JPH0226879A - Superconducting material - Google Patents

Superconducting material

Info

Publication number
JPH0226879A
JPH0226879A JP63175366A JP17536688A JPH0226879A JP H0226879 A JPH0226879 A JP H0226879A JP 63175366 A JP63175366 A JP 63175366A JP 17536688 A JP17536688 A JP 17536688A JP H0226879 A JPH0226879 A JP H0226879A
Authority
JP
Japan
Prior art keywords
superconducting
coating
reinforcing material
oxide
precursor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63175366A
Other languages
Japanese (ja)
Other versions
JP2653109B2 (en
Inventor
Takanao Arima
孝尚 有馬
Hitoshi Shinomasa
均 信正
Kazuharu Shimizu
一治 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP63175366A priority Critical patent/JP2653109B2/en
Publication of JPH0226879A publication Critical patent/JPH0226879A/en
Application granted granted Critical
Publication of JP2653109B2 publication Critical patent/JP2653109B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To obtain a superconducting material having superior superconducting characteristics such as transition temp. of superconductivity, etc., and having moreover high strength by coating a reinforcing material with a superconducting ceramic material consisting of a compound oxide having a specified compsn. contg. Bi, Pb, Sr, Ca and Cu. CONSTITUTION:A terget superconducting material is obtd. by coating a reinforcing material consisting of a carbon material, ceramic material, metallic material, glass material, etc., with a superconducting ceramic material expressed by the formula. The coating is performed by, for example, carrying out sputtering in oxidizing atmosphere to a target comprising a molded body of each oxide of Bi, Pb, Sr, Ca and Cu, or of powder of carbonates, etc., of each metal, as their precursor, to coat thus the reinforcing material with each oxide or carbonate of the element at the same time. Then, superconducting coating is formed by causing solid phase reaction of each oxide or precursor by calcining said coating layer for each reinforcing material. Suitable thickness of the superconductive coating is 0.1-100mum.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、超伝導転移温度等の超伝導特性が高いばか
りか、強度が高く、核融合炉、電磁流体発電機、加速器
、電動機や発電機等の回転電気機器、磁気分離機、磁気
浮上列車、磁気浮上自動車、核磁気共鳴断層撮影診断装
置、磁気推進船、電子ビーム露光装置、単結晶製造装置
、各種実験装置等のマグネットコイル用材料として適し
、また、送電線、エネルギー貯蔵器、変圧器、整流器、
調相機等、電力損失が問題になる用途に適し、ざらに、
ジョセフソン素子、5QLJID素子等の素子として適
し、ざらにまた、赤外線探知装置、磁気遮蔽材等として
適した超伝導材に関する。
[Detailed Description of the Invention] (Field of Industrial Application) This invention not only has high superconducting properties such as superconducting transition temperature, but also has high strength, and is suitable for use in nuclear fusion reactors, magnetohydrodynamic generators, accelerators, electric motors, and power generators. Materials for magnet coils in rotating electrical equipment such as machines, magnetic separators, magnetic levitation trains, magnetic levitation vehicles, nuclear magnetic resonance tomography diagnostic equipment, magnetic propulsion ships, electron beam exposure equipment, single crystal manufacturing equipment, various experimental equipment, etc. Also suitable as power transmission lines, energy storage, transformers, rectifiers,
Suitable for applications where power loss is a problem, such as phase modulators, and
The present invention relates to a superconducting material suitable as an element such as a Josephson element or a 5QLJID element, and also suitable as an infrared detection device, a magnetic shielding material, etc.

(従来の技術〉 超伝導材としては、従来、化合物系超伝導材であるNb
3SnやV3Gaが知られている。これらは、それ自身
が線状またはテープ状をしているものであるが、強度が
低い。また、超伝導転移温度もNb33nで18KSV
3Gaで15にと低い。
(Conventional technology) Conventionally, Nb, which is a compound-based superconducting material, has been used as a superconducting material.
3Sn and V3Ga are known. These are linear or tape-shaped, but have low strength. Also, the superconducting transition temperature is 18KSV for Nb33n.
It is as low as 15 at 3Ga.

一方、特開昭55−124907号公報には、炭素繊維
にNbNを被覆してなる超伝導材が記載されている。こ
の超伝導材は、上述した化合物系のものにくらべて強度
には優れているものの、超伝導転移温度は18にと、や
はり低い。
On the other hand, JP-A-55-124907 describes a superconducting material made of carbon fibers coated with NbN. Although this superconducting material has superior strength compared to the above-mentioned compound-based materials, its superconducting transition temperature is still low at 18.

また、合金系超伝導材としてNbTiがおるが、強度に
は優れるものの、超伝導転移温度が11にでおり、これ
もまた低い。
NbTi is also used as an alloy superconducting material, but although it has excellent strength, its superconducting transition temperature is 11, which is also low.

ざらに、PbMo6S8がめる。これは、シェブレル型
と呼ばれるものだが、超伝導転移温度は15.3Kにす
ぎない。また、化合物系のものと同様、強度が低い。
Roughly, PbMo6S8 is included. This is called the Chevrel type, but the superconducting transition temperature is only 15.3K. Also, like compound-based materials, its strength is low.

