JPH05194096A - Production of thin-film oxide electric conductor - Google Patents

Production of thin-film oxide electric conductor

Info

Publication number
JPH05194096A
JPH05194096A JP4007446A JP744692A JPH05194096A JP H05194096 A JPH05194096 A JP H05194096A JP 4007446 A JP4007446 A JP 4007446A JP 744692 A JP744692 A JP 744692A JP H05194096 A JPH05194096 A JP H05194096A
Authority
JP
Japan
Prior art keywords
thin film
electric conductor
oxide
evaporation source
layered structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4007446A
Other languages
Japanese (ja)
Inventor
Toshifumi Sato
利文 佐藤
Hideaki Adachi
秀明 足立
Hiroshi Ichikawa
洋 市川
Kentaro Setsune
謙太郎 瀬恒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP4007446A priority Critical patent/JPH05194096A/en
Publication of JPH05194096A publication Critical patent/JPH05194096A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To provide a producing method good in reappearance of thin electrically conductive film of a Sr-Cu-O based oxide having an infinite layered structure. CONSTITUTION:45 layers of Sr-containing atomic layers and atomic layers of Cu-containing oxide are alternately laminated on a substrate by MBE method while alternately controlling opening and closing of shwtters 17 and 18 on each metal evaporation source using a Sr metal evaporation source 11 heated at 575 deg.C and Cu metal evaporation source 12 heated at 1150 deg.C and irradiating with NO2 gas from a gas jetting nozzle 14 and these laminates are attached as a crystalline coating film on the substrate body 13. Then vapor deposition is carried out for about 30min to prepare the objective thin film of infinitely layered structure having the composition of Sr:Cu=1:1 and 250Angstrom thickness.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、酸化物電気伝導薄膜の
製造方法に関するものである。特に、Sr−Cu−O系
層状構造の薄膜酸化物電気伝導体の製造方法に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an oxide electroconductive thin film. In particular, the present invention relates to a method for producing a thin film oxide electric conductor having a Sr—Cu—O system layered structure.

【0002】[0002]

【従来の技術】高温超伝導体として、Muller等によりペ
ロブスカイト類型構造の酸化物超伝導体が発見された。
それ以後、種々の酸化物系で超伝導性の確認が為され、
アルカリ土類金属層が、銅酸化物層で挟まれた無限層状
構造のセラミックが提案された。[T.Siegrist, S.M.Zah
urak, D.W.Murphy and R.S.Roth, ネイチャ- (Nature), Vo
l.334, 231-232 (1988).] その後、この無限層状構造からなる超伝導体は、90K
程度の超伝導臨界温度をもつということが発見された。
[M.Takano, M.Azuma, Z.Hiroi, Y.Bando and Y.Takeda,
Physica C176, 441-444 (1991).] 無限層状構造の酸化物超伝導体は、従来の高温酸化物超
伝導体に含まれていた希土類元素を全く含まない超伝導
体であり、しかも、より単純な結晶構造のため、作製時
の取扱が容易であり、実用化に向けて期待されている。
2. Description of the Related Art As a high temperature superconductor, an oxide superconductor having a perovskite type structure was discovered by Muller et al.
Since then, superconductivity has been confirmed in various oxide systems,
A ceramic with an infinite layer structure in which an alkaline earth metal layer is sandwiched between copper oxide layers has been proposed. [T.Siegrist, SMZah
urak, DWMurphy and RSRoth, Nature- (Nature), Vo
l.334, 231-232 (1988).] After that, the superconductor consisting of this infinite layered structure was 90K.
It has been discovered that it has a degree of superconducting critical temperature.
[M.Takano, M.Azuma, Z.Hiroi, Y.Bando and Y.Takeda,
Physica C176, 441-444 (1991).] An infinite layered oxide superconductor is a rare earth element-free superconductor that is contained in conventional high-temperature oxide superconductors. Since it has a simple crystal structure, it can be easily handled during production, and is expected for practical use.

