JPH05182541A - Manufacture of bismuth group oxide superconductor - Google Patents

Manufacture of bismuth group oxide superconductor

Info

Publication number
JPH05182541A
JPH05182541A JP4001563A JP156392A JPH05182541A JP H05182541 A JPH05182541 A JP H05182541A JP 4001563 A JP4001563 A JP 4001563A JP 156392 A JP156392 A JP 156392A JP H05182541 A JPH05182541 A JP H05182541A
Authority
JP
Japan
Prior art keywords
powder
phase
manufacture
oxide superconductor
mixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4001563A
Other languages
Japanese (ja)
Inventor
Tsutomu Koizumi
勉 小泉
Takayo Hasegawa
隆代 長谷川
Yu Kitamura
祐 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SWCC Corp
Original Assignee
Showa Electric Wire and Cable Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Electric Wire and Cable Co filed Critical Showa Electric Wire and Cable Co
Priority to JP4001563A priority Critical patent/JPH05182541A/en
Publication of JPH05182541A publication Critical patent/JPH05182541A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To manufacture Bi group oxide superconductor excellent in characteristic by suppressing generation of an impurity phase. CONSTITUTION:Bi2Sr2CaCu2Oy powder having a grain diameter, alpha, 0.1 to 50mum and powder of the other oxide or the like having a grain diameter, beta, 0.1 to 10mum are blended under the condition of alpha>beta and in the mol ratio of Bi:Sr:Ca: Cu=2:2:2:3 and this mixture powder is filled inside an Ag tube for being processed followed by heat treatment in order to manufacture a superconductive tape. This superconductive tape shows critical current density 2.0X10<4>A/cm<2> at 77K.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は超電導体の製造方法に係
り、特に超電導特性の優れたBi系酸化物超電導体の製
造方法の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a superconductor, and more particularly to improvement of a method for producing a Bi-based oxide superconductor having excellent superconducting properties.

【0002】[0002]

【従来の技術】Bi−Sr−Ca−Cu−O系(Bi
系)の超電導体は、その臨界温度(Tc)が高く、Y−
Ba−Cu−O系(Y系)の超電導体に比較して安定性
および加工性に優れ、また非希土類系の組成からなるた
め、その素材の供給や取扱いに有利である上、Tl−B
a−Ca−Cu−O系(Tl系)の超電導体のように毒
性もないことから酸化物超電導体の実用材料として期待
されている。
2. Description of the Related Art Bi-Sr-Ca-Cu-O system (Bi
System) has a high critical temperature (Tc), Y-
Compared to Ba-Cu-O (Y) superconductors, it is superior in stability and workability, and because it has a non-rare earth composition, it is advantageous for the supply and handling of its material.
It is expected to be a practical material for oxide superconductors because it is not toxic like a-Ca-Cu-O (Tl) superconductors.

【0003】このBi系の超電導体には、その組成によ
り3種のTcを有する相が存在するが、特に80K級の
(2212)相(Bi:Sr:Ca:Cuのモル比=
2:2:1:2、以下同様)と110K級の(222
3)相は、そのTcが液体窒素温度より高く、かつ機械
加工により結晶粒方向が制御し得る等の点から長尺の線
材の製造等に適した材料として知られている。
In this Bi-based superconductor, there are phases having three kinds of Tc depending on the composition. Especially, the 80K-class (2212) phase (Bi: Sr: Ca: Cu molar ratio =
2: 2: 1: 2, and so on) and 110K class (222
The 3) phase is known as a material suitable for the production of long wire rods because the Tc is higher than the liquid nitrogen temperature and the crystal grain direction can be controlled by machining.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記の
(2223)相は、その構成元素のモル比を化学量論組
成に配合して焼成すると、不純物相を同時に生成してそ
の特性が低下するという問題がある。本発明は上記の問
題を解決するためになされたもので、(2223)相の
生成を増加させると同時に不純物相の生成を減少させ
て、特性の優れたBi系の酸化物超電導体を製造する方
法を提供することをその目的とする。
However, when the above-mentioned (2223) phase is blended in a stoichiometric composition with the molar ratio of its constituent elements and fired, an impurity phase is simultaneously formed and its characteristics are deteriorated. There's a problem. The present invention has been made to solve the above problems, and increases the production of the (2223) phase and at the same time reduces the production of the impurity phase to produce a Bi-based oxide superconductor having excellent characteristics. Its purpose is to provide a method.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に、本発明のBi系酸化物超電導体の製造方法は、2種
以上の粉末を混合して,Bi:Sr:Ca:Cu=2:
2:2:3のモル比に配合し、この混合粉末を成型した
後、熱処理を施して酸化物成型体を製造する際に、混合
粉末中に、少なくともBi2 Sr2 CaCu2y 、即
ち(2212)相の粉末を配合するようにしたものであ
る。
In order to achieve the above object, the method for producing a Bi-based oxide superconductor according to the present invention comprises mixing two or more kinds of powders to obtain Bi: Sr: Ca: Cu = 2. :
When mixed in a molar ratio of 2: 2: 3 and molded into the mixed powder and then heat-treated to produce an oxide molded body, at least Bi 2 Sr 2 CaCu 2 O y , that is, in the mixed powder, (2212) phase powder is blended.