ざらにまた、B i −8r−Ca−Cu−0系の超伝
導材がおり、これは超伝導転移温度が110に程度にも
達するが、少なくとも3つの超伝導相が存在するために
、抵抗が零になる温度を100に以上とするためには長
時間の熱処理が必要であり、実用的でない。
In addition, there is a B i -8r-Ca-Cu-0 system superconducting material, which has a superconducting transition temperature of about 110°C, but due to the presence of at least three superconducting phases, the resistance is low. In order to increase the temperature at which the temperature becomes zero to 100 or higher, a long heat treatment is required, which is not practical.

(発明が解決しようとする課題〉 この発明の目的は、従来の超伝導材の上述した問題点を
解決し、超伝導転移温度等の超伝導特性が優れているば
かりか、強度が高く、しかも比較的容易に製造できる超
伝導材を提供するにある。
(Problems to be Solved by the Invention) The purpose of the present invention is to solve the above-mentioned problems of conventional superconducting materials, and to provide not only excellent superconducting properties such as superconducting transition temperature, but also high strength. The object of the present invention is to provide a superconducting material that can be manufactured relatively easily.

(課題を解決するための手段) 上記目的を達成するために、この発明においては、補強
材に、下記一般式で表わされる超伝導セラミックス材料
を被覆してなることを特徴とする超伝導材が提供される
(Means for Solving the Problems) In order to achieve the above object, the present invention provides a superconducting material characterized in that a reinforcing material is coated with a superconducting ceramic material represented by the following general formula. provided.

(B IP b  ) (S rl−q Caq) x
i−p   p CU、O7 ただし、O<p<0.8 0.3<q<0.8 1くXく3 1 <V<3 3<z<5 この発明の超伝導材は、いわゆる基材でおる補強材と、
この補強材の上に形成された、超伝導セラミックス材料
からなる被覆(以下、超伝導被覆という)とを有する。
(B IP b) (S rl-q Caq) x
i-p p CU, O7 However, O < p < 0.8 0.3 < q < 0.8 1 x x 3 1 < V < 3 3 < z < 5 The superconducting material of this invention A reinforcing material made of wood,
A coating made of a superconducting ceramic material (hereinafter referred to as superconducting coating) is formed on the reinforcing material.

超伝導被覆の上に、銅や銀、アルミニウム等の金属から
なる被覆をざらに形成することもあるが、これは、超伝
導特性をより安定させる目的のもので、必ずしも必要な
ものではない。
A coating made of a metal such as copper, silver, or aluminum may be roughly formed on the superconducting coating, but this is for the purpose of making the superconducting properties more stable and is not necessarily necessary.

補強材としては、テープ状、シート状、箔状、板状、繊
維状、線状等、いろいろな形態のものを使用することが
できる。横断面形状も、円形、楕円形、方形、そら立形
、ひようたん形等、いろいろある。厚みや太さは任意で
よい。補強材は、中空でおってもよい。中空であると、
使用時にその中空部に液体ヘリウムや液体窒素等の冷媒
を流すことができる。
As the reinforcing material, various forms such as tape, sheet, foil, plate, fiber, and wire can be used. There are various cross-sectional shapes, including circular, oval, square, vertical, and gourd shapes. The thickness and thickness may be arbitrary. The reinforcement may be hollow. If it is hollow,
During use, a refrigerant such as liquid helium or liquid nitrogen can be flowed into the hollow part.

また、繊維状の補強材は、超伝導被覆への磁束の侵入を
少なくして発熱を抑え、またその侵入速度を遅くして単
位時間当りの発熱量を抑え、さらに冷却効果を高めて超
伝導特性を安定させるために、極細単繊維からなる繊維
束であるのが好ましい。たとえば、4〜10um程度の
太さの単繊維を束ねたものを使用することができる。こ
の場合、超伝導被覆は各単繊維に形成するようにする。
In addition, the fibrous reinforcing material reduces the penetration of magnetic flux into the superconducting coating, suppressing heat generation, slowing down the penetration speed to suppress the amount of heat generated per unit time, and further increasing the cooling effect, making it superconducting. In order to stabilize the properties, it is preferable that the fiber bundle is made of ultrafine single fibers. For example, a bundle of single fibers having a thickness of about 4 to 10 um can be used. In this case, a superconducting coating is formed on each single fiber.

補強材は、後述する温度に耐える材料からなるものであ
ればよく、下記のようなものを材料として使用すること
ができる。
The reinforcing material only needs to be made of a material that can withstand the temperatures described below, and the following materials can be used as the reinforcing material.

炭素系材料:ポリアクリロニトリル系炭素、ピッチ系炭
素等。
Carbon-based materials: polyacrylonitrile-based carbon, pitch-based carbon, etc.

