JPH038722A - Production of superconducting film - Google Patents
Production of superconducting filmInfo
- Publication number
- JPH038722A JPH038722A JP1144503A JP14450389A JPH038722A JP H038722 A JPH038722 A JP H038722A JP 1144503 A JP1144503 A JP 1144503A JP 14450389 A JP14450389 A JP 14450389A JP H038722 A JPH038722 A JP H038722A
- Authority
- JP
- Japan
- Prior art keywords
- film
- phase
- superconducting
- superconducting film
- deposited
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 14
- 238000000034 method Methods 0.000 claims abstract description 17
- 239000000758 substrate Substances 0.000 claims abstract description 10
- 229910052751 metal Inorganic materials 0.000 claims abstract description 4
- 238000000151 deposition Methods 0.000 abstract description 9
- 230000002194 synthesizing effect Effects 0.000 abstract description 5
- 238000001354 calcination Methods 0.000 abstract description 2
- 239000010408 film Substances 0.000 description 51
- 238000010304 firing Methods 0.000 description 11
- 239000000203 mixture Substances 0.000 description 9
- 238000002441 X-ray diffraction Methods 0.000 description 5
- 239000002887 superconductor Substances 0.000 description 5
- 239000010409 thin film Substances 0.000 description 5
- 239000013078 crystal Substances 0.000 description 4
- 230000008021 deposition Effects 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 229910014454 Ca-Cu Inorganic materials 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 229910000416 bismuth oxide Inorganic materials 0.000 description 1
- 238000005056 compaction Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- TYIXMATWDRGMPF-UHFFFAOYSA-N dibismuth;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Bi+3].[Bi+3] TYIXMATWDRGMPF-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 238000001755 magnetron sputter deposition Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
- Superconductor Devices And Manufacturing Methods Thereof (AREA)
- Superconductors And Manufacturing Methods Therefor (AREA)
- Chemically Coating (AREA)
Abstract
Description
【発明の詳細な説明】
〔概要〕
本発明はBi系層状ペロブスカイト型の高Tc相超伝導
膜の製造方法に関し、高Tc相形成のためにPbを必要
な量ドープし、そして、Cu含有量を最適化し、高Tc
単一相を短時間の焼成で生成することのできる超伝導膜
の製造方法を提供することを目的とし、Bi系系層状ペ
ロブスカイト型超伝導膜を製造する工程において、基板
上に該超伝導膜を合成するための酸化物の膜を堆積した
該酸化物の金属元素の成分が以下の弐で表される超伝導
膜の製造方法により構成する。Detailed Description of the Invention [Summary] The present invention relates to a method for manufacturing a Bi-based layered perovskite-type high-Tc phase superconducting film, in which a required amount of Pb is doped to form a high-Tc phase, and the Cu content is Optimize high Tc
The purpose is to provide a method for manufacturing a superconducting film that can generate a single phase in a short firing time, and in the process of manufacturing a Bi-based layered perovskite superconducting film, the superconducting film is placed on a substrate. An oxide film for synthesizing the superconducting film is formed by a superconducting film manufacturing method in which the metallic element component of the oxide is represented by the following 2.
Bi:Pb:Sr:Ca:Cu=1:s: L:u:v
但 し 0.6<s<0.9. 0<t<1.
5(産業上の利用分野)
本発明はBi系趙伝導膜の製造方法の改良に関する。特
に、臨界温度と臨界電流密度とを向上する改良に関する
。Bi:Pb:Sr:Ca:Cu=1:s:L:u:v
However, 0.6<s<0.9. 0<t<1.
5 (Field of Industrial Application) The present invention relates to an improvement in a method for manufacturing a Bi-based conductive film. In particular, it relates to improvements in increasing critical temperature and critical current density.
〔従来の技術]
pbを添加したBi系超超伝導体作製する方法としては
、出発原料として[1i20.、PbO,5rCO,、
CaC0,、CUO等の粉末を混合し、仮焼、粉砕、圧
粉、本焼成を行うのが、−船釣である。 Bi系超超伝
導体臨界温度が最も高い110 K相を合成するときの
原料粉末の混合割合としては、Bi:Pb:Sr:Ca
:Cuの比が、およそ1.8:0.34:1.9:2.
