JPH0722662A - Insulation material and its manufacture, and superconductor thin film and its manufacture - Google Patents

Insulation material and its manufacture, and superconductor thin film and its manufacture

Info

Publication number
JPH0722662A
JPH0722662A JP5143327A JP14332793A JPH0722662A JP H0722662 A JPH0722662 A JP H0722662A JP 5143327 A JP5143327 A JP 5143327A JP 14332793 A JP14332793 A JP 14332793A JP H0722662 A JPH0722662 A JP H0722662A
Authority
JP
Japan
Prior art keywords
thin film
film
alkaline earth
elements
oxide layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5143327A
Other languages
Japanese (ja)
Inventor
Hiroshi Ichikawa
洋 市川
Hideaki Adachi
秀明 足立
Kentaro Setsune
謙太郎 瀬恒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP5143327A priority Critical patent/JPH0722662A/en
Publication of JPH0722662A publication Critical patent/JPH0722662A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To provide an insulation material which compensates characteristic even at a film thickness of several 10nm and a thin film manufacturing method thereof, and a structure of a stable superconductive thin film and its manufacturing method. CONSTITUTION:Bi4Srn-1 Ti2+nO3n+9 crystal (n is an integer of 1 or more) of a lamination structure whose basic structure of crystal is composed of a (Bi2O2)<2+> layer and a (Bi2Srn-1Ti2+nO3n+7)<2-> layer in a c-axial direction is close to that of an a-axis and a b-axis of a Bi superconductor, enables mutual epitaxial growth of thin films and is a stable insulation material without allowing Ti to affect Bi superconductor crystal even if laminated with a Bi superconductor thin film. Therefore, a Bi superconductor thin film and an insulation material thin film can be epitaxially formed stably through a Bi-O layer by laminating and depositing an oxide layer whose main element includes at least Bi, an oxide layer containing Cu and an alkaline earth (11a group) and an oxide layer containing Bi, Ti and alkaline earth periodically.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、酸化物高温超電導体等
の600 〜900 ℃の比較的高い生成過程を経る材料をデバ
イス化する際に有用な絶縁体とその製造方法及び超電導
体薄膜とその製造方法に関するものである。
FIELD OF THE INVENTION The present invention relates to an insulator, a method for producing the same, and a superconductor thin film, which are useful in converting a material such as an oxide high temperature superconductor, which undergoes a relatively high generation process at 600 to 900 ° C., into a device. The present invention relates to a manufacturing method thereof.

【0002】[0002]

【従来の技術】現在、応用が急がれている材料のひとつ
に酸化物高温超電導体がある。このペロブスカイト系化
合物は、金属化合物超電導体よりさらに高い転移温度が
期待され、Ba−La−Cu−O系の高温超電導体が提
案された[J.G.Bednorz and K.A.Muller,ツァイトシュ
リフト・フュア・フィジーク(Zeitshrift Fur Physik
B)-Condensed Matter Vol.64,189-193(1986)] 。さら
に、Bi−Sr−Ca−Cu−O系の材料が100K以
上の転移温度を示すことも発見された[H.Maeda,Y.Tana
ka,M.Fukutomi and T.Asano,ジャパニーズ・ジャーナル
・オブ・アプライド・フィジックス(Japanese Journal
of Applied Physics)Vol.27,L209-L210(1988)]。この種
の材料の超電導機構の詳細は明らかではないが、転移温
度が室温以上に高くなる可能性があり、高温超電導体と
して従来の2元系化合物より、電子デバイス分野での応
用が期待されている。
2. Description of the Related Art Oxide high-temperature superconductors are one of the materials whose applications are urgently required at present. This perovskite compound is expected to have a higher transition temperature than that of a metal compound superconductor, and a Ba-La-Cu-O-based high-temperature superconductor has been proposed [JG Bednorz and KAMuller, Zeitshrift Fur Physik. Physik
B) -Condensed Matter Vol.64, 189-193 (1986)]. Furthermore, it was discovered that the Bi-Sr-Ca-Cu-O-based material exhibits a transition temperature of 100 K or higher [H. Maeda, Y. Tana.
ka, M.Fukutomi and T.Asano, Japanese Journal of Applied Physics (Japanese Journal
of Applied Physics) Vol. 27, L209-L210 (1988)]. Although the details of the superconducting mechanism of this kind of material are not clear, the transition temperature may be higher than room temperature, and it is expected to be applied in the electronic device field as a high temperature superconductor rather than the conventional binary compounds. There is.