【0006】本発明により製造されるBi系酸化物超電
導体は、Bi2 Sr2 Ca2 Cu3y 、即ち(222
3)相の組成を有するが、特性の向上を図るために、B
iの一部あるいはこれに加えてPbを配合したものも含
まれる。また、本発明における出発原料としては、Bi
(Pb),Sr,Ca,Cuの酸化物、炭酸塩、硝酸塩
等の粉末が用いられる。
The Bi-based oxide superconductor produced by the present invention is Bi 2 Sr 2 Ca 2 Cu 3 O y , that is, (222)
3) It has a phase composition, but in order to improve the characteristics, B
A part of i or a mixture of Pb in addition to i is also included. Further, as the starting material in the present invention, Bi
Powders of (Pb), Sr, Ca, Cu oxides, carbonates, nitrates and the like are used.

【0007】上記の混合粉末中に配合される(221
2)相の粉末は、化学量論組成に配合したBi、Sr,
Ca,Cuの各化合物粉末を混合した後、700〜88
0℃の温度範囲で10〜200時間焼成することにより
合成される。これらの化合物粉末としては、固相粉ある
いは溶液から沈降させた共沈粉を用いることができる。
一方、(2223)相の配合に対して、(2212)相
の粉末と混合される不足分の粉末としては、Ca,C
u,(必要に応じてPb)の酸化物粉末あるいはこれら
の中の複数の元素を含む酸化物が用いられる。
It is compounded in the above mixed powder (221)
The powder of phase 2) is composed of Bi, Sr,
After mixing each compound powder of Ca and Cu, 700 to 88
It is synthesized by firing at a temperature range of 0 ° C. for 10 to 200 hours. As these compound powders, a solid phase powder or a coprecipitated powder precipitated from a solution can be used.
On the other hand, as compared with the (2223) phase mixture, Ca, C
An oxide powder of u, (Pb as necessary) or an oxide containing a plurality of elements among them is used.

【0008】混合方法は、いずれの方法を用いてもよい
が、混合により粒度の低下を引き起こさない条件で行う
ことが好ましい。混合後の粉末は圧縮成型するか、ある
いは金属管中に充填して伸線加工や圧延加工した後、熱
処理を施して焼成する。以上の混合粉末中の(221
2)相の粉末は、0.1〜50μmの粒径を有するもの
を用いることが好ましい。これは、粒径が0.1μm未
満であると、粉末化の破砕時の応力により結晶粒が損傷
してその特性が低下し易く、また、粒径が50μmを越
えると、混合粉末中で構成元素の十分な拡散に時間を要
し、合成時間が長くなるためである。
Any mixing method may be used, but it is preferable to carry out the mixing under the condition that the particle size is not reduced by mixing. The powder after mixing is compression-molded, or filled in a metal tube and subjected to wire drawing or rolling, followed by heat treatment and firing. (221 in the above mixed powder)
It is preferable to use the powder of the phase 2) having a particle size of 0.1 to 50 μm. This is because if the particle size is less than 0.1 μm, the crystal grains are likely to be damaged by the stress at the time of crushing during pulverization, and its characteristics are deteriorated. This is because it takes time to sufficiently diffuse the elements and the synthesis time becomes long.

【0009】一方、この(2212)相以外の粉末の粒
径βは、0.1〜10μmの粒径で、かつ(2212)
相粉末の粒径αに対してα>βの関係を有するものを用
いることが好ましい。これは、α<βであると(221
2)相中への元素の拡散が不十分となり、不純物相が残
存して特性が低下するためである。
On the other hand, the particle size β of the powder other than the (2212) phase is 0.1 to 10 μm and (2212)
It is preferable to use one having a relationship of α> β with respect to the particle diameter α of the phase powder. This means that if α <β (221
2) This is because the diffusion of the element into the phase becomes insufficient, the impurity phase remains, and the characteristics deteriorate.

【0010】[0010]

【作用】本発明の方法においては、混合粉末中に比較的
単相化が容易な(2212)相を配合するため、これを
核として容易に(2223)相が生成し、不純物相の生
成による特性の低下を防止することができる。また、混
合粉末の粒径を規定することにより、この(2223)
相の生成に必要な拡散が容易になる。
In the method of the present invention, since the (2212) phase, which is relatively easy to be made into a single phase, is mixed in the mixed powder, the (2223) phase is easily formed with this as a core, and the impurity phase is generated. It is possible to prevent deterioration of characteristics. Also, by defining the particle size of the mixed powder, this (2223)
It facilitates the diffusion needed to create the phase.