セラミックス系材料:アルミナ、サファイア、アルミナ
−シリカ、マグ ネシア、部分安定化ジル コニア、ジルコニア、イ ツトリア、ランタニア、 シリコンカーバイド、窒 化シリコン、炭化チタン、 窒化ニオブ、窒化ホウ素、 チタン酸アルカリ、ケイ 酸鉛カリ、チタン酸スト ロンチウム、ホウ化チタ ン、ホウ化ジルコニウム 等。チタンと、シリコン と、炭素と、酸素とから なるセラミックス(たと えば、宇部興産株式会社 製のチラノm維)等。
Ceramic materials: alumina, sapphire, alumina-silica, magnesia, partially stabilized zirconia, zirconia, ittria, lanthania, silicon carbide, silicon nitride, titanium carbide, niobium nitride, boron nitride, alkali titanate, lead potassium silicate, titanium Strontium oxide, titanium boride, zirconium boride, etc. Ceramics made of titanium, silicon, carbon, and oxygen (for example, Tyrano M fiber manufactured by Ube Industries, Ltd.), etc.

金属系材料:w、cu、cr、MOlNl、V、Nb、
Y、Zr、B、Ag、pt 等。これら金属の少なくとも1種 を主成分とする合金(たとえば、 55〜59%N+、1a〜12% Mo、0.04〜0.15%C合 金)等。
Metallic materials: w, cu, cr, MOLNl, V, Nb,
Y, Zr, B, Ag, pt etc. Alloys containing at least one of these metals as a main component (for example, 55-59% N+, 1a-12% Mo, 0.04-0.15% C alloys), etc.

ガラス系材料:Eガラス、Sガラス等。Glass materials: E glass, S glass, etc.

これらの材料のうち、金属は、アモルファス構造をもつ
ものであってもよい。また、補強材には、上述した材料
を混用することもできる。たとえば、ポリアクリロニト
リル系炭素にシリコンカーバイドを被覆したものを使用
することができる。
Among these materials, metal may have an amorphous structure. Moreover, the materials mentioned above can also be used in combination for the reinforcing material. For example, polyacrylonitrile carbon coated with silicon carbide can be used.

ところで、この発明の超伝導材は、上述したように、補
強材に超伝導被覆を形成してなるものであるが、超伝導
被覆を形成する方法には、たとえば以下において説明す
るような方法がある。なお、超伝導被覆の厚みは、用途
等にもよるが、0.1〜100μm程度である。また、
銀や金をバインダーとして分散せしめてもよい。
By the way, as mentioned above, the superconducting material of the present invention is formed by forming a superconducting coating on a reinforcing material, and the method for forming the superconducting coating includes, for example, the method described below. be. Note that the thickness of the superconducting coating is approximately 0.1 to 100 μm, although it depends on the application. Also,
Silver or gold may be dispersed as a binder.

さて、第1の方法は、B i 、PbSSr、Caおよ
びCuの各酸化物や、その前駆体でめる炭酸化物等の粉
末の成形体をターゲットとし、酸化性雰囲気下における
スパッタリングによって補強材に上記各元素の酸化物や
その前駆体の被覆を同時に形成した後、補強材ごと焼成
して各酸化物やその前駆体を固相反応させ、超伝導被覆
とする方法である。もっとも、各酸化物やその前駆体の
被覆は、別々に順次形成してもよい。
Now, the first method targets a molded body of powder such as B i , PbSSr, Ca, and Cu oxides, or carbonates made with their precursors, and transforms it into a reinforcing material by sputtering in an oxidizing atmosphere. This is a method in which a coating of oxides of each of the above elements or their precursors is formed at the same time, and then the reinforcing material is fired to cause a solid phase reaction between the oxides and their precursors to form a superconducting coating. However, the coatings of each oxide or its precursor may be formed separately and sequentially.

第2の方法は、第1の方法と同様にスパッタリングによ
る方法ではあるが、この方法は、ターゲットとして、各
酸化物やその前駆体が同相反応したもの、または、固相
反応がある程度進んだものを使用する。すなわち、この
方法は、まず、BPb、Sr、CaおよびCuの各酸化
物やその前駆体の粉末を混合し、軽く焼成して若干の固
相反応を行わせた後、粉砕する。必要に応じて焼成、粉
砕を繰り返した後、所望のターゲットの形に成形し、2
度目の焼成を行って各酸化物やその前駆体を同相反応さ
せ、これをターゲットとして使用する。以下、第1の方
法と同様にして超伝導被覆を形成する。
The second method uses sputtering like the first method, but this method uses targets that have undergone an in-phase reaction of each oxide or its precursor, or that have undergone a certain degree of solid-phase reaction. use. That is, in this method, first, powders of BPb, Sr, Ca, and Cu oxides and their precursors are mixed, lightly calcined to cause a slight solid phase reaction, and then pulverized. After repeating firing and crushing as necessary, mold into the desired target shape, and
A second firing is performed to cause an in-phase reaction between each oxide and its precursor, and this is used as a target. Thereafter, a superconducting coating is formed in the same manner as in the first method.

