JPH01313326A - Superconductor and production thereof - Google Patents

Superconductor and production thereof

Info

Publication number
JPH01313326A
JPH01313326A JP63141621A JP14162188A JPH01313326A JP H01313326 A JPH01313326 A JP H01313326A JP 63141621 A JP63141621 A JP 63141621A JP 14162188 A JP14162188 A JP 14162188A JP H01313326 A JPH01313326 A JP H01313326A
Authority
JP
Japan
Prior art keywords
superconductor
current density
bismuth
copper
strontium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63141621A
Other languages
Japanese (ja)
Inventor
Koji Tohata
東畑 孝二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63141621A priority Critical patent/JPH01313326A/en
Publication of JPH01313326A publication Critical patent/JPH01313326A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To obtain a superconductor ensuring nearly uniform current density and having stable characteristics by calcining and sintering a mixture of compds. of Bi, Sr, Ca and Cu with Pb3O4. CONSTITUTION:Compds. of Bi, Sr, Ca arnd Cu are mixed with Pb3O4. This starting material mixture is calcined and the resulting calcined powder is sintered to obtain a superconductor consisting of Bi, Pb, Sr, Ca, Cu and O. This superconductor ensures nearly uniform current density and has stable characteristics.

Description

【発明の詳細な説明】 (発明の目的〕 (産業上の利用分野) 本発明は超電導体に係わり、特に高磁場マグネット、限
流器、磁気推進装置等のエネルギー機器に使用するのに
好適な電流密度のバラツキの小さい超電導体およびその
製造方法に関する。
[Detailed Description of the Invention] (Objective of the Invention) (Industrial Application Field) The present invention relates to superconductors, and particularly to superconductors suitable for use in energy equipment such as high-field magnets, current limiters, and magnetic propulsion devices. The present invention relates to a superconductor with small variations in current density and a method for manufacturing the same.

(従来の技術) 最近、ビスマス(Bi)Oストロンチウム(Sr)Oカ
ルシウム(Ca)O銅(Cu)からなるB1−5r−C
a−Cu−0系(四成分金属酸化物系)超電導体材料が
出現し、更にほこの超電導材料の81の一部を釦(Pb
)で置換することにより、より高い臨界温度Tc(10
7K)を有する高温超電導材料が開発された。(例えば
、粉体粉末冶金63年度春季大会)これは、従来のY−
Oa−Cu−0系の高温超電導体(臨界温度Tc90K
)に比べても高い臨界温度を有しており、また高価なイ
ットリウム、バリウ11のような原料を用いなくても良
いため注目を浴びている。高温用’R導体を利用したも
のに、例えば超電導線材がある。これは、焼成後超電導
特性を示す原料を混合・造粒、仮焼した後、粉砕し、銀
等のシース材に充填し、圧延。
(Prior art) Recently, B1-5r-C consisting of bismuth (Bi) O strontium (Sr) O calcium (Ca) O copper (Cu)
A-Cu-0 type (four-component metal oxide type) superconductor material appeared, and a part of 81 of the superconducting material was further converted into button (Pb
), the higher critical temperature Tc(10
7K) has been developed. (For example, Powder Metallurgy 1963 Spring Conference) This is a traditional Y-
Oa-Cu-0 system high temperature superconductor (critical temperature Tc90K
), and it is attracting attention because it does not require the use of expensive raw materials such as yttrium and barium-11. For example, there is a superconducting wire that utilizes a high-temperature 'R conductor. This involves mixing, granulating, and calcining raw materials that exhibit superconducting properties after firing, then crushing them, filling them in a sheath material such as silver, and rolling them.

再熱処理して、線材化したものであるにの超電導線材は
加工性にも優れ、超電導特性も良好であり、大型・高磁
場マグネットなどの超電導体として大変優れている。
Superconducting wire, which has been reheated and made into wire, has excellent workability and good superconducting properties, making it an excellent superconductor for large, high-field magnets, etc.

(発明が解決しようとする課題) ところが、B1−Pb−5r−Ca−Cu−0系超電導
体には、次のような解決すべき課題がある。即ち、高い
臨界温度を有する超電導体を得るには長時間の焼結が必
要で、またセラミックス一般の製造方法である同相反応
法では高い臨界温度を有する超電導体ができにくい。そ
のため、ロット毎に9!A遺された超電導体に流せる電
流密度に大きなバラツキが生じる。このことは超電導体
をエネルギー機器に使用した場合、超電導線が安定した
電流密度が得られないことになり、安定した゛電流密度
を有する超電導体が望まれていた。
(Problems to be Solved by the Invention) However, the B1-Pb-5r-Ca-Cu-0 based superconductor has the following problems to be solved. That is, obtaining a superconductor with a high critical temperature requires long sintering, and it is difficult to produce a superconductor with a high critical temperature using the in-phase reaction method, which is a common manufacturing method for ceramics. Therefore, 9 per lot! A: Large variations occur in the current density that can be passed through the remaining superconductor. This means that when a superconductor is used in an energy device, a stable current density cannot be obtained from the superconducting wire, and a superconductor having a stable current density has been desired.