【0003】そして、これらの酸化物超電導体の開発と
あいまって、この材料を電子デバイスへの応用を考え、
酸化物超電導体を作製する際に経る高熱過程に対しても
安定な絶縁体および絶縁薄膜の開発が行われている[Y.
Ichikawa,H.Adachi,T.Mitsuyu and K.Wasa,ジャパニー
ズ・ジャーナル・オブ:アプライド・フィジックス(Ja
panese Journal of Applied Physics)Vol.27,L381-L383
(1988)] 。
Then, together with the development of these oxide superconductors, considering the application of this material to electronic devices,
Insulators and thin films are being developed that are stable to the high temperature process that occurs during the production of oxide superconductors [Y.
Ichikawa, H.Adachi, T.Mitsuyu and K.Wasa, Japanese Journal of Applied Physics (Ja
panese Journal of Applied Physics) Vol.27, L381-L383
(1988)].

【0004】さらに超電導体と絶縁体とを交互に積層す
ることにより、より高い超電導転移温度が従来から期待
されていた[M.H.Cohen and D.H.Douglass,Jr.,フィジ
カル・レビュー・レターズ(Physical Review Letters)
Vol.19,118-121(1967)]。
Furthermore, by alternately laminating superconductors and insulators, a higher superconducting transition temperature has been conventionally expected [MH Cohen and DHDouglass, Jr., Physical Review Letters].
Vol. 19, 118-121 (1967)].

【0005】[0005]

【発明が解決しようとする課題】しかしながら、酸化物
超電導体の材料は、良好な超電導特性を得るためには少
なくとも600℃以上の熱処理または形成時の加熱が必
要であり、そのため絶縁体の結晶性が崩れ、絶縁体およ
び絶縁薄膜と超電導体との間で各元素の相互拡散が起こ
り、超電導体の特性劣化並びに絶縁体の特性劣化が起こ
り、特に高温酸化物超電導体と絶縁膜との周期的な積層
構造を得ることは極めて困難であり、ジョセフソンデバ
イスが代表応用例としてあげられるこの構造を利用した
集積化デバイスを構成を困難なものとしていた。
However, in order to obtain good superconducting properties, the material of the oxide superconductor needs to be heat-treated at a temperature of 600 ° C. or higher or heating at the time of formation, so that the crystallinity of the insulator is high. Collapse, and inter-diffusion of each element occurs between the insulator and the insulating thin film and the superconductor, resulting in deterioration of the characteristics of the superconductor and deterioration of the characteristics of the insulator. It is extremely difficult to obtain such a laminated structure, and it has been difficult to construct an integrated device using this structure, which is a typical application example of Josephson devices.

【0006】さらに、高温超電導体および薄膜にとって
最適な絶縁薄膜が得られていないため、超電導体と絶縁
体との有効な積層構造が達成されないために、超電導材
料そのものの超電導転移温度の上昇は望めないのが現状
であった。
Furthermore, since an optimum insulating thin film for a high-temperature superconductor and a thin film has not been obtained, an effective laminated structure of a superconductor and an insulator cannot be achieved, so that it is expected that the superconducting transition temperature of the superconducting material itself will rise. It was the current situation.

【0007】本発明は、前記従来の問題を解決するた
め、膜厚数10 nm 程度でも特性を補償する絶縁体とその
製造方法、および安定な超電導薄膜の構造とその製造方
法を提供することを目的とする。
In order to solve the above-mentioned conventional problems, the present invention provides an insulator for compensating the characteristics even with a film thickness of about 10 nm, a method for producing the same, and a structure of a stable superconducting thin film and a method for producing the same. To aim.

【0008】[0008]

【課題を解決するための手段】前記目的を達成するた
め、本発明の絶縁体は、主成分が少なくともビスマス
(Bi)、アルカリ土類(IIa族)、チタン(Ti)、
酸素(O)を含む薄膜の積層体であるという構成を備え
たものである(ここでアルカリ土類は、IIa族元素のう
ちの少なくとも一種または二種以上の元素を示す。)。
In order to achieve the above-mentioned object, the insulator of the present invention has a main component of at least bismuth (Bi), alkaline earth (IIa group), titanium (Ti),
It has a constitution that it is a laminated body of thin films containing oxygen (O) (here, the alkaline earth represents at least one element or two or more elements of the group IIa elements).

【0009】次に本発明の絶縁体の製造方法は、基体上
に少なくともBiを含む酸化物層と、少なくともBi、
アルカリ土類(IIa族)、Tiを含む酸化物層を交互に
積層するという構成を備えたものである(ここでアルカ
リ土類は、IIa族元素のうちの少なくとも一種または二
種以上の元素を示す。)。
Next, in the method for producing an insulator of the present invention, an oxide layer containing at least Bi and at least Bi,
It has a structure in which an alkaline earth (IIa group) and an oxide layer containing Ti are alternately laminated (wherein the alkaline earth is at least one kind or two or more kinds of the group IIa elements). Show.).