0:3.0程度とするのがよいとされている。[Prior Art] As a method for producing a Bi-based superconductor doped with PB, [1i20. ,PbO,5rCO,,
- Funatsuri is the process of mixing powders such as CaC0, CUO, etc., and performing calcination, pulverization, powder compaction, and main firing. The mixing ratio of raw material powders when synthesizing the 110 K phase, which has the highest critical temperature of Bi-based superconductors, is Bi:Pb:Sr:Ca.
:Cu ratio is approximately 1.8:0.34:1.9:2.
It is said that a ratio of about 0:3.0 is good.
Bi系超伝導膜は、単位胞内に含まれるCu−0平面の
数の違いに応じて臨界温度(Tc)が異なる超伝導相が
存在することが知られている。今までのところ、式 B
izSrzCaa−+CunOxにおいてn=1に対す
るTc・10 Kの相、n・2に対するTc・80にの
相、n・3に対するTc・110にの相が知られている
。実用的には、臨界温度が最も高い11OK相を合成す
ることが望まれるが、単に110 K相の化学量論組成
に合わせても80に相が合成され易い。これは、CaO
が存在する場合には焼成温度領域(850−870°C
)では先ず80 K相が安定して生成してしまい目的と
する110 K相に変化するには、100時間を越える
ような焼成時間を必要とするためと考えられる。It is known that a Bi-based superconducting film has superconducting phases with different critical temperatures (Tc) depending on the number of Cu-0 planes included in the unit cell. So far, formula B
In izSrzCaa-+CunOx, a phase of Tc.10 K for n=1, a phase of Tc.80 for n.2, and a phase of Tc.110 for n.3 are known. Practically speaking, it is desirable to synthesize the 11OK phase, which has the highest critical temperature, but even if the stoichiometric composition of the 110K phase is simply adjusted, the 80K phase is likely to be synthesized. This is CaO
If there is, the firing temperature range (850-870°C
), this is thought to be because the 80 K phase is first stably generated and requires a firing time of over 100 hours to change to the desired 110 K phase.
高野等(Jpn、J、Appl、Phys、27.19
88. L1041)はBi系超超伝導体、pboを添
加することにより110に相比軸的生成され易いことを
報告している。さらに、用台等(Jpn、J、Appl
、Phys、27.1988. L1476)は110
K相の単相化を試みBi:Pb:Sr:Ca:Cuの
比が184:0.34:1.91:2.0.3:3.0
6の時に110 K相がほぼ100χのバルクが得られ
ることを見出している。Takano et al. (Jpn, J, Appl, Phys, 27.19
88. L1041) is a Bi-based superconductor, and it has been reported that 110 is easily generated in a phase ratio axis by adding pbo. Furthermore, the table etc. (Jpn, J, Appl
, Phys, 27.1988. L1476) is 110
Attempting to make the K phase a single phase, the ratio of Bi:Pb:Sr:Ca:Cu was 184:0.34:1.91:2.0.3:3.0
It has been found that a bulk of approximately 100χ of the 110 K phase can be obtained when the temperature is 6.
通常の薄膜の形成方法(スパッタ法、蒸着法等)では、
膜を基板上に堆積後熱処理を加え、超伝導膜を合成する
が、その過程において相当量のPbが蒸発し、十分な1
10に相が生成されない。こうした課題に対しては、p
bを多量に添加することによりある程度の110 K相
が合成できることを指摘した(Appl、 Phys、
Lett、 54 pp、1362−1364.1
989)。しかしながら、pbを多量に添加した膜では
焼成中に針状結晶が析出し、110 K相を単一相とし
て合成することは困難であった。膜の均質性がt員なわ
れると、臨界電流密度も著しく低下し、膜の均質性を向
上させることが大きな課題となっていた。In normal thin film formation methods (sputtering method, vapor deposition method, etc.),
After depositing the film on the substrate, a heat treatment is applied to synthesize a superconducting film, but in the process, a considerable amount of Pb evaporates, leaving a sufficient amount of 1
No phase is generated in 10. For these issues, p.
It was pointed out that a certain amount of 110 K phase can be synthesized by adding a large amount of b (Appl, Phys,
Lett, 54 pp, 1362-1364.1
989). However, in a film containing a large amount of Pb, needle-like crystals precipitate during firing, making it difficult to synthesize the 110 K phase as a single phase. When the homogeneity of the film becomes t-membered, the critical current density also decreases significantly, making it a major problem to improve the homogeneity of the film.