【0003】[0003]

【発明が解決しようとする課題】Sr−Cu−O系の材
料は、現在の技術では高圧焼結という過程でしか形成で
きないため、セラミックの粉末あるいはブロックの形状
でしか得られない。一方、この種の材料を実用化する場
合、例えばジョセフソン素子、スクイッド、高周波素子
その他の各種デバイスへの適用など具体的な応用には、
薄膜状に加工することが強く要望されている。
Since the Sr-Cu-O-based material can be formed only in the process of high pressure sintering in the present technology, it can be obtained only in the form of ceramic powder or block. On the other hand, when putting this type of material into practical use, for specific applications such as application to various devices such as Josephson devices, squids, high frequency devices, etc.,
There is a strong demand for processing into a thin film.

【0004】様々な方法を用いて、酸化物電気伝導体の
薄膜化が行われているが、Sr−Cu−O系電気伝導体
の場合、他の電気伝導体と違い、上述したように超高
圧、強還元雰囲気で作成されていたので、この様な条件
では薄膜にすることが非常に困難とされていた。
Various methods have been used to reduce the thickness of oxide electric conductors. However, in the case of Sr-Cu-O type electric conductors, unlike other electric conductors, they are super thin as described above. Since it was created in a high pressure, strong reducing atmosphere, it was considered very difficult to form a thin film under such conditions.

【0005】本発明は、構造が単純で無限層状構造を有
するSr−Cu−O系酸化物電気伝導薄膜の再現性のよ
い製造方法を提供することを目的とする。
An object of the present invention is to provide a method for producing a Sr-Cu-O-based oxide electroconductive thin film having a simple structure and an infinite layered structure with good reproducibility.

【0006】[0006]

【課題を解決するための手段】前記目的を達成するた
め、本発明の薄膜酸化物電気伝導体の製造方法は、酸化
を促進するガスを基体付近に噴射しながら、加熱された
前記基体上に、少なくともストロンチウム(Sr)を含
む物質からなる原子層と、銅(Cu)を含む酸化物から
なる原子層とを周期的に積層させて無限層状構造とする
ことからなる。
In order to achieve the above object, a method for producing a thin film oxide electric conductor according to the present invention comprises: An atomic layer made of a substance containing at least strontium (Sr) and an atomic layer made of an oxide containing copper (Cu) are periodically laminated to form an infinite layered structure.

【0007】前記薄膜酸化物電気伝導体の製造方法にお
いては、ストロンチウム(Sr)を含む物質からなる原
子層に、少なくともストロンチウム以外のアルカリ土類
元素を更に含ませておくことが好ましい。
In the method of manufacturing the thin film oxide electric conductor, it is preferable that the atomic layer made of a substance containing strontium (Sr) further contains at least an alkaline earth element other than strontium.

【0008】また、前記薄膜酸化物電気伝導体の製造方
法においては、積層が分子線エピタキシー法(MBE
法)により各原子層を交互に周期的に積層させて無限層
状構造とすることが好ましい。
In the method of manufacturing the thin film oxide electric conductor, the stacking is performed by molecular beam epitaxy (MBE).
It is preferable that each atomic layer is alternately and periodically laminated by the method) to form an infinite layered structure.

【0009】[0009]

【作用】図2は本発明方法で得られるSr−Cu−O系
電気伝導体の断面構造を示す模式図である。図2に示す
ようにこの電気伝導体物質は少なくともSrを含む原子
層21と少なくともCuを含む酸化物からなる原子層2
2が交互に積層された周期的構造すなわち無限層状構造
からなっている。
FIG. 2 is a schematic view showing the cross-sectional structure of the Sr--Cu--O type electric conductor obtained by the method of the present invention. As shown in FIG. 2, the electric conductor material includes an atomic layer 21 containing at least Sr and an atomic layer 2 made of an oxide containing at least Cu.
It has a periodic structure in which two layers are alternately stacked, that is, an infinite layered structure.