第3の方法は、ゾル・ゲル法である。この方法におイテ
は、Bi、Pb、Sr、CaおよびCuのアルコキシド
をゲル化して補強材に付着させた後、焼成して超伝導被
覆とする方法である。アルコキシド以外に、種々の可溶
性塩を、適当な条件、たとえばDHを上げること等によ
って水酸化物等として沈殿させることもできる。
The third method is the sol-gel method. The advantage of this method is that alkoxides of Bi, Pb, Sr, Ca, and Cu are gelled and adhered to the reinforcing material, and then fired to form a superconducting coating. In addition to alkoxides, various soluble salts can also be precipitated as hydroxides and the like by appropriate conditions, such as raising the DH.

第4の方法は、補強材に、化学気相蒸着法によって、B
 + 、Pb、Sr、CaおよびCuの酸化物またはそ
の前駆体の被覆を形成した後、焼成して超伝導被覆とす
る方法である。前駆体を使用する場合、揮発性の原料を
使用するが、そのような揮発性原料としては、アセチル
アセトン、ヘキサフルオロアセチルアセトン、トリフル
オロアセチルアセ、トン、ジピバロイルメタン、テノイ
ルトリフルオロアセトン、フルイルトリフルオロアセト
ン等のβ−ジケトン錯体を使用することができる。
A fourth method is to apply B to the reinforcing material by chemical vapor deposition.
This is a method in which a coating of oxides of Pb, Sr, Ca, and Cu or their precursors is formed and then fired to form a superconducting coating. When using precursors, volatile raw materials are used, such as acetylacetone, hexafluoroacetylacetone, trifluoroacetylacetone, dipivaloylmethane, thenoyltrifluoroacetone, fluoroacetate, etc. β-diketone complexes such as yltrifluoroacetone can be used.

第5の方法は、いわゆる霧化法である。この方法は、B
ib Pb% Sr、CaおよびCLJを含む化合物、
たとえばこれら元素の硝酸塩、硫酸塩等の無機酸塩や、
ステアリン酸塩、ナフテン酸塩等の有りa酸塩などの溶
液を霧化し、これを高温の補強材に接触させ、ざらに焼
成して超伝導被覆を形成する方法である。霧化する方法
としては、たとえば、スプレー法や、圧電素子からなる
振動板によって溶液を高周波で振動させる方法等を用い
ることができる。
The fifth method is the so-called atomization method. This method is B
ib Pb% Sr, a compound containing Ca and CLJ,
For example, inorganic acid salts such as nitrates and sulfates of these elements,
This is a method in which a solution of acetic acid salts such as stearates and naphthenates is atomized, brought into contact with a high-temperature reinforcing material, and roughly fired to form a superconducting coating. As a method of atomizing, for example, a spray method, a method of vibrating the solution at high frequency using a diaphragm made of a piezoelectric element, etc. can be used.

第6の方法は、B r、pb、sr、caおよびQuの
硝酸水溶液に増粘剤を加え、これで補強材を被覆した後
、シュウ酸水溶液に浸漬して各元素を共沈させ、ざらに
焼成して超伝導被覆とする方法である。増粘剤は、焼成
時に分解するものであればよく、ポリエチレングリコー
ル、ポリプロピレングリコール、セルロース、酢酸ビニ
ル、ポリビニルアルコール、デンプン、アラビアゴム等
を用いることができる。
The sixth method is to add a thickener to a nitric acid aqueous solution of B r, pb, sr, ca, and Qu, coat the reinforcing material with this, and then immerse it in an oxalic acid aqueous solution to co-precipitate each element. This method involves firing the material to form a superconducting coating. The thickener may be any thickener as long as it decomposes during baking, and polyethylene glycol, polypropylene glycol, cellulose, vinyl acetate, polyvinyl alcohol, starch, gum arabic, and the like can be used.

第7の方法は、補強材に、Bi、Pb、Sr、Caおよ
びCuの各酸化物を別々に、または同時に溶射した後、
焼成する方法である。
The seventh method is to spray each oxide of Bi, Pb, Sr, Ca, and Cu on the reinforcing material separately or simultaneously, and then
This is a method of firing.

上述した第1〜第7の方法において、焼成温度は700
〜900℃程度である。もっとも、第1、第2、第4、
第5、第7の方法においては、補強材への酸化物等の被
覆あるいは付着が600〜9oo’cの温度下で行われ
るのでおれば、焼成を必要としない場合もある。なあ、
焼成時間は1〜40時間程度、好ましくは1Q〜20時
間程度、ざらに好ましくは13〜17時間程度である。
In the first to seventh methods described above, the firing temperature is 700°C.
~900°C. However, the first, second, fourth,
In the fifth and seventh methods, sintering may not be necessary if the reinforcing material is coated with or adhered to the oxide, etc. at a temperature of 600 to 9 oo'c. Hey,
The firing time is about 1 to 40 hours, preferably about 1Q to 20 hours, and more preferably about 13 to 17 hours.

