following formula.

かった以外はすべて実施例4と同様に行なった(比較例
2)。
The same procedure as in Example 4 was carried out except for the following differences (Comparative Example 2).

得られた結果は第1表に示す。The results obtained are shown in Table 1.

第1表 結果は第1表に示す。Table 1 The results are shown in Table 1.

実施例2.3 実施例1で加圧片の強熱処理温度を変え場合の結果を第
1表に示す。
Example 2.3 Table 1 shows the results obtained by changing the ignition temperature of the pressurized piece in Example 1.

実施例4 実施例1と同様の実験をYBaiCuiOxについて行
なった場合の結果を第1表に示す。
Example 4 Table 1 shows the results of an experiment similar to Example 1 conducted on YBaiCuiOx.

比較例1.2 実施例1で角片の熱プレスを行なわなかった以外はすべ
て実施例1と同様に行なった(比較例1)。
Comparative Example 1.2 The same procedure as in Example 1 was carried out except that the square pieces were not hot pressed in Example 1 (Comparative Example 1).

また、実施例4で角片の熱プレスを行なわな[発明の効
果]
Also, in Example 4, the square pieces were not heat pressed [Effects of the invention]

Claims (1)

【特許請求の範囲】[Claims] (1) 酸化物超伝導体の粉末を、可塑剤、バインダ、
分散剤及び溶剤と混合し、脱泡した後、シート状に加工
し、乾燥し、得られた乾燥シートを65〜100℃、1
000〜10000kg/cm^2で熱プレスしたのち
、該シートを焼成することを特徴とする配向性酸化物超
伝導体の製造方法。
(1) Oxide superconductor powder is mixed with plasticizer, binder,
After mixing with a dispersant and a solvent and defoaming, it is processed into a sheet and dried, and the resulting dry sheet is heated at 65 to 100°C for 1
A method for producing an oriented oxide superconductor, which comprises hot pressing the sheet at a pressure of 000 to 10,000 kg/cm^2 and then firing the sheet.
JP1137184A 1989-05-30 1989-05-30 Method for producing oriented oxide superconductor Expired - Lifetime JP2767750B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1137184A JP2767750B2 (en) 1989-05-30 1989-05-30 Method for producing oriented oxide superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1137184A JP2767750B2 (en) 1989-05-30 1989-05-30 Method for producing oriented oxide superconductor

Publications (2)

Publication Number Publication Date
JPH035358A true JPH035358A (en) 1991-01-11
JP2767750B2 JP2767750B2 (en) 1998-06-18

Family

ID=15192768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1137184A Expired - Lifetime JP2767750B2 (en) 1989-05-30 1989-05-30 Method for producing oriented oxide superconductor

Country Status (1)

Country Link
JP (1) JP2767750B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04310597A (en) * 1991-02-15 1992-11-02 American Teleph & Telegr Co <Att> Method of manufacturing article made of metallic body having superconductor layer
JP2008148585A (en) * 2006-12-14 2008-07-03 Bunmei Noki Kk Winding collecting working machine for chrysanthemum cultivation net

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61275158A (en) * 1985-05-27 1986-12-05 松下電工株式会社 Manufacture of piezoelectric ceramic
JPS63277555A (en) * 1987-05-08 1988-11-15 Kanegafuchi Chem Ind Co Ltd Oxide superconductive ceramic sintered material and production thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61275158A (en) * 1985-05-27 1986-12-05 松下電工株式会社 Manufacture of piezoelectric ceramic
JPS63277555A (en) * 1987-05-08 1988-11-15 Kanegafuchi Chem Ind Co Ltd Oxide superconductive ceramic sintered material and production thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04310597A (en) * 1991-02-15 1992-11-02 American Teleph & Telegr Co <Att> Method of manufacturing article made of metallic body having superconductor layer
JP2695561B2 (en) * 1991-02-15 1997-12-24 エイ・ティ・アンド・ティ・コーポレーション Method for manufacturing article made of metal body having superconductor layer
JP2008148585A (en) * 2006-12-14 2008-07-03 Bunmei Noki Kk Winding collecting working machine for chrysanthemum cultivation net

Also Published As

Publication number Publication date
JP2767750B2 (en) 1998-06-18

Similar Documents

Publication Publication Date Title
DE3210987C2 (en)
EP0587326B1 (en) Method for making rare earth superconductive composite
DE69304897T2 (en) Process for producing an aqueous slip containing a moisture-resistant aluminum nitride powder
DE68921382T2 (en) Method for producing bismuth oxide superconductors.
JPH035358A (en) Production of orientable oxide superconductor
US5260263A (en) Superconductive ceramic wire and method for producing the same
DE69006784T2 (en) Process for producing a superconducting ceramic molded body.
DE3932423C2 (en)
DE68906561T2 (en) COMPOSITION OF CERAMIC MATERIAL AND DISTILLABLE BINDING AGENT.
JPH0345301A (en) Manufacture of oxide superconductive tape wire
USH1138H (en) Processing method for superconducting ceramics
JP2632514B2 (en) Manufacturing method of ceramic superconductor
JP2677882B2 (en) Method for producing bismuth oxide superconductor
Hamadneh et al. Effect of nano sized oxalate precursor on the formation of REBa2Cu3O7− δ (RE= Gd, Sm, Ho) ceramic via coprecipitation method
JP2978538B2 (en) Superconducting material with high density crystal structure
JP3044394B2 (en) Manufacturing method of magnetic shield
JP2926196B2 (en) Manufacturing method of magnetic shield
KR0144727B1 (en) Manufacturing method of high temperature superconductor of ytrium system
JPH0360457A (en) Production of y-ba-cu-based oxide superconductor
JP3115357B2 (en) Manufacturing method of oxide superconducting material
JP3165162B2 (en) Method for producing oxide superconductor thick film
DE19817875A1 (en) Melt-textured high temperature superconductor production
Rao et al. Effect of additives on the morphology and superconductivity of YBa 2 Cu 3 O 6+ x ceramic materials
JP2969221B2 (en) Manufacturing method of oxide superconductor
JPH0692717A (en) Production of bi based oxiee superconductor