【0010】次に本発明の超電導薄膜は、基体上に主成
分に少なくともBi、Cuおよびアルカリ土類(IIa
族)を含む酸化物層と、少なくともBi、Ti、アルカ
リ土類を含む絶縁体酸化物層が周期的に積層された構造
を有するものである(ここでアルカリ土類は、IIa族元
素のうちの少なくとも一種または二種以上の元素を示
す。)。
Next, the superconducting thin film of the present invention has at least Bi, Cu and alkaline earth (IIa) as main components on the substrate.
Group) and an insulator oxide layer containing at least Bi, Ti, and an alkaline earth are periodically laminated (wherein the alkaline earth is a group IIa element). Of at least one or more than two elements).

【0011】次に本発明の超電導薄膜の製造方法は、基
体上に主成分に少なくともBiを含む酸化物層と、少な
くともCuおよびアルカリ土類(IIa族)を含む酸化物
層と、少なくともBi、Ti、アルカリ土類を含む酸化
物層を周期的に積層堆積するという構成を備えたもので
ある(ここでアルカリ土類は、IIa族元素のうちの少な
くとも一種または二種以上の元素を示す。)。
Next, in the method for producing a superconducting thin film of the present invention, an oxide layer containing at least Bi as a main component, an oxide layer containing at least Cu and an alkaline earth (group IIa), and at least Bi, are formed on a substrate. The structure is such that an oxide layer containing Ti and an alkaline earth is periodically stacked and deposited (here, the alkaline earth represents at least one kind or two or more kinds of elements of the group IIa). ).

【0012】前記構成においては、元素の比率が、B
i:A:Ti=4:(n−1):(2+n)で表される
ことが好ましい(ここで、AはIIa族元素のうちの少な
くとも一種または二種以上の元素を示し、nは1以上の
整数を示す。)。
In the above structure, the ratio of elements is B
It is preferably represented by i: A: Ti = 4: (n-1) :( 2 + n) (wherein A represents at least one kind or two or more kinds of Group IIa elements, and n is 1). Indicates the above integer.).

【0013】[0013]

【作用】前記本発明の構成によれば、絶縁体は、熱的に
も極めて安定なBi2 2 酸化膜層またはこれを主体と
した層により覆われた結晶構造を有しており、酸化物超
電導体とほぼ等しい生成温度であることから、特に酸化
物高温超電導体と接触させても高温熱処理等の過程を経
ても本発明による絶縁体、酸化物超電導体の結晶性およ
び特性が互いに劣化させあうことがない。さらに本発明
による絶縁体の結晶構造は酸化物超電導体のそれと同じ
ペロブスカイト構造であり、特にaおよびb軸の長さが
ほぼ等しいことからも酸化物超電導体と絶縁体の安定な
連続積層が可能である。
According to the above-mentioned structure of the present invention, the insulator has a crystal structure covered with a Bi 2 O 2 oxide film layer or a layer mainly composed of the Bi 2 O 2 oxide film, which is extremely stable in terms of heat. Since the formation temperature is almost the same as that of the oxide superconductor, the crystallinity and characteristics of the insulator and the oxide superconductor according to the present invention are deteriorated with each other even if they are brought into contact with the oxide high-temperature superconductor or undergo a process such as high-temperature heat treatment. There is nothing to do. Further, the crystal structure of the insulator according to the present invention is the same perovskite structure as that of the oxide superconductor, and in particular, since the a and b axes are almost equal in length, stable continuous lamination of the oxide superconductor and the insulator is possible. Is.

【0014】さらに本発明の絶縁体の製造方法の構成に
よれば、上記構造を達成するため、基体上に少なくとも
Biを含む酸化物層と、少なくともBi、アルカリ土類
(IIa族)、Tiを含む酸化物層を交互に積層すること
によって、再現性良くBi系超電導薄膜と絶縁膜との積
層が得られ、またジョセフソンデバイス設計に必要とさ
れる厚さ数10nm以下の層間絶縁膜の安定形成を可能
にするものである。
Further, according to the constitution of the method for producing an insulator of the present invention, in order to achieve the above structure, an oxide layer containing at least Bi, at least Bi, an alkaline earth (group IIa) and Ti are formed on the substrate. By alternately laminating the oxide layers containing the same, a Bi-based superconducting thin film and an insulating film can be laminated with good reproducibility, and the interlayer insulating film having a thickness of several 10 nm or less, which is necessary for the Josephson device design, is stable. It enables formation.