本発明はBi系系層状ペロブスカイト型超伝導膜を製造
する工程において、基板上に該超伝導膜を合成するため
の酸化物の膜を堆積した該酸化物の金属元素の成分が以
下の式
%式%::
で表されることを特1枚とする超伝導膜の製造方法によ
り達成される。In the process of manufacturing a Bi-based layered perovskite superconducting film, the present invention involves depositing an oxide film on a substrate for synthesizing the superconducting film, in which the composition of the metal element of the oxide is expressed in % by the following formula: This is achieved by a method of manufacturing a superconducting film having the following formula: %::.
本発明は、Bi層層状ペロブスカイト型超伝導膜を堆積
する工程において、化学量論組成より若干Cuを多く堆
積し、一方pbをBiに対し、0.6以上0.9以下添
加量することにより、短時間の焼成で、十分な量の11
0に相を合成することを特徴とする。In the process of depositing a Bi layered perovskite superconducting film, the present invention deposits slightly more Cu than the stoichiometric composition, while adding Pb in an amount of 0.6 to 0.9 to Bi. , a sufficient amount of 11 with a short firing time.
It is characterized by synthesizing a phase into 0.
本発明は、pbを添加したBi系型超伝導膜を製造方法
に関し、pbをBiに対し、0.6から0.9の間の範
囲で添加し、臨界温度が110にの超伝導相を多く含み
、均質性に優れ、密度が高い薄膜を短時間で形成し、そ
れにより、臨界温度が高<、臨界電流密度も大きな超伝
導膜を製造する方法を提供するものである。The present invention relates to a method for manufacturing a Bi-based superconducting film containing PB, in which PB is added to Bi in a range of 0.6 to 0.9 to form a superconducting phase with a critical temperature of 110. The object of the present invention is to provide a method for manufacturing a superconducting film that has a high critical temperature and a high critical current density by forming a thin film containing a large amount of superconducting material, excellent homogeneity, and high density in a short time.
ここでpbをバルクの最適添加量に較べはるかに多く添
加するのは、薄膜では、焼成中にpbが容易に蒸発する
ため、110に相の生成を促進させるためには、Biに
対し、0.6以上添加しなければ有効でないためである
。また、添加量を0.9以下とするのは、焼成時に、膜
が部分溶融し、膜組成にばらつきが生じるのを抑制する
ためである。The reason why Pb is added here in a much larger amount than the optimum addition amount for the bulk is that in thin films, Pb easily evaporates during firing, so in order to promote the formation of a phase in 110, it is necessary to add 0 to 0 to Bi. This is because it is not effective unless .6 or more is added. Further, the reason why the addition amount is 0.9 or less is to suppress partial melting of the film during firing and variations in film composition.
このような膜を堆積するためには、堆積中にpbとCu
とが欠損しないようにB1−5r−Ca−Cu−0層と
PbOとCuOとを高濃度に含む層とを積層した多層膜
とするのが現実的である。To deposit such a film, pb and Cu must be added during deposition.
It is practical to form a multilayer film in which a B1-5r-Ca-Cu-0 layer and a layer containing PbO and CuO at high concentrations are laminated to prevent loss of PbO and CuO.
(作用)
本発明では、比較的多量のPbを添加し、また、焼成中
に蒸発し易いCuを若干多めにした非晶質の膜を基板上
に堆積し、その後短時間の焼成で、Bii状ペロプスカ
イト型超伝導体を合成している。(Function) In the present invention, an amorphous film to which a relatively large amount of Pb is added and a slightly large amount of Cu, which easily evaporates during firing, is deposited on a substrate, and then by short firing, a Bii We have synthesized peropskite-type superconductors.
この方法により焼成時に80 K相が合成されにくく、
110に相を多く含み、均質性に優れ、密度が高い薄膜
を短時間で形成できる。従って、高い臨界温度と電流密
度の膜が合成できる。This method makes it difficult to synthesize the 80 K phase during firing,
A thin film containing a large amount of 110 phase, excellent homogeneity, and high density can be formed in a short time. Therefore, films with high critical temperatures and current densities can be synthesized.
膜の堆積はRFマグネトロンスパッタ法により行った。 The film was deposited by RF magnetron sputtering.
スパック条件を表Iに示す。Spack conditions are shown in Table I.