【0010】本発明の薄膜酸化物電気伝導体の製造方法
は、酸化を促進するガスを基体付近に噴射しながら、加
熱した前記基体上に、少なくともストロンチウム(S
r)を含む物質からなる原子層と、銅(Cu)を含む酸
化物からなる原子層とを周期的に積層させて無限層状構
造とすることからなるので、本発明の製造方法を用いる
と、酸化を促進するガスにより、蒸発したCu金属など
が基体付近で酸化され、また、各1原子に相当する厚さ
の原子層が結晶構造を構築しつつ、図2で示した構造の
ように積層されながら膜成長がなされるので、良質のS
r−Cu−O系薄膜電気電導体を容易に得ることができ
るものと推定される。
In the method for producing a thin film oxide electric conductor of the present invention, at least strontium (S) is deposited on the heated substrate while injecting a gas that promotes oxidation near the substrate.
Since an atomic layer made of a substance containing r) and an atomic layer made of an oxide containing copper (Cu) are periodically laminated to form an infinite layered structure, using the production method of the present invention, Evaporated Cu metal or the like is oxidized in the vicinity of the substrate by the gas that promotes oxidation, and atomic layers each having a thickness corresponding to one atom form a crystal structure and are stacked as shown in FIG. As the film is grown while being processed, it is possible to obtain high quality S
It is presumed that the r-Cu-O-based thin film electric conductor can be easily obtained.

【0011】また、前記薄膜酸化物電気伝導体の製造方
法において、ストロンチウム(Sr)を含む物質からな
る原子層に、少なくともストロンチウム以外のアルカリ
土類元素を更に含ませておくことによって、結晶の格子
定数を変化させることが可能となり、例えば超伝導の臨
界温度を変化させることができるなど、伝導体の特性を
変えることができるので好ましい。
In the method for producing a thin-film oxide electric conductor, the atomic layer made of a substance containing strontium (Sr) further contains at least an alkaline earth element other than strontium, whereby the crystal lattice It is preferable because the constant can be changed, and the characteristics of the conductor can be changed, for example, the critical temperature of superconductivity can be changed.

【0012】また、前記薄膜酸化物電気伝導体の製造方
法においては、積層が分子線エピタキシー法(MBE
法)により各原子層を交互に周期的に積層させて無限層
状構造とすることによると、MBE法においては、背圧
が超高真空となるので、雰囲気ガスとして含まれる不純
物を少なくすることができ、従って薄膜電気伝導体への
不純物の混入が避けられ、周期的積層方法で形成するこ
とにより、より再現性良く良質で高性能の薄膜電気伝導
体を得ることが可能となり、好ましい。
Further, in the method of manufacturing the thin film oxide electric conductor, the lamination is a molecular beam epitaxy method (MBE).
According to the MBE method, since the back pressure becomes an ultrahigh vacuum, it is possible to reduce impurities contained as an atmospheric gas. Therefore, it is preferable that impurities are prevented from being mixed into the thin film electric conductor, and by forming the thin film electric conductor by the periodic stacking method, it is possible to obtain a high quality thin film electric conductor with higher reproducibility.

【0013】[0013]

【実施例】以下、本発明の実施例について説明するが、
本発明はこの実施例の記載のみに限定されるものではな
い。
EXAMPLES Examples of the present invention will be described below.
The invention is not limited to the description of this example.