【0015】さらに本発明の超電導薄膜の構成によれ
ば、Bi2 2 酸化膜層またはこれを主体とした層によ
りともに覆われた結晶構造となっているところの、Bi
系超電導薄膜と第1の発明による絶縁体の薄膜とが、交
互に積層された構造をとることによって、超電導薄膜と
絶縁膜との間での元素の相互拡散の積層が可能になり、
その結果Bi系超電導薄膜における超電導転移温度が安
定に再現性よく実現されたものである。
Further, according to the structure of the superconducting thin film of the present invention, the Bi 2 O 2 oxide film layer or the layer mainly composed of the Bi 2 O 2 oxide film has a crystal structure covered with Bi.
The system superconducting thin film and the insulator thin film according to the first aspect of the present invention have a structure in which the superconducting thin film and the insulating film are alternately laminated, thereby enabling mutual diffusion of elements between the superconducting thin film and the insulating film.
As a result, the superconducting transition temperature in the Bi-based superconducting thin film was stably realized with good reproducibility.

【0016】さらに本発明の超電導薄膜の製造方法の構
成によれば、前記超電導薄膜を極めて安定に、しかも微
細スケールでの構造を達成するため、基体上に主成分に
少なくともBiを含む酸化物層と、少なくともCuおよ
びアルカリ土類(IIa族)を含む酸化物層と、少なくと
もBi、Ti、アルカリ土類を含む酸化物層を周期的に
積層堆積して作製することによって、再現性よくBi系
超電導薄膜と絶縁膜との積層を実現させるものである。
Further, according to the structure of the method for producing a superconducting thin film of the present invention, in order to achieve the structure of the superconducting thin film extremely stably and on a fine scale, an oxide layer containing at least Bi as a main component on the substrate. And an oxide layer containing at least Cu and an alkaline earth (Group IIa) and an oxide layer containing at least Bi, Ti and an alkaline earth are periodically laminated to form a Bi-based material with good reproducibility. It is intended to realize lamination of a superconducting thin film and an insulating film.

【0017】[0017]

【実施例】酸化物高温超電導体の中で、安定性、超電導
転移温度の高さの観点からBi系超電導体が最も実用化
に有望な材料と考えられる。また、この種の材料の素子
化を考えた場合、ジョセフソン接合等に使われる層間絶
縁膜の作製が問題となってくる。まず、本発明者らはB
i系超電導体薄膜についての層間絶縁膜として種々の絶
縁膜について検討した。
Examples Among oxide high-temperature superconductors, Bi-based superconductors are considered to be the most promising materials for practical use from the viewpoints of stability and high superconducting transition temperature. Further, when considering the use of this type of material as an element, the production of an interlayer insulating film used for Josephson junction or the like becomes a problem. First, the present inventors
Various insulating films were examined as an interlayer insulating film for the i-based superconductor thin film.

【0018】通常、Bi−Sr−Ca−Cu−O系の酸
化物超電導薄膜は600 〜700 ℃に加熱した基体上に蒸着
して得る。蒸着後、そのままでも薄膜は超電導特性を示
すが、その後700 〜950 ℃の熱処理を施し、超電導特性
を向上させる。しかしながら、基体温度が高い時に絶縁
膜を酸化物超電導薄膜に続いて積層したり、絶縁膜を形
成後熱処理を行った場合、超電導膜と絶縁膜との間で、
元素の相互拡散が起こり超電導特性が大きく劣化するこ
とが判明した。相互拡散を起こさないためには、超電導
膜、絶縁膜の結晶性が優れていること、超電導膜・絶縁
膜間での格子の整合性が優れていること、絶縁膜が700
〜950 ℃の熱処理に対して安定であることが不可欠と考
えられる。
Usually, the Bi-Sr-Ca-Cu-O type oxide superconducting thin film is obtained by vapor deposition on a substrate heated to 600 to 700 ° C. After vapor deposition, the thin film shows superconducting properties as it is, but it is then heat-treated at 700 to 950 ° C to improve the superconducting properties. However, when the insulating film is laminated subsequently to the oxide superconducting thin film when the substrate temperature is high, or when heat treatment is performed after forming the insulating film, between the superconducting film and the insulating film,
It was found that the mutual diffusion of elements occurs and the superconducting properties are greatly deteriorated. To prevent mutual diffusion, the crystallinity of the superconducting film and the insulating film is excellent, the lattice matching between the superconducting film and the insulating film is excellent, and the insulating film is 700
It is considered essential to be stable to heat treatment at ~ 950 ° C.