本発明は上記要望に鑑みなされたもので、電流密度のバ
ラツキの小さい安定した特性を有する超電導体およびそ
の製造方法を提供することを目的とするものである。
The present invention was made in view of the above-mentioned needs, and it is an object of the present invention to provide a superconductor having stable characteristics with little variation in current density, and a method for manufacturing the same.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) かかる目的を達成するために1本発明は、ビスマス(8
1)O鉛(Pb)Oストロンチウム(Sr)Oカルシウ
ム(Ca)O銅(Cu)O酸素(O)から成る酸化物超
電導体において、少なくとも釦の出発原料を四酸化三鉛
(Pb、 o、 )を用いることを特徴とする。
(Means for Solving the Problems) In order to achieve the above object, one aspect of the present invention is to use bismuth (8
1) In an oxide superconductor consisting of O lead (Pb) O strontium (Sr) O calcium (Ca) O copper (Cu) O oxygen (O), at least the starting material for the button is trilead tetroxide (Pb, o, ).

(作  用) 鉛の出発原料に四酸化三鉛(Pb3O、)を用いること
により、四酸化三鉛の分解過程で放出する酸素により、
超電導体の酸素欠損をおぎない、電流密度のバラツキを
少なくすることができる。
(Function) By using trilead tetroxide (Pb3O, ) as the starting material for lead, the oxygen released during the decomposition process of trilead tetroxide
It is possible to prevent oxygen vacancies in the superconductor and reduce variations in current density.

(実 施 例) 以下に本発明の第1の実施例を詳細に説明する。(Example) A first embodiment of the present invention will be described in detail below.

まず、酸化ビスマス(BiaO3)t  炭酸ストロン
チウム(SrCO,)O炭酸カルシウム(CaCO,)
 、酸化銅(Cub) 、さらに四酸化三鉛(Pb、 
o4)の粉末をそれぞれBin、、Pb0..5r1C
a1Cu、、、Oyの組成比の割合で秤量する。これら
の原料粉末を十分に混合した後、この粉末を空気中で8
50℃で焼成する。この工程によりB1−Pb−5r−
Ca−Cu五酸成分金属酸化物形成される。さらに、こ
の仮焼粉をアセトンとともに混器・粉砕した後、酸素雰
囲気中で850℃で熱処理する。そしてこの粉末をアセ
トンと共に粉砕し、微細粉を得る。この粉末を銀製のシ
ースに充填し。
First, bismuth oxide (BiaO3), strontium carbonate (SrCO,), calcium carbonate (CaCO,)
, copper oxide (Cub), and trilead tetroxide (Pb,
o4) powders as Bin, , Pb0. .. 5r1C
It is weighed according to the composition ratio of a1Cu, . . . Oy. After thoroughly mixing these raw material powders, this powder is heated in air for 80 minutes.
Bake at 50°C. Through this step, B1-Pb-5r-
A Ca-Cu pentate component metal oxide is formed. Furthermore, this calcined powder is mixed with acetone and crushed, and then heat-treated at 850° C. in an oxygen atmosphere. This powder is then ground with acetone to obtain a fine powder. Fill a silver sheath with this powder.

冷間圧延法により引伸し、再熱処理して超電導線材を得
る。
The superconducting wire is drawn by cold rolling and reheated to obtain a superconducting wire.

このようにして得られた超電導線材の複数のロフトの電
流密度特性を第1図に示す、第1図において縦軸には分
布度数を、横軸には電流密度のバラツキをそれぞれとり
1曲線Aは、従来の鉛の出発原料として酸化鉛(Pbo
)を用いた場合を示し、曲線Bは本発明の鉛の出発材料
として四酸化三鉛(Pb3O4)を用いた場合を示す。
The current density characteristics of multiple lofts of the superconducting wire obtained in this way are shown in Figure 1. In Figure 1, the vertical axis represents the distribution frequency, and the horizontal axis represents the variation in current density. Lead oxide (Pbo) is used as the conventional starting material for lead.
) is used, and curve B shows the case where trilead tetroxide (Pb3O4) is used as the starting material for lead of the present invention.