焼成雰囲気は、通常、空気であるが、適当な酸素分圧、
たとえば、酸素が0.1気圧でアルゴンが0.9気圧で
あるような雰囲気にすることもできるし、非酸化性雰囲
気とすることもできる。また、焼成時に加圧することも
できる。さらに、焼成中に酸素が逃げることがあり、そ
の場合は若干の酸素欠損を含むことになるが、それでも
構わない。欠損酸素量が多い場合は、イオン注入等の方
法によって酸素を補充することもできる。
The firing atmosphere is usually air, but an appropriate oxygen partial pressure,
For example, the atmosphere can be such that oxygen is at 0.1 atm and argon is at 0.9 atm, or it can be a non-oxidizing atmosphere. Further, pressure can be applied during firing. Furthermore, oxygen may escape during firing, and in that case, some oxygen vacancies will be included, but this is okay. If the amount of oxygen vacancies is large, oxygen can be replenished by methods such as ion implantation.

(実 施 例) 実施例1 補強材として、イツトリアを2.5モル%含む、厚み2
0μm、幅5mmのテープ状部分安定化ジルコニアを用
意した。
(Example) Example 1 Containing 2.5 mol% of ittria as a reinforcing material, thickness 2
A partially stabilized zirconia tape with a diameter of 0 μm and a width of 5 mm was prepared.

次に、上記テープ状部分安定化ジルコニアを連続的に送
りながら、スパッタリングによって超伝導被覆の前駆体
被覆を形成した。ターゲットとしては、Bi2O3、P
bO,SrCO3、CaCO3およびCuOの粉末をB
i:Pb:Sr:Ca:CIJが2:0.4:1.5:
1.5:2になるように混合した後、800℃で20時
間焼成して若干同相反応させ、再び粉末にし、混合した
ものをターゲット形状に成形し、さらに840’Cで2
0時間焼成したものを用い、これをテープ状部分安定化
ジルコニアの走行経路の両側に配置した。スパッタリン
グ後、前駆体被覆をテープ状部分安定化ジルコニアごと
酸素中にて820’Cで1時間焼成し、100’C/時
の速度で徐冷した。
Next, while continuously feeding the tape-shaped partially stabilized zirconia, a precursor coating of a superconducting coating was formed by sputtering. Targets include Bi2O3, P
The powders of bO, SrCO3, CaCO3 and CuO are
i:Pb:Sr:Ca:CIJ is 2:0.4:1.5:
After mixing at a ratio of 1.5:2, it was fired at 800°C for 20 hours to cause a slight in-phase reaction, powdered again, the mixture was molded into a target shape, and further heated at 840°C for 2
Those fired for 0 hours were used and placed on both sides of the running path of the tape-shaped partially stabilized zirconia. After sputtering, the precursor coating together with the partially stabilized zirconia tape was calcined in oxygen at 820'C for 1 hour and slowly cooled at a rate of 100'C/hour.

かくして、テープ状部分安定化ジルコニアの両面に、厚
みが1μmの(B ’ 0.84P bO,1B>(S
 ro、35CaO,65> 2.3 Cu1.4 o
5なる超伝導被覆を形成してなる超伝導材を得た。この
超伝導材の超伝導転移温度は、90にであった。また、
引張強度も110k(]/mm2と大変高かった。
Thus, on both sides of the tape-shaped partially stabilized zirconia, (B' 0.84P bO,1B>(S
ro, 35CaO, 65> 2.3 Cu1.4 o
A superconducting material having a superconducting coating of No. 5 was obtained. The superconducting transition temperature of this superconducting material was 90°C. Also,
The tensile strength was also very high at 110k(]/mm2.

実施例2 補強材として、炭素繊維束(単繊維の太さニアμm、単
繊維数:3000本)を十分に解繊してテープ状にした
ものを用いた。また、ターゲットトシテハ、B12O3
、PbO,SrCO3、CaCO3およびCuOの各粉
末をBi:Pb:3r:Ca:Cuが1 二〇、 2:
1 :1 :2になるように混合した後、750’Cで
10時間焼結して若干固相反応させ、再び粉末にし、混
合したものをターゲット形状に成形し、ざらに840℃
で20時間焼成してなるものを用いた。これらテープ状
炭素繊維束とターゲットとを用い、実施例1と同様にし
てテープ状炭素繊維束の各単繊維に前駆体被覆を施し、
ざらに酸素中で830°Cで10分間焼成した後、10
0’C/時の速度で徐冷し、各単繊維に、2μm厚みの
、(B’ 0.85PbO,15)(srO,5caO
,5> 1.7 Cu1.705.7なる超伝導被覆を
施してなる超伝導材を得た。
Example 2 As a reinforcing material, a carbon fiber bundle (single fiber thickness near μm, number of single fibers: 3000) was sufficiently defibrated into a tape shape. In addition, target Toshiteha, B12O3
, PbO, SrCO3, CaCO3 and CuO powder with Bi:Pb:3r:Ca:Cu of 120, 2:
After mixing at a ratio of 1:1:2, sintering at 750'C for 10 hours to cause a slight solid phase reaction, powder again, molding the mixture into a target shape, and roughly heating at 840'C.
The material obtained by firing for 20 hours was used. Using these tape-shaped carbon fiber bundles and targets, each single fiber of the tape-shaped carbon fiber bundles was coated with a precursor in the same manner as in Example 1,
After baking for 10 minutes at 830°C in rough oxygen, 10
It was slowly cooled at a rate of 0'C/hour, and each single fiber was coated with (B' 0.85PbO, 15) (srO, 5caO) with a thickness of 2 μm.
, 5 > 1.7 A superconducting material coated with a superconducting coating of Cu1.705.7 was obtained.