【0019】まず、本発明者らはBi系層状強誘電体の
結晶の基本構造がBi2 2 酸化物層とTiを含むペロ
ブスカイト状酸化物層からなっており、Bi系超電導体
と極めて似通っていることに着目し、絶縁材料として検
討を行った。また、超電導体と誘電体を組合せデバイス
化を図る場合、真空中での加熱状態は避けては通れない
工程であることから、Bi系超電導薄膜の上に誘電体を
成長させ評価を行った。図1にBi系超電導薄膜上にB
i−Ti−O誘電体薄膜を成長させたときのX線回折ス
ペクトルの変化を示す。図1(a)、(b)、(c)は
それぞれBi−Ti−O薄膜、Bi−Sr−Ca−Cu
−O薄膜、Bi−Ti−O/Bi−Sr−Ca−Cu−
O薄膜のX線回折スペクトルを示す。基体にはSrTi
3 (100) を用い、焼成されたBi−Ti−O、Bi−
Sr−Ca−Cu−Oターゲトからなる2元の高周波マ
グネトロンスパッタ装置で薄膜を作製した。基体の温度
は650℃にした。Bi−Ti−O薄膜、Bi−Sr−
Ca−Cu−O薄膜の膜厚はそれぞれ50nm、150
nmとした。図1(a)、(b)が示すように、Bi−
Ti−O薄膜、Bi−Sr−Ca−Cu−O薄膜はそれ
ぞれ結晶性に優れたc軸配向性の誘電体Bi4 Ti3
12、超電導体Bi2 Sr2 CaCu2 8 になっている
ことがわかる。しかしBi−Sr−Ca−Cu−O薄膜
作製後直ちにその上にBi−Ti−O薄膜を堆積する
と、Bi4 Ti3 12、Bi2 Sr2 CaCu2 8
いずれの結晶相も現れず、図1(c)からBi−Sr−
Oの固溶体結晶ができあがることがわかった。また本来
Bi−Ti−Oは絶縁体であるところが、導通があっ
た。この現象は、例えばBi−Sr−Ca−Cu−O薄
膜作製後基体温度を室温まで下げ、再びBi−Ti−O
薄膜作製温度まで基体の温度を上げてBi−Ti−O薄
膜を作製した場合、Bi−Sr−Ca−Cu−O薄膜作
製後酸素ガスを含む雰囲気中で充分にBi2 Sr2 Ca
Cu2 8 結晶を成長させる熱処理を施した後、Bi−
Ti−O薄膜をその上に作製した場合でも同様に観察さ
れた。この原因は正確には未だ不明であるが、およそ次
の様に考えられる。すなわち、少なくともBi4 Ti3
12の結晶化に必要な状態に加熱されたBi−Sr−C
a−Cu−O薄膜中では、Bi、Sr、Ca、Cu、O
は結合が弱く、その上に飛来したBi、Ti、Oの中で
も最も活性力の強いTiの影響を受け、特にTiはOと
結合しやすいためにBi、Sr、Ca、Cuが必ずなん
らかの形態で結合しているOとの結合を切ってしまい、
Bi−Sr−Ca−Cu−OとBi−Ti−Oの界面か
らBi2 Sr2 CaCu2 8 の元素比率Bi:Sr:
Ca:Cu=2:2:1:2から崩れてしまい、界面か
らBi−Sr−Oの固溶体ができてしまうのではないか
と本発明者らは考えた。
First, the present inventors have a basic crystal structure of a Bi-based layered ferroelectric substance consisting of a Bi 2 O 2 oxide layer and a perovskite-like oxide layer containing Ti, which is very similar to a Bi-based superconductor. We paid attention to the fact that it is an insulating material. In addition, when a device is formed by combining a superconductor and a dielectric, a heating state in a vacuum is an unavoidable process. Therefore, evaluation was performed by growing a dielectric on a Bi-based superconducting thin film. Fig. 1 shows B on a Bi-based superconducting thin film.
4 shows changes in X-ray diffraction spectrum when an i-Ti-O dielectric thin film was grown. 1 (a), (b), and (c) show Bi-Ti-O thin film and Bi-Sr-Ca-Cu, respectively.
-O thin film, Bi-Ti-O / Bi-Sr-Ca-Cu-