【0014】本発明方法においては、真空容器中で酸化
を促進するガスを基体付近に噴射しながら、加熱した前
記基体上に、Sr金属原料とCu金属原料とを交互に蒸
発させ、酸化を促進するガスの噴射量を例えば蒸発源付
近のガス圧で測定して10-4〜10-6Torr程度の圧
力に制御することにより、Sr金属を含む原子層とCu
金属を含む原子層を真空容器内で酸化させて、加熱した
種々の基体上に周期的に積層させる。
In the method of the present invention, while a gas that promotes oxidation is injected near the substrate in a vacuum vessel, the Sr metal source and the Cu metal source are alternately evaporated on the heated substrate to promote the oxidation. The amount of the injected gas is measured, for example, at a gas pressure near the evaporation source and controlled to a pressure of about 10 −4 to 10 −6 Torr, so that the atomic layer containing Sr metal and Cu
The atomic layer containing the metal is oxidized in a vacuum vessel and periodically deposited on various heated substrates.

【0015】各蒸発源である各金属原料の蒸発レートを
例えば各蒸発源上のシャッターの開閉をコントロールす
ることなどにより、適宜に調節して、それぞれ1原子層
成長させることにより、Sr−Cu−O系電気伝導体の
構造が形成されることがわかった。また、周期的に積層
すると、同時に行った場合には形成できなかった無限層
状構造薄膜が、再現性よく形成できる。基体温度は、特
に600℃〜700℃の場合には結晶性が非常に良好な
Sr−Cu−O系薄膜電気伝導体が再現性よく得られる
ので好ましい。本発明方法は、従来の電気伝導体の形成
方法と比べ、制御性、例えば、組成の制御、結晶性の制
御などの制御性に優れた形成方法が実現できる。
The evaporation rate of each metal source as each evaporation source is appropriately adjusted, for example, by controlling the opening / closing of the shutter on each evaporation source, and each atomic layer is grown to form Sr-Cu-. It was found that a structure of O-based electric conductor was formed. In addition, by laminating the layers periodically, an infinite layered structure thin film, which could not be formed when the layers were formed simultaneously, can be formed with good reproducibility. A substrate temperature of 600 ° C. to 700 ° C. is particularly preferable because an Sr—Cu—O-based thin film electric conductor having very good crystallinity can be obtained with good reproducibility. The method of the present invention can realize a forming method having excellent controllability, for example, controllability of composition, control of crystallinity and the like, as compared with the conventional method of forming an electric conductor.

【0016】基体温度が、750℃以上の場合には、基
体上で堆積された原子が動きやすくなり、上下の層の原
子が入れ替わったりするためか、周期的な無限層状積層
構造にならなかった。
When the substrate temperature is 750 ° C. or higher, the atoms deposited on the substrate are likely to move and the atoms in the upper and lower layers are exchanged with each other, so that the periodic infinite layered laminated structure is not obtained. ..

【0017】本発明方法で得られる無限層状構造からな
る薄膜電気伝導体は、結晶構造が従来の超伝導体にくら
べ、単純な構造をしているため、他の金属などとの積層
を作る場合にも向いているため、デバイス化に最適の製
造方法である。
Since the thin film electric conductor having an infinite layered structure obtained by the method of the present invention has a simple crystal structure as compared with a conventional superconductor, it can be laminated with another metal or the like. Since it is also suitable for devices, it is the most suitable manufacturing method for devices.

【0018】Srを含む物質と、Cuを含む物質とを周
期的に積層させる方法としては、いくつか考えられる。
特に、EB蒸着法(エレクトロンビーム蒸着法)やスパ
ッタ法などが考えられる。しかし、この種の酸化物層の
積層には前述したように従来MBE法は不向きとみられ
ていた。この理由は、成膜中の酸化能力の高さに起因す
ると考えられている。すなわちMBE法ではこれまで酸
化物の作成の実績があまりなく、また、酸化させるため
のガスの導入によって圧力が高くなるため不向きと考え
られていた。しかしながら、本発明者らは、このSr−
Cu酸化物電気伝導体に対してMBE法により酸化を促
進するガスを基体付近に噴射しながら異なる薄い酸化物
層の積層を行なったところ、意外にも良好な積層膜の作
製が可能なことを見出だした。
Several methods can be considered as a method of periodically stacking a substance containing Sr and a substance containing Cu.
In particular, an EB vapor deposition method (electron beam vapor deposition method), a sputtering method, or the like can be considered. However, as described above, the MBE method is conventionally unsuitable for stacking oxide layers of this type. The reason for this is considered to be due to the high oxidation capacity during film formation. That is, it has been considered that the MBE method is not suitable because it has not been used so far in producing oxides and the pressure increases due to the introduction of a gas for oxidation. However, the present inventors have found that this Sr-
By stacking different thin oxide layers on the Cu oxide electric conductor by injecting a gas that promotes oxidation near the substrate by the MBE method, it is surprisingly possible to produce a good laminated film. I found it.