この超伝導材の超伝導転移温度は、80にでおった。ま
た、引張強度は150KMmm2と大変高かった。
The superconducting transition temperature of this superconducting material was 80. Moreover, the tensile strength was very high at 150 KMmm2.

実施例3 実施例2において、補強材を、炭素繊維束の各単繊維に
0.3μm厚みのSiCを被覆してなるものに変えた。
Example 3 In Example 2, the reinforcing material was changed to one in which each single fiber of the carbon fiber bundle was coated with 0.3 μm thick SiC.

SiCの被覆は、メチルトリクロロシランを熱分解し、
これをH2をキャリヤーガスとして1300’Cの炉内
に導入し、同時にこの炉内に実施例11で使用した炭素
繊維束を通過させることによって行った。
SiC coating thermally decomposes methyltrichlorosilane,
This was done by introducing H2 as a carrier gas into a 1300'C furnace and simultaneously passing the carbon fiber bundle used in Example 11 through the furnace.

得られた(B i   P b   )  (S rO
,50,830,17 C8□、5 ) 1.7 Cu1.705.7なる超伝
導被覆を有する超伝導材の超伝導転移温度は、80にで
あった。また、引張強度も150k(]/mm2と大変
高かった。
The obtained (B i P b ) (S rO
,50,830,17C8□,5) The superconducting transition temperature of the superconducting material having a superconducting coating of 1.7 Cu1.705.7 was 80. Moreover, the tensile strength was also very high at 150 k(]/mm2.

実施例4 実施例2において、補強材を、アルミナ繊維束に変えた
。これは、微粒子状のα−アルミナと、これと同量のA
l2O3を含む塩基性塩化アルミニウム水溶液を用いた
スラリー法によって得たもので、Al2O3組成率は9
9%以上、単繊維径は20μm、単繊維数は]000本
である。
Example 4 In Example 2, the reinforcing material was changed to an alumina fiber bundle. This consists of fine particulate α-alumina and the same amount of A.
It was obtained by a slurry method using a basic aluminum chloride aqueous solution containing l2O3, and the Al2O3 composition ratio was 9.
9% or more, the single fiber diameter is 20 μm, and the number of single fibers is ]000.

得られた(B ! 043P bO,17>  (S 
r o、5CaO,5> 1.7 Cu1.705.7
なる超伝導被覆を有する超伝導材の超伝導転移温度は、
82にであった。また、引張強度も100100kと高
いものであった。
Obtained (B!043P bO,17>(S
r o, 5CaO, 5 > 1.7 Cu1.705.7
The superconducting transition temperature of a superconducting material with a superconducting coating is
It was in 1982. Furthermore, the tensile strength was as high as 100,100k.

実施例5 実施例2において、補強材を、中空炭素繊維に銀を電解
メツキしてなるものに変えた。炭素繊維の太さは17μ
m、中空部の直径は約6μmである。また、銀メツキの
厚みは約3μmで、そのような炭素繊維3000本から
なる繊維束を使用した。
Example 5 In Example 2, the reinforcing material was changed to a hollow carbon fiber electrolytically plated with silver. The thickness of carbon fiber is 17μ
m, the diameter of the hollow part is about 6 μm. Further, the thickness of the silver plating was about 3 μm, and a fiber bundle consisting of 3000 such carbon fibers was used.

得られた(B !043Pb□、17)(Sr□、5C
aO,5> 1.67Cu1.705.7なる超伝導被
覆を有する超伝導材の超伝導転移温度は、86にでめっ
た。また、引張強度も約70kMmm2と高かった。
The obtained (B!043Pb□, 17)(Sr□, 5C
The superconducting transition temperature of a superconducting material with a superconducting coating of aO,5>1.67Cu1.705.7 was found to be 86. Furthermore, the tensile strength was as high as about 70 kmMmm2.

実施例6 補強材として実施例2で使用した炭素繊維束を用い、そ
の炭素繊維束を、700 ’Cの、TiCl2ガスと、
BCl3ガスと、水素ガスとの混合ガス中に通し、反応
析出によって各単繊維に厚みが0.3μmのTiB2被
覆を施した。
Example 6 The carbon fiber bundle used in Example 2 was used as a reinforcing material, and the carbon fiber bundle was treated with TiCl2 gas at 700'C.
Each single fiber was coated with TiB2 with a thickness of 0.3 μm by reaction precipitation by passing it through a mixed gas of BCl3 gas and hydrogen gas.