The X-ray-diffraction spectrum of an O thin film is shown. SrTi for the substrate
O 3 with (100), calcined Bi-Ti-O, Bi-
A thin film was formed by a binary high-frequency magnetron sputtering apparatus composed of Sr-Ca-Cu-O target. The temperature of the substrate was 650 ° C. Bi-Ti-O thin film, Bi-Sr-
The thickness of the Ca-Cu-O thin film is 50 nm and 150, respectively.
nm. As shown in FIGS. 1A and 1B, Bi-
Ti-O thin film, Bi-Sr-Ca-Cu -O thin film having excellent c-axis orientation in each crystalline dielectric Bi 4 Ti 3 O
12 , it can be seen that the superconductor is Bi 2 Sr 2 CaCu 2 O 8 . However Bi-Sr-CaCu-O thin films prepared immediately after the depositing the Bi-Ti-O thin film thereon, does not appear any crystalline phase of Bi 4 Ti 3 O 12, Bi 2 Sr 2 CaCu 2 O 8 , FIG. 1 (c), Bi-Sr-
It was found that a solid solution crystal of O was completed. Further, although Bi-Ti-O was originally an insulator, there was conduction. This phenomenon occurs, for example, after the Bi-Sr-Ca-Cu-O thin film is formed, the substrate temperature is lowered to room temperature, and then Bi-Ti-O is again generated.
If to produce a Bi-Ti-O thin film by increasing the temperature of the substrate to a thin film forming temperature, Bi-Sr-Ca-Cu -O thin films prepared after the oxygen gas sufficiently in an atmosphere containing Bi 2 Sr 2 Ca
After heat treatment for growing Cu 2 O 8 crystals, Bi-
Similar observation was made when a Ti—O thin film was formed thereon. The exact cause is still unknown, but it can be considered as follows. That is, at least Bi 4 Ti 3
O was heated in a state necessary for the crystallization of 12 Bi-Sr-C
In the a-Cu-O thin film, Bi, Sr, Ca, Cu, O
Has a weak bond, and is affected by Ti, which has the highest activity among Bi, Ti, and O that has flown on it. Especially, Ti easily bonds with O, so Bi, Sr, Ca, and Cu must be in some form. It breaks the bond with O,
Element ratio of Bi-Sr-CaCu-O and Bi-Ti-O from the interface Bi 2 Sr 2 CaCu 2 O 8 Bi: Sr:
The present inventors have considered that the Ca: Cu = 2: 2: 1: 2 collapses and a Bi-Sr-O solid solution is formed from the interface.