【0019】MBE法で蒸発原料を酸化させる方法とし
ては、例えば高周波放電管の中に酸素ガスを導入して放
電させることにより酸素をラジカルビーム状にして照射
する方法があるが、オゾン、NO2 ガスなどの酸化を促
進するガスを導入することにより、酸化能力が高く、組
成などの制御性に優れた製造方法となる。
[0019] As a method of oxidizing the evaporated raw material by the MBE method, for example oxygen by discharging by introducing oxygen gas into high frequency discharge tube there is a method of irradiating with the radical beam shape, ozone, NO 2 By introducing a gas such as a gas that promotes oxidation, the production method has a high oxidation ability and excellent controllability of the composition and the like.

【0020】尚、MBE法を採用する場合には、通常基
体温度が600〜700℃程度が好ましく、また、真空
室内圧力は、蒸発源付近の圧力で10-4〜10-6Tor
r程度が好ましく用いられる。
When the MBE method is adopted, the substrate temperature is usually preferably about 600 to 700 ° C., and the pressure in the vacuum chamber is 10 −4 to 10 −6 Tor in the vicinity of the evaporation source.
A value of about r is preferably used.

【0021】以下本発明の内容がより容易に理解される
ように、具体的な実施例を挙げて説明する。図1は本発
明の一実施例を説明するための用いた装置の主要部を示
す概略概念図である。
In order that the contents of the present invention will be more easily understood, specific examples will be described below. FIG. 1 is a schematic conceptual diagram showing a main part of an apparatus used for explaining an embodiment of the present invention.

【0022】図1に示したように、Kセル(クヌードソ
ンセル)中に入れられたSrの金属蒸発源11とKセル中
に入れられたCuの金属蒸発源12の2種類の蒸発源を用
い、チタン酸ストロンチウム単結晶(100)面を基体
13として用い、NO2 ガスをガス噴射ノズル14より基体
13付近に噴射し、MBE法により真空蒸着して、上記基
板上に結晶性の被膜として付着させた。
As shown in FIG. 1, there are two kinds of evaporation sources, a metal evaporation source 11 of Sr contained in a K cell (Knudson cell) and a metal evaporation source 12 of Cu contained in the K cell. With strontium titanate single crystal (100) plane as a substrate
NO 2 gas is used as the base material 13 from the gas injection nozzle 14.
It was sprayed in the vicinity of 13 and vacuum-deposited by the MBE method to be deposited as a crystalline film on the substrate.

【0023】図2は、形成された無限層状構造の薄膜酸
化物電気伝導体の断面の模式図である。Srの金属蒸発
源11のKセル温度は575℃に、また、Cuの金属蒸発
源12のKセル温度は1150℃に加熱され、基体13をヒ
ータ15で約675℃に加熱し、ガス噴射ノズル14より噴
射するNO2 ガスを±1×10-6Torrk範囲で制御
して、各蒸発源の蒸着を行なった。各蒸発源の加熱電力
を前記Kセルの温度を保つために電流を2〜5アンペア
の範囲で適宜制御し、シャッター16、17の開閉を制御し
て周期的積層を行なったところ、図3にそのX線回折図
を示したように結晶性の良い薄膜を作製することができ
た。
FIG. 2 is a schematic view of a cross section of the formed thin film oxide electric conductor having an infinite layer structure. The K cell temperature of the Sr metal evaporation source 11 is heated to 575 ° C., the K cell temperature of the Cu metal evaporation source 12 is heated to 1150 ° C., the base 13 is heated to about 675 ° C. by the heater 15, and the gas injection nozzle The NO 2 gas injected from 14 was controlled within a range of ± 1 × 10 −6 Torrk to deposit each evaporation source. The heating power of each evaporation source was appropriately controlled in the range of 2 to 5 amperes in order to maintain the temperature of the K cell, and the opening and closing of the shutters 16 and 17 were controlled to perform periodic stacking. As shown in the X-ray diffraction pattern, a thin film with good crystallinity could be produced.