この結果かられかるように、本実施例における超電導体
はロット毎の電流密度のバラツキが小さく安定している
とともに、電流密度が改善されている。このように、安
定した電流密度を有することは超電導マグネット、超電
導限流器等の超電導エネルギー機器を作る上で重要であ
る。
As can be seen from these results, in the superconductor of this example, the variation in current density from lot to lot is small and stable, and the current density is improved. Thus, having a stable current density is important in producing superconducting energy devices such as superconducting magnets and superconducting current limiters.

このようにロフト毎の電流密度のバラツキが小さくなっ
た理由は、概略以下のように考えられる。
The reason why the variation in current density for each loft is reduced in this way is considered to be roughly as follows.

酸化物系超電導体は焼成時の酸素分圧の微妙な変化で酸
素含有率が変化し、この酸素含有率の変化が電流密度の
バラツキとなる。そこで比較的低温(400〜500℃
)で分解して酸素を放出する四酸化三鉛(Pblo、 
)を用いることにより酸素含有率が雰囲気によらず一定
となり特性が安定する。
In oxide superconductors, the oxygen content changes due to subtle changes in oxygen partial pressure during firing, and this change in oxygen content causes variations in current density. Therefore, the temperature is relatively low (400 to 500℃).
Trilead tetroxide (Pblo,
), the oxygen content becomes constant regardless of the atmosphere and the characteristics are stabilized.

さらに本発明における製造方法の第2の実施例を説明す
る。
Furthermore, a second embodiment of the manufacturing method according to the present invention will be described.

酸化ビスマス(Bi203)?炭酸ストロンチウム(S
rCO3)−炭酸カルシウム(CaCO,) 、酸化銅
(Cub) 。
Bismuth oxide (Bi203)? Strontium carbonate (S
rCO3) - Calcium carbonate (CaCO,), copper oxide (Cub).

さらに四酸化三鉛(PbaOJの粉末をそれぞれ[31
1+、tPb6..5r1Ca、Cu1.、Oyの組成
比の割合で秤量する。
Furthermore, powder of trilead tetroxide (PbaOJ) was added to [31
1+, tPb6. .. 5r1Ca, Cu1. , Oy.

まず、酸化ビスマス(Diミオ0)O炭酸ストロンチウ
ム(SrCOl)O炭酸カルシウム(CaCOl)O酸
化(Cub)の原料粉末を十分に混合した後、この粉末
を空気中で850℃で焼成する。 さらに、この仮焼粉
に四化酸三鉛(Pb1o4)の粉末を添加し、?g、合
した後。
First, raw material powders of bismuth oxide (DiMio0)O strontium carbonate (SrCOI)Ocalcium carbonate (CaCOI)O oxide (Cub) are thoroughly mixed, and then this powder is fired at 850°C in air. Furthermore, trilead tetroxide (Pb1o4) powder is added to this calcined powder. g. After combining.

酸素雰囲気中で850℃で熱処理する。 この粉末をア
セト、ンと共に粉砕し、微細粉を得る。この粉末を銀製
のシースに充填し、冷間圧延法により引伸し、再熱処理
して超電導線材を得る。
Heat treatment is performed at 850° C. in an oxygen atmosphere. This powder is ground with acetone to obtain a fine powder. This powder is filled into a silver sheath, stretched by cold rolling, and reheated to obtain a superconducting wire.

この製造方法により得られた超電導線材の複数のロフト
の電流密度特性を第2図に示す。第2図は第1図と同様
に縦軸には分布度数を、横軸には電流密度のバラツキを
とったもので、曲線Δ、Bはそれぞれ前記第1の実施例
の曲線A、Hに対応し、曲線Cは第2の実施例の仮焼粉
に四酸化三鉛(Pb30.)を添加した場合である。
FIG. 2 shows the current density characteristics of multiple lofts of the superconducting wire obtained by this manufacturing method. In FIG. 2, like FIG. 1, the vertical axis shows the distribution frequency, and the horizontal axis shows the variation in current density, and the curves Δ and B correspond to the curves A and H of the first embodiment, respectively. Correspondingly, curve C is the case where trilead tetroxide (Pb30.) is added to the calcined powder of the second example.

この結果かられかるように、第2の実施例における超電
導体は第1の実施例に比較してロット毎の電流密度のバ
ラツキの小ささあまり変わらないが、更に電流密度が改
善させている。このように。
As can be seen from this result, the superconductor in the second example does not have much difference in the variation in current density from lot to lot compared to the first example, but the current density is further improved. in this way.