表1 スパック条件
基板温度 400°C
スパッタガス Ar:O□−2:1スバンタガ
ス圧 IPa
高周波電力 75〜100W堆積速度
80人/ m i n膜厚
0.85μm
ターゲットには、Bi:Sr:Ca:Cu= 3:2:
2:3となるような組成比の酸化物ターゲットIとPb
0Xのターゲット■およびCuOのターゲット■を用い
た。Table 1 Spuck conditions Substrate temperature 400°C Sputter gas Ar:O□-2:1 Svantha gas pressure IPa High frequency power 75-100W Deposition rate
80 people/min film thickness
0.85μm target has Bi:Sr:Ca:Cu=3:2:
Oxide target I and Pb with a composition ratio of 2:3
0X target ■ and CuO target ■ were used.
400’Cに加熱されたMgO基板上に、それぞれのタ
ーゲットを交互にスパッタし、B1−3r−Ca−Cu
−0層pbo、1層、CuO層とを多層に堆積した。Each target was alternately sputtered onto an MgO substrate heated to 400'C, and B1-3r-Ca-Cu
-0 layer pbo, 1 layer, and CuO layer were deposited in multiple layers.
ターゲット■として[fi:Sr:Ca:Cu= 3:
2:2:3となるようにBiを多くしたのは酸化ビスマ
スは堆積されにくいためでる。ターゲットIにより堆積
すると、膜組成が110 K相の化学量論組成である2
:2:2+3に近くなる。それぞれの層の厚さは以下の
通りである。As target ■ [fi:Sr:Ca:Cu=3:
The reason why Bi was increased to 2:2:3 is because bismuth oxide is difficult to deposit. When deposited with Target I, the film composition is 110K phase stoichiometric 2
:2: It becomes close to 2+3. The thickness of each layer is as follows.
B1−5r−Ca−Cu−0層: 2000 人p
bo、層: 300人
CuO層=300人
各層を2回以上堆積し、膜厚が1 μmの膜を得た。堆
積された薄膜のIcP による組成分析の結果は以下の
通りである。B1-5r-Ca-Cu-0 layer: 2000 p
bo layer: 300 people CuO layer = 300 people Each layer was deposited two or more times to obtain a film with a thickness of 1 μm. The results of compositional analysis of the deposited thin film by IcP are as follows.
Bi:Pb:Sr:Ca:Cu=1.O;0.8:1.
0:1.0:1.6Biが適切な置台まれ、Cuが化学
量論組成より多く含まれていることがわかる。上記の多
層膜を大気中850°Cで1時間焼成し、超伝導膜を得
た。得られた膜のX線回折パターン(CuKα)を第1
図に示す。MgOはMgo基板による回折、Lは低Tc
相による回折、他は亮Tc和による回折パターンをしめ
す。膜はほぼ単一の高温和からなっていることがわかる
。また、第2図に膜のSEM観察による微構造を示す。Bi:Pb:Sr:Ca:Cu=1. O;0.8:1.
It can be seen that 0:1.0:1.6Bi was appropriately placed and Cu was contained in a larger amount than the stoichiometric composition. The above multilayer film was fired in the air at 850°C for 1 hour to obtain a superconducting film. The X-ray diffraction pattern (CuKα) of the obtained film was
As shown in the figure. MgO is diffraction due to Mgo substrate, L is low Tc
The diffraction pattern is due to the phase, and the others are due to the light Tc sum. It can be seen that the film consists of almost a single high-temperature sum. Further, FIG. 2 shows the microstructure of the film as observed by SEM.
鱗片状の超伝導結晶がC軸配向して重なっていることが
わかる。第3図直流4端子法により測定した電気抵抗の
温度変化を示す。120 K付近から電気抵抗が急激に
減少し106.5 K で電気抵抗がゼロとなった。ま
た臨界電流密度は77.3 Kにおいて5.8xlO’
A/cm” と十分大きい。It can be seen that the scale-like superconducting crystals overlap with each other in C-axis orientation. Figure 3 shows the temperature change in electrical resistance measured by the DC 4-terminal method. The electrical resistance suddenly decreased from around 120 K and reached zero at 106.5 K. Also, the critical current density is 5.8xlO' at 77.3 K.
A/cm", which is sufficiently large.
〔比較例−1〕
pbを多量に添加した膜(堆積直後の組成比がBi:P
b:Sr:Ca:Cu=1.0:1.1:1.0:1.
0:1.7の膜)を850°Cで1時間焼成した場合の
X線回折パターンを第4図に示す。先に述べた実Mm例
と同一条件で焼成しても、110に相の割合があまり増
えない。また、走査型電子顕微鏡で膜を観察すると、C
a−CuOの大きな針状結晶が観測された。77.3
Kにおける臨界電流密度は0.8xlO’ A/c+w
”であり実施例で示した膜にくらべ非常に劣っている。[Comparative Example-1] Film with a large amount of PB added (composition ratio immediately after deposition is Bi:P)
b:Sr:Ca:Cu=1.0:1.1:1.0:1.