【0011】[0011]

【実施例】以下本発明の実施例および比較例について説
明する。 実施例 Bi23 ,SrCO3 ,CaCO3 ,CuOの各粉末
を、Bi:Sr:Ca:Cu=2:2:1:2のモル比
で配合し、エタノールを用いた湿式混合法により混合し
た後、大気中で840℃×50時間の熱処理を2回繰り
返して焼成し、これを破砕して(2212)相粉末を作
製した。
EXAMPLES Examples and comparative examples of the present invention will be described below. Example 2 Powders of Bi 2 O 3 , SrCO 3 , CaCO 3 and CuO were mixed in a molar ratio of Bi: Sr: Ca: Cu = 2: 2: 1: 2 and mixed by a wet mixing method using ethanol. After that, a heat treatment at 840 ° C. for 50 hours was repeated twice in the air and fired, and this was crushed to prepare a (2212) phase powder.

【0012】一方、CaCO3 ,PbOの各粉末を、C
a:Pb=2:1のモル比で配合し、エタノールを用い
た湿式混合法により混合した後、酸素雰囲気中で800
℃×24時間の熱処理を施して焼成し、これを破砕して
Ca2 PbO4 の粉末を作製した。上記の(2212)
相粉末とCa2 PbO4 の粉末にCaOおよびCuOの
粉末を(Bi+Pb):Sr:Ca:Cu=2.1:
2:2:3のモル比に配合し、これを混合した後、外径
φ7.0mm,内径φ5.0mmのAg管中に充填し、
次いで伸線加工および圧延加工を施して厚さ0.1m
m,幅5mmのテープを製造した。このテープに835
℃×100時間の熱処理を施して焼成した後、10t/
cm2 の圧力を1分間加え、さらに835℃×50時間
の熱処理を施して焼成し超電導テープを製造した。尚、
このAg管中に充填された(2212)相の粉末の粒径
は約5〜10μm、またCa2 PbO4 、CaOおよび
CuOの各粉末の粒径は約0.5〜2μmであつた。
On the other hand, each powder of CaCO 3 and PbO is replaced with C
a: Pb = 2: 1 in a molar ratio and mixed by a wet mixing method using ethanol, and then 800 in an oxygen atmosphere.
A heat treatment was carried out at 24 ° C. for 24 hours, the mixture was baked, and this was crushed to produce Ca 2 PbO 4 powder. Above (2212)
Phase powder and Ca 2 PbO 4 powder with CaO and CuO powder (Bi + Pb): Sr: Ca: Cu = 2.1:
After being mixed in a molar ratio of 2: 2: 3 and mixed with each other, the mixture was filled in an Ag tube having an outer diameter of 7.0 mm and an inner diameter of 5.0 mm,
Then, wire drawing and rolling are applied to a thickness of 0.1 m.
A tape having a width of m and a width of 5 mm was manufactured. 835 on this tape
After heat treatment at ℃ × 100 hours and baking, 10t /
A pressure of cm 2 was applied for 1 minute, and heat treatment was further performed at 835 ° C. for 50 hours, followed by firing to manufacture a superconducting tape. still,
The particle size of the (2212) phase powder packed in the Ag tube was about 5 to 10 μm, and the particle size of each powder of Ca 2 PbO 4 , CaO and CuO was about 0.5 to 2 μm.

【0013】以上のようにして得られた超電導テープの
臨界電流密度(Jc)を測定した結果、77Kで2.0
×104 A/cm2 の値を示した。 比較例 平均粒径約5〜10μmのBi23 ,PbO、SrC
3 ,CaCO3 およびCuOの各粉末を(Bi+P
b):Sr:Ca:Cu=2.1:2:2:3のモル比
に配合し、これを混合した後、以下実施例と同様の方法
により超電導テープを製造した。
The critical current density (Jc) of the superconducting tape obtained as described above was measured and found to be 2.0 at 77K.
A value of × 10 4 A / cm 2 was shown. Comparative Example Bi 2 O 3 , PbO, SrC having an average particle size of about 5 to 10 μm
Powders of O 3 , CaCO 3 and CuO were added to (Bi + P
b): Sr: Ca: Cu = 2.1: 2: 2: 3 in a molar ratio, and after mixing this, a superconducting tape was manufactured in the same manner as in the following examples.

【0014】この超電導テープの臨界電流密度は、77
Kで7.0×103 A/cm2 であった。
The critical current density of this superconducting tape is 77
The K value was 7.0 × 10 3 A / cm 2 .