【0020】そこで、本発明者らはTiを活性力の低い
粒子の状態でBi−Sr−Ca−Cu−O薄膜上に飛来
させるための実験および検討を行ってきた結果、Bi系
強誘電体結晶を構成するBi2 2 酸化物層とTiを含
むペロブスカイト状酸化物層の中で、ペロブスカイト状
酸化物層にTiとアルカリ土類(IIa族)を添加してい
くと、Bi−Sr−Ca−Cu−O薄膜の結晶構造は保
持されたままBi系誘電体が成長できることを見いだ
し、また意外にも強誘電体としても優れた特性を示す可
能性を見いだした。
Therefore, the inventors of the present invention have conducted experiments and studies for causing Ti to fly onto the Bi-Sr-Ca-Cu-O thin film in the form of particles having a low activity, and as a result, the Bi-based ferroelectric substance has been found. Among the Bi 2 O 2 oxide layer forming the crystal and the perovskite-like oxide layer containing Ti, when Ti and alkaline earth (group IIa) are added to the perovskite-like oxide layer, Bi-Sr- It was found that the Bi-based dielectric can grow while the crystal structure of the Ca-Cu-O thin film is maintained, and unexpectedly that it may exhibit excellent characteristics as a ferroelectric.

【0021】(実施例1)本実施例で用いた薄膜作成装
置の構造概略図を図2に示す。本実施例ではBi−Sr
−Ca−Cu−O薄膜とBi−Ti−O薄膜を連続的に
積層するために、2元ターゲットの高周波マグネトロン
スパッタ法でそれぞれの膜を蒸着した。スパッタリング
ターゲットとして、空気中において900 ℃、5時間焼成
した混合酸化物のBi2 Sr2 Ca2 Cu3 10+xディ
スクターゲット1とBi4 Ti3 12+yディスクターゲ
ット2を用いた。5は基体を示す。MgO(100)基体5に焦
点を結ぶように各ターゲットが約30°傾いて設置され
ている。ターゲットの前方にはシャッター3、4があ
り、Bi−Sr−Ca−Cu−O薄膜とBi−Ti−O
薄膜を連続的に基体5上に堆積できる。ArとO2 の混
合ガス(Ar:O2 =1:9、0.5Pa)をスパッタリ
ングガスとして用いた。ターゲット1、2にそれぞれ8
0W、60Wのスパッタ電力を注入してターゲットをス
パッタし、650℃に加熱した基体5上にまずBi−S
r−Ca−Cu−O薄膜を150nm堆積し、続いてB
i−Ti−O薄膜を50nmの積層堆積をおこなった。
Bi−Ti−O薄膜堆積後の薄膜の結晶構造は図1
(c)に示す通りであり、薄膜の最表面は絶縁性を示さ
なかった。そこで、本発明者らはBi−Ti−Oターゲ
ットにBiとSrを添加していくと絶縁性が上がること
を見いだした。すなわち、Bi4Ti3 12+yディスク
ターゲット2を粉砕し、TiO2 粉体、SrCO3 粉体
を加えて再度焼成してターゲット2として使用し、Bi
−Sr−Ti−O薄膜をBi−Sr−Ca−Cu−O薄
膜上に堆積すると、Bi−Sr−Ti−O薄膜はBi−
Sr−Ca−Cu−O薄膜上であっても絶縁性を示すこ
とを見いだした。TiO2 粉体とSrCO3 粉体はTi:
Sr=1: 1の割合で加えた。そこで、Bi−Sr−Ca
−Cu−O薄膜上のBi−Sr−Ti−O薄膜の上に直
径0.3mmのPt 電極を約50nmスパッタ法で2個
蒸着し(間隔1.5mm)、100Hz から1MHz の
周波数をもった振幅5Vの電圧に対するインピーダンス
変化からBi−Sr−Ti−O薄膜の誘電率、抵抗率、
リーク(漏れ)電流を測定した。この中で絶縁性をもっ
とも的確に表現するパラメーターはリーク電流である。
(Example 1) A thin film forming apparatus used in this example
A schematic view of the structure of the device is shown in FIG. In this embodiment, Bi-Sr
-Ca-Cu-O thin film and Bi-Ti-O thin film continuously
Dual target high frequency magnetron for stacking
Each film was vapor-deposited by the sputtering method. Sputtering
Baking at 900 ℃ for 5 hours in air as a target
Bi of mixed oxide2Sr2Ca2Cu3O10 + xDi
Sctarget 1 and BiFourTi3O 12 + yDisc target
Tut 2 was used. Reference numeral 5 indicates a substrate. MgO (100) substrate 5
Each target is installed so that it is tilted about 30 ° so as to connect the points.
ing. There are shutters 3 and 4 in front of the target
Bi-Sr-Ca-Cu-O thin film and Bi-Ti-O
A thin film can be continuously deposited on the substrate 5. Ar and O2A mixture of
Combined gas (Ar: O2= 1: 9, 0.5 Pa)
It was used as a linguistic gas. 8 for targets 1 and 2 respectively
Sputter power of 0 W and 60 W is injected to target the target.
First, Bi-S is put on the substrate 5 which is putted and heated to 650 ° C.
A 150 nm thick r-Ca-Cu-O thin film is deposited, followed by B
An i-Ti-O thin film was deposited in a stack of 50 nm.
The crystal structure of the thin film after deposition of the Bi-Ti-O thin film is shown in FIG.
As shown in (c), the outermost surface of the thin film exhibits insulating properties.
There wasn't. Therefore, the present inventors have made a Bi-Ti-O target.
Insulation increases when Bi and Sr are added to the
I found it. That is, BiFourTi3O12 + ydisk
Target 2 is crushed and TiO2Powder, SrCO3powder
Is added and fired again and used as the target 2.
-Sr-Ti-O thin film with Bi-Sr-Ca-Cu-O thin
When deposited on the film, the Bi-Sr-Ti-O thin film becomes Bi-
Insulation is exhibited even on Sr-Ca-Cu-O thin film.
I found out. TiO2Powder and SrCO3The powder is Ti:
It was added at a ratio of Sr = 1: 1. Therefore, Bi-Sr-Ca
Directly on the Bi-Sr-Ti-O thin film on the -Cu-O thin film
Two Pt electrodes with a diameter of 0.3 mm are sputtered to about 50 nm.
It is vapor-deposited (spacing: 1.5 mm), from 100 Hz to 1 MHz
Impedance for 5V amplitude voltage with frequency
From the change, the dielectric constant, the resistivity of the Bi-Sr-Ti-O thin film,
Leakage current was measured. It has an insulating property
The parameter that is accurately expressed is the leak current.