FIG. 4 shows the X-ray diffraction pattern when a film (0:1.7) was fired at 850° C. for 1 hour. Even if it is fired under the same conditions as the actual Mm example mentioned above, the proportion of the 110 phase does not increase much. In addition, when observing the film with a scanning electron microscope, it was found that C
Large needle-like crystals of a-CuO were observed. 77.3
The critical current density at K is 0.8xlO' A/c+w
”, which is very inferior to the films shown in Examples.
〔比較例−2〕
pbを少量添加した膜(堆積直後の組成比がBi:Pb
:Sr;Ca:Cu=1.O:0.6:1.O+1.O
:1.5) を850’Cで1時間焼成した場合のX
線回折パターンを第5図に示す。この膜においても11
0 K相の割合があまり増えない。また、走査型電子顕
微鏡で膜を観察すると、針状結晶は見られないものの、
膜はC軸配向せず、膜の密度が実施例に較べ、著しく低
下していることがわかる。77.3 kにおけろ臨界電
流密度は1.4xlO’ A/cm2 であり実施例で
示した膜にくらべ劣っている。[Comparative Example-2] Film with a small amount of pb added (composition ratio immediately after deposition is Bi:Pb
:Sr;Ca:Cu=1. O:0.6:1. O+1. O
:1.5) when fired at 850'C for 1 hour
The line diffraction pattern is shown in FIG. In this film also 11
0 The proportion of K phase does not increase much. In addition, when observing the film with a scanning electron microscope, no needle-shaped crystals were observed, but
It can be seen that the film is not C-axis oriented and the density of the film is significantly lower than that of the example. The critical current density at 77.3 k is 1.4xlO' A/cm2, which is inferior to the films shown in Examples.
以上説明したように本発明によれば、Bii層状ペロブ
スカイト型超伝導体のなかで、最も臨界温度が高い、1
10に相を高純度にしかも短時間に合成でき、十分臨界
温度が高く、また十分大きな臨界111j流密度を存す
るBi系系層状ペロブスカイト型超伝導膜を形成できる
。As explained above, according to the present invention, 1, which has the highest critical temperature among the Bii layered perovskite superconductors,
Phase 10 can be synthesized with high purity in a short time, and a Bi-based layered perovskite superconducting film having a sufficiently high critical temperature and a sufficiently large critical 111j flow density can be formed.
第1図は本発明により得られた膜のX線回折パターンを
示す図、
第2図は本発明により得られた膜の微細構造を示す図、
第3図は本発明により得られた膜の電気抵抗の温度変化
を示す図、
第4図及び第5図は比較例方法により得られた膜のX線
回折パターンを示す図である。
〕回の、争書
手続補正書(方式)
平成元年10月19日
事件の表示
平成O1年特許願第144503号
発明の名称
超伝導膜の製造方法
補正をする者
事件との関係 特許出願人
住所 神奈川県用崎市中原区上小田中
名称 <522)富士通株式会社
代表者 山 本 卓 眞Figure 1 shows the X-ray diffraction pattern of the film obtained according to the present invention, Figure 2 shows the fine structure of the film obtained according to the present invention, and Figure 3 shows the X-ray diffraction pattern of the film obtained according to the present invention. FIGS. 4 and 5 are diagrams showing changes in electrical resistance with temperature; and FIGS. 4 and 5 are diagrams showing X-ray diffraction patterns of films obtained by the comparative example method. ] October 19, 1989 Display of the case 1989 O1 Patent Application No. 144503 Name of the invention Person who amends the manufacturing method of a superconducting membrane Relationship to the case Patent applicant Address Kamiodanaka, Nakahara-ku, Yozaki City, Kanagawa Prefecture Name <522) Fujitsu Limited Representative Takashi Yamamoto
Claims (1)
において、基板上に該超伝導膜を合成するための酸化物
の膜を堆積した該酸化物の金属元素の成分が以下の式で
表されることを特徴とする超伝導膜の製造方法。 Bi:Pb:Sr:Ca:Cu:1:s:t:u:v但
し0.6<s<0.9,0<t<1.5 0<u<1.5,1.0<v<3.0[Claims] In the process of manufacturing a Bi-based layered perovskite superconducting film, an oxide film is deposited on a substrate to synthesize the superconducting film, and the components of the metal elements of the oxide are as follows: A method for producing a superconducting film characterized by being represented by the following formula. Bi:Pb:Sr:Ca:Cu:1:s:t:u:v However, 0.6<s<0.9, 0<t<1.5 0<u<1.5, 1.0<v <3.0
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1144503A JPH038722A (en) | 1989-06-06 | 1989-06-06 | Production of superconducting film |
CA002003850A CA2003850C (en) | 1988-11-29 | 1989-11-24 | Process for preparing a perovskite type superconductor film |