【0024】シャッター16、17の開閉の制御はシャッタ
ー17を閉じた状態でシャッター16を開き10秒間Srを
蒸発させ、次にシャッター16、17を共に閉じた状態で1
0秒間放置し、次いでシャッター16を閉じた状態でシャ
ッター17を開き10秒間Cuを蒸発させ、更にシャッタ
ー16、17を共に閉じた状態で10秒間放置し、この繰り
返しを45回行った。
To control the opening and closing of the shutters 16 and 17, the shutter 16 is opened with the shutter 17 closed to evaporate Sr for 10 seconds, and then 1 with the shutters 16 and 17 closed.
The shutter was left for 0 seconds, the shutter 17 was opened with the shutter 16 closed, and Cu was evaporated for 10 seconds. Further, the shutters 16 and 17 were both closed for 10 seconds, and this was repeated 45 times.

【0025】約30分間の蒸着により250オングスト
ローム程度の薄膜が作製された。薄膜の組成はSr:C
u=1:1となっていた。このままの状態で、従来の酸
化物薄膜のように酸素中熱処理を行なうとことなく非常
に再現性良く無限層状構造薄膜を作製することができ
た。
A thin film of about 250 Å was formed by vapor deposition for about 30 minutes. The composition of the thin film is Sr: C
It was u = 1: 1. In this state, it was possible to fabricate an infinite layered structure thin film with very good reproducibility without performing heat treatment in oxygen as in the conventional oxide thin film.

【0026】得られた薄膜酸化物電気伝導体のX線回折
図は前述のように図3に示したが、図3中の31、32で示
したピークは基体のチタン酸ストロンチウムのピークで
ある。
The X-ray diffraction pattern of the obtained thin film oxide electric conductor is shown in FIG. 3 as described above. The peaks indicated by 31 and 32 in FIG. 3 are the peaks of strontium titanate of the substrate. ..

【0027】また、膜の組成としては、Srの蒸発の際
にSr以外のアルカリ土類(IIa族)元素(Ca、B
a、Mg、Be、Ra)のうち少なくとも一種以上の元
素を併用しても同様に電気伝導を示した。特にCaを併
用した場合には、超伝導の臨界温度を10Kほど下げる
ことができ、また、Baを併用した場合には10Kほど
上げる事ができた。
The composition of the film is such that when Sr is vaporized, an alkaline earth (IIa group) element (Ca, B) other than Sr is used.
When at least one element of (a, Mg, Be, Ra) is used together, electric conductivity is similarly exhibited. In particular, when Ca was used together, the critical temperature of superconductivity could be lowered by about 10K, and when Ba was used together, it could be raised by about 10K.

【0028】尚、前記ストロンチウム以外のアルカリ土
類元素の混入割合は原子数で20%以下程度が好まし
く、また、Ca、Baが好ましく、特にCaが好まし
い。また、噴射するガスの種類としては、オゾンを用い
ても同様に良好な電気伝導性を有する無限層状構造の薄
膜が得られた。
The mixing ratio of alkaline earth elements other than strontium is preferably about 20% or less in terms of the number of atoms, and Ca and Ba are preferable, and Ca is particularly preferable. Further, even if ozone was used as the type of gas to be injected, an infinite layered thin film having similarly good electric conductivity was obtained.