【0015】[0015]

【発明の効果】以上述べたように本発明の方法によれ
ば、(2223)相を構成する各元素を含む化合物の粉
末を混合して成型した後、熱処理を施して酸化物成型体
を製造する方法に比較して、不純物相の生成を抑制する
ことができ、特性の優れたBi系の酸化物超電導体を製
造することができる。
As described above, according to the method of the present invention, a powder of a compound containing each element constituting the (2223) phase is mixed and molded, and then heat treated to produce an oxide molded body. Compared with the method described above, generation of an impurity phase can be suppressed, and a Bi-based oxide superconductor having excellent characteristics can be manufactured.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】2種以上の粉末を混合して,Bi:Sr:
Ca:Cu=2:2:2:3のモル比に配合し、この混
合粉末を成型した後、熱処理を施して酸化物成型体を製
造する方法において、前記混合粉末中に、少なくともB
2 Sr2 Ca Cu2y の粉末を配合することを特徴
とするBi系酸化物超電導体の製造方法。
1. Bi: Sr:
In a method for producing an oxide molded body by mixing the powder mixture in a molar ratio of Ca: Cu = 2: 2: 2: 3, molding the mixed powder, and then subjecting the mixed powder to at least B in the mixed powder.
A method for producing a Bi-based oxide superconductor, which comprises blending a powder of i 2 Sr 2 Ca Cu 2 O y .
【請求項2】混合粉末中のBi2 Sr2 CaCu2y
粉末の粒径αは0.1〜50μm,他の粉末の粒径βは
0.1〜10μmで、かつ、α>βである請求項1記載
のBi系酸化物超電導体の製造方法。
2. Bi 2 Sr 2 CaCu 2 O y in the mixed powder.
The method for producing a Bi-based oxide superconductor according to claim 1, wherein the particle size α of the powder is 0.1 to 50 μm, the particle size β of the other powder is 0.1 to 10 μm, and α> β.
JP4001563A 1992-01-08 1992-01-08 Manufacture of bismuth group oxide superconductor Withdrawn JPH05182541A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4001563A JPH05182541A (en) 1992-01-08 1992-01-08 Manufacture of bismuth group oxide superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4001563A JPH05182541A (en) 1992-01-08 1992-01-08 Manufacture of bismuth group oxide superconductor

Publications (1)

Publication Number Publication Date
JPH05182541A true JPH05182541A (en) 1993-07-23

Family

ID=11504993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4001563A Withdrawn JPH05182541A (en) 1992-01-08 1992-01-08 Manufacture of bismuth group oxide superconductor

Country Status (1)

Country Link
JP (1) JPH05182541A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007026773A (en) * 2005-07-13 2007-02-01 Sumitomo Electric Ind Ltd Superconducting wire material and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007026773A (en) * 2005-07-13 2007-02-01 Sumitomo Electric Ind Ltd Superconducting wire material and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JPH04237910A (en) Manufacture of bismuth oxide superconducting wire rod
EP0351844B1 (en) Method of manufacturing bismuth type oxide superconductor
US5389603A (en) Oxide superconductors, and devices and systems comprising such a superconductor
US6265354B1 (en) Method of preparing bismuth oxide superconductor
JPH06176637A (en) Manufacture of bi oxide superconductive wire
JPH05182541A (en) Manufacture of bismuth group oxide superconductor
EP0330324B1 (en) Method of preparing a superconductive oxide material
EP0676817B1 (en) Method of preparing high-temperature superconducting wire
JPH06176636A (en) Manufacture of bi oxide superconductor
JPS63285812A (en) Manufacture of oxide superconductive wire material
JP2558695B2 (en) Method for manufacturing oxide superconducting wire
JPH05182542A (en) Manufacture of bismuth group oxide superconductor
JP3287028B2 (en) Tl, Pb-based oxide superconducting material and method for producing the same
JP2803819B2 (en) Manufacturing method of oxide superconductor
JP2593475B2 (en) Oxide superconductor
JP2838312B2 (en) Oxide superconducting material
JP2597579B2 (en) Superconductor manufacturing method
JPH04334819A (en) Manufacture of bismuth oxide superconducting wire
JP2597578B2 (en) Superconductor manufacturing method
JPH08337424A (en) Production of bismuth-containing oxide superconducting wire
JP3713284B2 (en) Manufacturing method of oxide superconducting coil
JPH0982153A (en) Manufacture of oxide superconducting wire
JPH01313326A (en) Superconductor and production thereof
JPH01183450A (en) Production of formed oxide superconductor
Shishkov A. D. Nikulin, E. E. Malukov, IA Erohina ac. A. A. Bochvar's AUSRIIM, USSR

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990408