更に改善された電流密度を有する超電導体が得られるの
は概略以下のように考えられる。四酸化三鉛(Pb3O
、 )添加効果のメカニズムは第1の実施例の作用と同
じであるが、仮焼粉を再び熱処理した場合、酸素雰囲気
中で熱処理してM素置圧の微妙な影響で一部を生じる酸
素含有率の変化を四酸化三鉛(Pb30.)が放出する
酸素で安定化するためである。
The reason why a superconductor having a further improved current density can be obtained is generally considered to be as follows. Trilead tetroxide (Pb3O
, ) The mechanism of the addition effect is the same as the effect of the first example, but when the calcined powder is heat-treated again, some oxygen is generated due to the subtle influence of the M-placement pressure when the calcined powder is heat-treated in an oxygen atmosphere. This is to stabilize changes in the content rate with oxygen released by trilead tetroxide (Pb30.).

前記した実施例では、ビスマス、ストロンチウム、カル
シウム、銅の原料に酸化物及び炭酸化物を用いたが、焼
結して酸化物になるものであれば何でもよく1例えば水
酸化物等であっても同じ効果が得られることはいうまで
もない、また、ビスマス、鉛、ストロンチウム、カルシ
ウム、銅の組成も上記実施例に限定されるものではない
In the above embodiments, oxides and carbonates were used as raw materials for bismuth, strontium, calcium, and copper, but any material may be used as long as it becomes an oxide when sintered. It goes without saying that the same effect can be obtained, and the compositions of bismuth, lead, strontium, calcium, and copper are not limited to those in the above embodiments.

〔発明の効果〕 以上述べたように1本発明によれば、ビスマス(Bi)
O鉛(Pb) 、ストロンチウム(Sr) 、カルシウ
ム(Ca)O銅(Cu)O酸素(O)から成る超電導体
において少なくも鉛の出発原料に四酸化三鉛(Pb、 
O,)を用いることにより、電流密度のバラツキの少な
い安定した特性を有する超電導体を提供することができ
る。
[Effects of the Invention] As described above, according to the present invention, bismuth (Bi)
In a superconductor consisting of lead (Pb), strontium (Sr), calcium (Ca), copper (Cu), oxygen (O), trilead tetroxide (Pb,
By using O, ), it is possible to provide a superconductor having stable characteristics with little variation in current density.

また1本発明によれば、ビスマス(Bi) 、鉛(Pb
)。
Furthermore, according to the present invention, bismuth (Bi), lead (Pb)
).

ストロンチウム(Sr) 、カルシウム(Ca)O銅(
Cu)。
Strontium (Sr), Calcium (Ca)O Copper (
Cu).

酸素(O)から成る超電導体の製造方法において、ビス
マス(口iLカルシウム(Ca)O銅(Cu)及び四酸
化三鉛(Pb、04)の各化合物を予め混合、仮焼した
後、その仮焼粉を焼成するか、あるいはビスマス([l
i) 、ストロンチウム(Sr)Oカルシウム(Ca)
 、銅(Cu)の各化合物番予め混合、仮焼し、その仮
焼粉に四酸化三鉛(Pb、3O4)を添加した後焼成す
るようにしたので電流密度のバラツキの小さい安定した
特性を有する超電導体の製造方法を得ることができる。
In a method for manufacturing a superconductor consisting of oxygen (O), compounds of bismuth (calcium (Ca), copper (Cu), and trilead tetroxide (Pb, 04) are mixed in advance and calcined, and then the Either baking powder or baking bismuth ([l
i) , Strontium (Sr) O Calcium (Ca)
, each compound number of copper (Cu) was premixed and calcined, and trilead tetroxide (Pb, 3O4) was added to the calcined powder before firing, resulting in stable characteristics with little variation in current density. A method for manufacturing a superconductor can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例による超電導体の効果を示す
電流密度特性図で、第2図は本発明の他の実施例による
超電導体の効果を示す電流密度特性図である。 A・・・従来の特性曲線 B、C・・・本発明による特性曲線 代理人 弁理士 則 近 憲 佑 同  第子丸 健
FIG. 1 is a current density characteristic diagram showing the effect of a superconductor according to one embodiment of the present invention, and FIG. 2 is a current density characteristic diagram showing the effect of a superconductor according to another embodiment of the present invention. A...Conventional characteristic curve B, C...Characteristic curve according to the present invention Patent attorney Yudo Nori Chika Ken Daishimaru

Claims (3)