DE68928256T DE68928256T2 (en) | 1988-11-29 | 1989-11-29 | Process for producing a superconducting thin film of the perovskite type |
EP89312400A EP0372808B1 (en) | 1988-11-29 | 1989-11-29 | Process for preparing a perovskite type superconductor film |
KR1019890017434A KR930008648B1 (en) | 1988-11-29 | 1989-11-29 | Perovskite super conductor readiness process |
US07/565,209 US5141917A (en) | 1988-11-29 | 1990-08-09 | Multilayer deposition method for forming Pb-doped Bi-Sr-Ca-Cu-O Superconducting films |
US08/378,087 US5585332A (en) | 1988-11-29 | 1995-01-25 | Process for preparing a perovskite Bi-containing superconductor film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1144503A JPH038722A (en) | 1989-06-06 | 1989-06-06 | Production of superconducting film |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH038722A true JPH038722A (en) | 1991-01-16 |
Family
ID=15363877
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1144503A Pending JPH038722A (en) | 1988-11-29 | 1989-06-06 | Production of superconducting film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH038722A (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0226879A (en) * | 1988-07-13 | 1990-01-29 | Toray Ind Inc | Superconducting material |
JPH02124718A (en) * | 1988-11-02 | 1990-05-14 | Agency Of Ind Science & Technol | Preparation of bi-pb-sr-ca-cu type oxide superconducting film |
JPH02293326A (en) * | 1989-05-09 | 1990-12-04 | Fujitsu Ltd | Production of superconductor film |
-
1989
- 1989-06-06 JP JP1144503A patent/JPH038722A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0226879A (en) * | 1988-07-13 | 1990-01-29 | Toray Ind Inc | Superconducting material |
JPH02124718A (en) * | 1988-11-02 | 1990-05-14 | Agency Of Ind Science & Technol | Preparation of bi-pb-sr-ca-cu type oxide superconducting film |
JPH02293326A (en) * | 1989-05-09 | 1990-12-04 | Fujitsu Ltd | Production of superconductor film |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2567460B2 (en) | Superconducting thin film and its manufacturing method | |
JPH02145761A (en) | Manufacture of thin superconductor film | |
KR930008648B1 (en) | Perovskite super conductor readiness process | |
JPH038722A (en) | Production of superconducting film | |
JP3037514B2 (en) | Thin film superconductor and method of manufacturing the same | |
JPH0310083A (en) | Production of superconducting film | |
JP2961852B2 (en) | Manufacturing method of thin film superconductor | |
JPS63236794A (en) | Production of superconductive thin film of oxide | |
EP0640994B1 (en) | Superconductor thin film and manufacturing method | |
JPH03275504A (en) | Oxide superconductor thin film and its production | |
JP2557446B2 (en) | Method for producing complex oxide-based superconducting thin film | |
JPH02162616A (en) | Manufacture of oxide high-temperature superconducting film | |
JPH046108A (en) | Insulator, production of insulating thin film, superconducting thin film and production thereof | |
JPH05170448A (en) | Production of thin ceramic film | |
JPS63307614A (en) | High-temperature oxide superconductor thin film | |
JPH0465306A (en) | Oxide superconductor thin film | |
JPH02167827A (en) | Thin-film superconductor | |
JPH05194095A (en) | Production of thin-film electric conductor | |
JPH03290315A (en) | Production of bi-based oxide superconductor thin film | |
JPH05194096A (en) | Production of thin-film oxide electric conductor | |
JPS63247363A (en) | Sputtering target | |
JPH05170437A (en) | Production of oxide superconductor | |
JPH03215319A (en) | Preparation of thin filmy superconductor | |
JPH0722662A (en) | Insulation material and its manufacture, and superconductor thin film and its manufacture | |
JPH06305728A (en) | Superconductor and its production |