【0029】以上の実施例では、MBE法を例として説
明したが、EB法、スパッタ法などを用いても同様に形
成できる。以上のように、本発明の薄膜酸化物電気伝導
体の製造方法は、構造の単純な無限層状構造のSr−C
u−O系酸化物電気伝導薄膜の再現性のよい作製方法を
提供するものであり、工業上極めて大きな価値を有する
ものである。
In the above embodiments, the MBE method is described as an example, but the EB method, the sputtering method and the like can be used to form the same. As described above, the method for producing a thin film oxide electric conductor of the present invention is performed by using an infinitely layered Sr-C structure having a simple structure.
The present invention provides a method for producing a uO-based oxide electroconductive thin film with good reproducibility, and has an extremely great industrial value.

【0030】[0030]

【発明の効果】本発明の薄膜酸化物電気伝導体の製造方
法によれば、良質のSr−Cu−O系薄膜電気電導体を
再現性よく容易に得ることができる。
According to the method for producing a thin film oxide electric conductor of the present invention, a good quality Sr-Cu-O type thin film electric conductor can be easily obtained with good reproducibility.

【0031】また、前記本発明の薄膜電気伝導体の製造
方法において、ストロンチウム(Sr)を含む物質から
なる原子層に、少なくともストロンチウム以外のアルカ
リ土類元素を更に含ませておくことによって、結晶の格
子定数を変化させることが可能となり、例えば超伝導の
臨界温度を変化させることができるなど、伝導体の特性
を変えることができる。
In the method for producing a thin film electric conductor of the present invention, the atomic layer made of a substance containing strontium (Sr) is further made to contain at least an alkaline earth element other than strontium to obtain a crystalline substance. The lattice constant can be changed, and the characteristics of the conductor can be changed, for example, the critical temperature of superconductivity can be changed.

【0032】また、前記本発明の薄膜酸化物電気伝導体
の製造方法において、積層が分子線エピタキシー法(M
BE法)により各原子層を交互に周期的に積層させて無
限層状構造とすることにより、不純物の混入の少ない薄
膜酸化物電気伝導体を得ることができ、より再現性良く
良質で高性能の薄膜酸化物電気伝導体を得る方法を提供
できる。
Further, in the method for producing a thin film oxide electric conductor of the present invention, the lamination is a molecular beam epitaxy method (M
By stacking each atomic layer alternately and periodically by the BE method) to form an infinite layered structure, it is possible to obtain a thin-film oxide electric conductor with less impurities mixed therein, which is more reproducible and of good quality and high performance. A method of obtaining a thin film oxide electrical conductor can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例で用いた装置の主要部を示す
概略概念図。
FIG. 1 is a schematic conceptual diagram showing a main part of an apparatus used in an embodiment of the present invention.

【図2】本発明の一実施例の薄膜酸化物電気伝導体の断
面模式図。
FIG. 2 is a schematic cross-sectional view of a thin film oxide electric conductor according to an example of the present invention.

【図3】本発明の一実施例の薄膜酸化物電気伝導体のX
線回折図
FIG. 3 is an X of a thin film oxide electric conductor according to an embodiment of the present invention.
Line diffraction diagram

【符号の説明】[Explanation of symbols]

11 Sr蒸発源 12 Cu蒸発源 13 基体 14 ガス噴射ノズル 15 ヒーター 16、17 シャッター 21 Srよりなる層 22 Cu、Oよりなる層 31、32 基体のチタン酸ストロンチウムのピーク 11 Sr evaporation source 12 Cu evaporation source 13 substrate 14 gas injection nozzle 15 heater 16, 17 shutter 21 layer made of Sr 22 layer made of Cu, O 31, 32 peak of strontium titanate of substrate