次に、各単繊維にTiB2が被覆された炭素繊維束をテ
ープ状にし、各単繊維に、上述した第5の方法、いわゆ
る霧化法によって前駆体被覆を施した。すなわち、化合
物の溶液として、2mmolの81  (NO3)3 
・5H20と、Q、5mmolのPb (NO3)2と
、2mmo+のSr (NO3) 2と、3mm01の
Ca (NO3)2 ・4H20と、3mmo lのC
U (NO3)2 ・3H20と、3mm0lノロ1重
量%硝酸水溶液と、110mlの水との混合液を用い、
これを、テープ状炭素繊維束を450°Cの雰囲気下に
走行させながら、その両側から噴霧した。噴霧は、酸素
ガスをキャリアガスとして、ノズル径がQ、3mmのス
プレーノズルを用いて行った。
Next, the carbon fiber bundle in which each single fiber was coated with TiB2 was made into a tape shape, and each single fiber was coated with a precursor by the above-mentioned fifth method, the so-called atomization method. That is, as a solution of the compound, 2 mmol of 81 (NO3)3
・5H20, Q, 5 mmol Pb (NO3)2, 2 mmo+ Sr (NO3) 2, 3 mm01 Ca (NO3)2 ・4H20, 3 mmol C
Using a mixed solution of U (NO3)2 3H20, 3 mm 0 liter 1 wt% aqueous nitric acid solution, and 110 ml water,
This was sprayed from both sides of the tape-shaped carbon fiber bundle while running it in an atmosphere at 450°C. Spraying was performed using a spray nozzle with a nozzle diameter of Q and 3 mm, using oxygen gas as a carrier gas.

次に、各単繊維に前駆体被覆を施してなる炭素繊維束を
、空気中にて830℃で3分間焼成した後、100℃/
時の速度で徐冷し、各単繊維に、10μm厚みの、(B
 I □、BIP t)o、tg>(S ’0.4 C
aO,6> 2 Cu1.2504.4なる超伝導被覆
を施してなる超伝導材を得た。この超伝導材の超伝導転
移温度は、92にであった。また、引張強度は50KM
mm2であった。
Next, the carbon fiber bundle formed by coating each single fiber with a precursor was fired in air at 830°C for 3 minutes, and then heated at 100°C/
Then, each single fiber was coated with 10 μm thick (B
I □, BIP t)o, tg>(S '0.4 C
A superconducting material with a superconducting coating of aO,6>2Cu1.2504.4 was obtained. The superconducting transition temperature of this superconducting material was 92. Also, the tensile strength is 50KM
It was mm2.

実施例7 補強材として実施例2で使用した炭素繊維束を用い、そ
の炭素繊維束を、700’Cの、NbCl5ガスと、窒
素ガスと、水素ガスとの混合ガス中に通し、反応析出に
よって各単繊維に厚みが0.3μmのNbN被覆を施し
た。
Example 7 The carbon fiber bundle used in Example 2 was used as a reinforcing material, and the carbon fiber bundle was passed through a mixed gas of NbCl5 gas, nitrogen gas, and hydrogen gas at 700'C to undergo reaction precipitation. Each single fiber was coated with NbN with a thickness of 0.3 μm.

次に、各単繊維にNbNが被覆された炭素繊維束を用い
、実施例6と同様にして各単繊維に前駆体被覆を施した
。化合物の溶液としては、3mmo lのBi  (N
o:+)3・5H20と、1mmoI(7)Pb (N
O3)2と、3mm01のSr (NO3) 2と、5
mm01のCa (NO3)2 ・4H20と、6mm
o lのcu (No:3 )2・3H20と、5ml
の61重量%硝酸水溶液と、200mm1の水との混合
液を用いた。
Next, using a carbon fiber bundle in which each single fiber was coated with NbN, each single fiber was coated with the precursor in the same manner as in Example 6. As a solution of the compound, 3 mmol of Bi (N
o:+)3・5H20 and 1mmol(7)Pb (N
O3)2 and 3mm01 Sr (NO3)2 and 5
Ca (NO3)2 of mm01 ・4H20 and 6mm
o l cu (No: 3) 2.3H20 and 5ml
A mixed solution of 61% by weight nitric acid aqueous solution and 200 mm 1 of water was used.

得られた( B l o、B3P bo、17)  (
S r o、5CaO,5> 1.7 Cu1.705
.6なる超伝導被覆を施してなる超伝導材を得た。この
超伝導材の超伝導転移温度は、83にでめった。また、
引張強度は48 KO/mm2 テti) ツタ。
Obtained (B lo, B3P bo, 17) (
S r o, 5CaO, 5 > 1.7 Cu1.705
.. A superconducting material with a superconducting coating of No. 6 was obtained. The superconducting transition temperature of this superconducting material was found to be 83. Also,
The tensile strength is 48 KO/mm2 (teti) ivy.

(発明の効果) この発明の超伝導材は、機構は定かでないが、実施例に
も示したように、超伝導転移温度が高い。
(Effects of the Invention) The superconducting material of the present invention has a high superconducting transition temperature, as shown in the Examples, although the mechanism is not clear.

また、補強材を使用しているために強度が優れている。Additionally, it has excellent strength due to the use of reinforcing materials.

ざらに、上述した従来のB1−3r−Ca−CU−O系
超伝導材のように長時間の熱処理を必要としないので、
比較的容易に製造できる。
In general, unlike the conventional B1-3r-Ca-CU-O-based superconducting material mentioned above, it does not require long heat treatment.
It can be manufactured relatively easily.