【特許請求の範囲】[Claims] (1)ビスマス(Bi)、鉛(Pb)、ストロンチウム
(Sr)、カルシウム(Ca)、銅(Cu)、酸素(O
)から成る超電導体において、少くとも鉛の出発原料に
四酸化三鉛(Pb_3O_4)を用いることを特徴とす
る超電導体。
(1) Bismuth (Bi), lead (Pb), strontium (Sr), calcium (Ca), copper (Cu), oxygen (O
), characterized in that trilead tetroxide (Pb_3O_4) is used at least as a starting material for lead.
(2)ビスマス(Bi)、鉛(Pb)、ストロンチウム
(Sr)、カルシウム(Ca)、銅(Cu)、酸素(O
)から成る超電導体の製造方法において、ビスマス(B
i)Oストロンチウム(Sr)、カルシウム(Ca)、
銅(Cu)及び四酸化二鉛(Pb_3O_4)の各化合
物を予め混合、仮焼した後、その仮焼粉を焼成すること
を特徴とする超電導体の製造方法。
(2) Bismuth (Bi), lead (Pb), strontium (Sr), calcium (Ca), copper (Cu), oxygen (O
) in a method for manufacturing a superconductor consisting of bismuth (B
i) O strontium (Sr), calcium (Ca),
A method for producing a superconductor, which comprises mixing and calcining compounds of copper (Cu) and dilead tetroxide (Pb_3O_4) in advance, and then firing the calcined powder.
(3)ビスマス(Bi)、鉛(Pb)、ストロンチウム
(Sr)、カルシウム(Ca)、銅(Cu)、酸素(O
)から成る超電導体の製造方法において、ビスマス(B
i)、ストロンチウム(Sr)、カルシウム(Ca)、
銅(Cu)の各化合物を予め混合、仮焼し、その仮焼粉
に四酸化三鉛(Pb_3O_4)を添加した後焼成する
ことを特徴とする超電導体の製造方法。
(3) Bismuth (Bi), lead (Pb), strontium (Sr), calcium (Ca), copper (Cu), oxygen (O
) in a method for manufacturing a superconductor consisting of bismuth (B
i), Strontium (Sr), Calcium (Ca),
A method for manufacturing a superconductor, which comprises mixing and calcining copper (Cu) compounds in advance, adding trilead tetroxide (Pb_3O_4) to the calcined powder, and then firing.
JP63141621A 1988-06-10 1988-06-10 Superconductor and production thereof Pending JPH01313326A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63141621A JPH01313326A (en) 1988-06-10 1988-06-10 Superconductor and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63141621A JPH01313326A (en) 1988-06-10 1988-06-10 Superconductor and production thereof

Publications (1)

Publication Number Publication Date
JPH01313326A true JPH01313326A (en) 1989-12-18

Family

ID=15296301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63141621A Pending JPH01313326A (en) 1988-06-10 1988-06-10 Superconductor and production thereof

Country Status (1)

Country Link
JP (1) JPH01313326A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0226879A (en) * 1988-07-13 1990-01-29 Toray Ind Inc Superconducting material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0226879A (en) * 1988-07-13 1990-01-29 Toray Ind Inc Superconducting material

Similar Documents

Publication Publication Date Title
JPH01313326A (en) Superconductor and production thereof
JPH06176637A (en) Manufacture of bi oxide superconductive wire
JP3165770B2 (en) Manufacturing method of oxide superconductor
EP0676817B1 (en) Method of preparing high-temperature superconducting wire
JPS63233066A (en) Production of superconductive body
JP3287028B2 (en) Tl, Pb-based oxide superconducting material and method for producing the same
JP2803823B2 (en) Method for producing T1-based oxide superconductor
JP4011130B2 (en) Manufacturing method of oxide superconducting wire
EP0446552B1 (en) Superconductive compounds and process for producing said compounds
US5851954A (en) Superconducting oxide-based composite material
JPH0574531B2 (en)
JPH06176636A (en) Manufacture of bi oxide superconductor
JP2634187B2 (en) Method for producing thallium-based oxide superconductor
JP2803819B2 (en) Manufacturing method of oxide superconductor
JP2635408B2 (en) Oxide superconductor and manufacturing method thereof
JP2648524B2 (en) Ceramics and their manufacturing method
JPH061616A (en) Production of bi based oxide superconductor
JPH01270517A (en) Production of bi-based oxide superconducting material
JP2596021B2 (en) Manufacturing method of superconducting material
JPH08337424A (en) Production of bismuth-containing oxide superconducting wire
JPH05182541A (en) Manufacture of bismuth group oxide superconductor
JPH05182542A (en) Manufacture of bismuth group oxide superconductor
JPS63248721A (en) Superconductor
JPH02271920A (en) Production of superconductor oxide material
JPH02239120A (en) Production of bismuth-based oxide superconducting material