───────────────────────────────────────────────────── フロントページの続き (72)発明者 瀬恒 謙太郎 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kentaro Setsune 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 酸化を促進するガスを基体付近に噴射し
ながら、加熱された前記基体上に、少なくともストロン
チウム(Sr)を含む物質からなる原子層と、銅(C
u)を含む酸化物からなる原子層とを周期的に積層させ
て無限層状構造とすることからなる薄膜酸化物電気伝導
体の製造方法。
1. An atomic layer made of a substance containing at least strontium (Sr) and copper (C) on the heated substrate while jetting a gas that promotes oxidation near the substrate.
A method for producing a thin film oxide electric conductor, which comprises periodically laminating an atomic layer made of an oxide containing u) into an infinite layered structure.
【請求項2】 ストロンチウム(Sr)を含む物質から
なる原子層に、少なくともストロンチウム以外のアルカ
リ土類元素を更に含ませてなる請求項1記載の薄膜酸化
物電気伝導体の製造方法。
2. The method for producing a thin film oxide electric conductor according to claim 1, wherein the atomic layer made of a substance containing strontium (Sr) further contains at least an alkaline earth element other than strontium.
【請求項3】 積層が分子線エピタキシー法(MBE
法)により各原子層を交互に周期的に積層させて無限層
状構造とすることからなる請求項1または2のいずれか
に記載の薄膜酸化物電気伝導体の製造方法。
3. A molecular beam epitaxy method (MBE) is used for stacking.
3. The method for producing a thin film oxide electrical conductor according to claim 1, wherein the atomic layers are alternately and periodically laminated by a method) to form an infinite layered structure.
JP4007446A 1992-01-20 1992-01-20 Production of thin-film oxide electric conductor Pending JPH05194096A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4007446A JPH05194096A (en) 1992-01-20 1992-01-20 Production of thin-film oxide electric conductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4007446A JPH05194096A (en) 1992-01-20 1992-01-20 Production of thin-film oxide electric conductor

Publications (1)

Publication Number Publication Date
JPH05194096A true JPH05194096A (en) 1993-08-03

Family

ID=11666070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4007446A Pending JPH05194096A (en) 1992-01-20 1992-01-20 Production of thin-film oxide electric conductor

Country Status (1)

Country Link
JP (1) JPH05194096A (en)

Similar Documents

Publication Publication Date Title
JPH0284782A (en) Manufacture of josephson element
JPH02145761A (en) Manufacture of thin superconductor film
EP0372808B1 (en) Process for preparing a perovskite type superconductor film
JP3037514B2 (en) Thin film superconductor and method of manufacturing the same
US5340793A (en) Layer-by-layer process for forming Bi -containing oxide superconducting films
JPH05194096A (en) Production of thin-film oxide electric conductor
JPH05194095A (en) Production of thin-film electric conductor
JP2741277B2 (en) Thin film superconductor and method of manufacturing the same
JPH05194097A (en) Production of thin-film electric conductor
JPH02252618A (en) Production of bi-based superconducting thin film
KR970009739B1 (en) Method of manufacture for superconductor thin film
JPH05319820A (en) Production of thin film oxide electric conducting body
JP3025891B2 (en) Thin film superconductor and method of manufacturing the same
JP2961852B2 (en) Manufacturing method of thin film superconductor
JPH05319822A (en) Method for producing thin film oxide electric conductor and device therefor
JPH05170448A (en) Production of thin ceramic film
JPH046108A (en) Insulator, production of insulating thin film, superconducting thin film and production thereof
JPH03275504A (en) Oxide superconductor thin film and its production
JPH0437609A (en) Oxide superconducting thin film and its production
JPH05171414A (en) Superconducting thin film and its production
JPH01307283A (en) Manufacture of superconductive thin-film
JPH09260733A (en) Oxide superconducting thin film laminated body and manufacture thereof
JPH06144832A (en) Thin film oxide superconductor and its production
JPH0316919A (en) Superconductive thin film and its production
JPH02258629A (en) Preparation of bi-pb-sr-ca-cu-o superconductor thin film