Claims (1)

【特許請求の範囲】 補強材に、下記一般式で表わされる超伝導セラミックス
材料を被覆してなることを特徴とする超伝導材。 (Bi_1_−_pPb_p)(Sr_1_−_qCa
_q)_xCu_yO_z ただし、0<p<0.80 0.3<q<0.8 1<x<3 1<y<3 3<z<6
[Scope of Claims] A superconducting material characterized in that a reinforcing material is coated with a superconducting ceramic material represented by the following general formula. (Bi_1_-_pPb_p) (Sr_1_-_qCa
_q)_xCu_yO_z However, 0<p<0.80 0.3<q<0.8 1<x<3 1<y<3 3<z<6
JP63175366A 1988-07-13 1988-07-13 Superconducting material Expired - Lifetime JP2653109B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63175366A JP2653109B2 (en) 1988-07-13 1988-07-13 Superconducting material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63175366A JP2653109B2 (en) 1988-07-13 1988-07-13 Superconducting material

Publications (2)

Publication Number Publication Date
JPH0226879A true JPH0226879A (en) 1990-01-29
JP2653109B2 JP2653109B2 (en) 1997-09-10

Family

ID=15994832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63175366A Expired - Lifetime JP2653109B2 (en) 1988-07-13 1988-07-13 Superconducting material

Country Status (1)

Country Link
JP (1) JP2653109B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH038722A (en) * 1989-06-06 1991-01-16 Fujitsu Ltd Production of superconducting film
WO1992006923A1 (en) * 1990-10-17 1992-04-30 Fujitsu Limited Method of making superconductive film
JP2008083065A (en) * 2007-12-04 2008-04-10 Hitachi Ltd Probe for nmr apparatus using magnesium diboride

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01242419A (en) * 1988-03-23 1989-09-27 Res Inst For Prod Dev Bi-pb-ca-sr-cu-o based superconducting material
JPH01290530A (en) * 1988-05-14 1989-11-22 Sumitomo Electric Ind Ltd Multiple oxides superconducting material and production thereof
JPH01313326A (en) * 1988-06-10 1989-12-18 Toshiba Corp Superconductor and production thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01242419A (en) * 1988-03-23 1989-09-27 Res Inst For Prod Dev Bi-pb-ca-sr-cu-o based superconducting material
JPH01290530A (en) * 1988-05-14 1989-11-22 Sumitomo Electric Ind Ltd Multiple oxides superconducting material and production thereof
JPH01313326A (en) * 1988-06-10 1989-12-18 Toshiba Corp Superconductor and production thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH038722A (en) * 1989-06-06 1991-01-16 Fujitsu Ltd Production of superconducting film
WO1992006923A1 (en) * 1990-10-17 1992-04-30 Fujitsu Limited Method of making superconductive film
EP0510201A1 (en) * 1990-10-17 1992-10-28 Fujitsu Limited Method of making superconductive film
US5306702A (en) * 1990-10-17 1994-04-26 Fujitsu Limited Process for producing Bi-Pb-Sr-Ca-Cu-O superconducting films
EP0510201B1 (en) * 1990-10-17 1995-06-14 Fujitsu Limited Method of making superconductive film
JP2008083065A (en) * 2007-12-04 2008-04-10 Hitachi Ltd Probe for nmr apparatus using magnesium diboride

Also Published As

Publication number Publication date
JP2653109B2 (en) 1997-09-10

Similar Documents

Publication Publication Date Title
AU642229B2 (en) Superconducting oxide-metal composites
JPH0226879A (en) Superconducting material
US5047386A (en) Apparatus for continuous manufacture of high temperature superconducting wires from molten superconducting oxides
JPH01235103A (en) Superconducting material
US5270296A (en) High critical temperature superconducting wire with radially grown crystallites
EP0304076B1 (en) Method of manufacturing superconductive products
JPH01131025A (en) Production of oxide based superconducting material
JPH01246133A (en) Production of superconductor
JP2634186B2 (en) Method for producing oxide-based superconducting material
Goretta et al. Fabrication of high-Tc superconductors
JP2662552B2 (en) Superconducting material for magnetic shield
JP2583565B2 (en) Method for producing oxide-based superconducting material
JP2583934B2 (en) Manufacturing method of oxide superconducting conductor
JP2583573B2 (en) Method for producing oxide-based superconducting material
JP3160620B2 (en) REINFORCED SUPERCONDUCTING MATERIAL AND ITS MANUFACTURING METHOD
JP2621270B2 (en) Superconducting material for magnetic shield
JPH02103818A (en) Manufacture of superconducting wire rod
JPS63274017A (en) Superconductive wire material
JPS63276820A (en) Manufacture of oxide superconductor
JPH04108609A (en) Superconductor
JPH01186512A (en) Manufacture of superconducting material
JPH03265518A (en) Superconductor
JPH01173792A (en) Manufacture of magnetic shielding superconductive material
JPH0712928B2 (en) Superconducting article manufacturing method
JPH01173790A (en) Manufacture of magnetic shielding superconductive material