【0022】図3にBi−Ti−O薄膜に添加したTi+
Sr の量に対するリーク電流の変化を示した。Ti+Sr
の量は添加したTiとSr の比率が1: 1であるからB
4Srz Ti3+z 12+yのzで表した。z>0でリー
ク電流は減少し、z≧5で再び増加することがわかっ
た。また、本発明者らはz= 2のとき添加するTiとS
r の比率について同様にリーク電流の変化を調べた。図
4に添加するTiとSrの比率に対するBi−Sr−C
a−Cu−O薄膜上のBi−Sr−Ti−O薄膜のリー
ク電流の変化を示した。この結果、本発明者らはTi:S
r=1: 1のときもっともリーク電流が小さく絶縁性に優
れていることを見いだした。すなわち、Bi−Sr−T
i−O薄膜中の元素の比率が、Bi:Sr :Ti=4:
(n−1):(2+n)、で表されるとき、絶縁性に最
も優れていることを本発明者らは見いだした。ここでn
は1以上の整数を示す。
FIG. 3 shows the Ti + added to the Bi-Ti-O thin film.
The change in leak current with respect to the amount of Sr is shown. Ti + Sr
The amount of B is because the ratio of added Ti and Sr is 1: 1.
It was represented by z of i 4 Sr z Ti 3 + z O 12 + y . It was found that the leak current decreased when z> 0 and increased again when z ≧ 5. In addition, the inventors of the present invention added Ti and S when z = 2.
Similarly, the change in leak current was examined for the ratio of r. Bi-Sr-C with respect to the ratio of Ti and Sr added in FIG.
The change of the leak current of the Bi-Sr-Ti-O thin film on the a-Cu-O thin film was shown. As a result, the present inventors
It was found that the leakage current is smallest and the insulation is excellent when r = 1: 1. That is, Bi-Sr-T
The ratio of elements in the i-O thin film is Bi: Sr: Ti = 4 :.
The present inventors have found that when represented by (n-1) :( 2 + n), the insulating property is most excellent. Where n
Represents an integer of 1 or more.

【0023】良好な絶縁体が得られた原因は未だ不明確
であるが、およそ次のように考えられる。すなわち、T
iは比率1: 1のSr とSr−Ti−Oの単位でBi−
Sr−Ti−O薄膜作製時にBi−Sr−Ca−Cu−
O上に飛来し、すでにエネルギー的に安定であるため、
他の元素に影響を及ぼさずBi−Sr−Ca−Cu−O
薄膜との界面で固溶体をつくることがないものと考えら
れる。
The reason why a good insulator is obtained is still unclear, but it can be considered as follows. That is, T
i is a unit of Sr and Sr-Ti-O in a ratio of 1: 1 and Bi-
Bi-Sr-Ca-Cu-at the time of producing the Sr-Ti-O thin film
Since it flew over O and is already energy stable,
Bi-Sr-Ca-Cu-O without affecting other elements
It is considered that no solid solution is formed at the interface with the thin film.

【0024】なお、本発明者らはSr の代わりに、C
a、Baでも同じ効果があることも併せて見いだした。
さらに、本発明者らは本実施例に示したBi−Sr−T
i−O薄膜が強誘電体としても優れていることも併せて
見いだした。すなわち、Ti、Sr を添加しないBi−
Ti−O膜に比べて誘電率が上昇することを見いだし
た。図5にBi−Ti−O薄膜に添加したTi+Sr の量
に対する室温でのBi−Sr−Ti−O薄膜の比誘電率
の変化を示す。なお、本発明者らは添加したTiとSr
の比率が1: 1のとき最も比誘電率が高いことも併せて
見いだした。さらに、本発明者らはSr の代わりに、C
a、Baでも同じ効果があることも併せて見いだした。
Note that the present inventors have replaced Cr with C
We also found that a and Ba have the same effect.
Furthermore, the inventors of the present invention showed the Bi-Sr-T shown in this example.
It was also found that the i-O thin film is excellent as a ferroelectric. That is, Bi-without addition of Ti and Sr
It has been found that the dielectric constant is higher than that of the Ti-O film. FIG. 5 shows changes in the relative permittivity of the Bi-Sr-Ti-O thin film at room temperature with respect to the amount of Ti + Sr added to the Bi-Ti-O thin film. The inventors of the present invention added Ti and Sr.
It was also found that the relative permittivity is highest when the ratio is 1: 1. Furthermore, we replace Cr with C
We also found that a and Ba have the same effect.

【0025】さらに本発明者らは、Bi系層状強誘電体
が(Bi2 2 2+(Bi2 Srn- 1 Ti2+n 3n+7
2-の組成式で表されることに着目し、Bi−O層と仮相
ペロブスカイト層Bi−Sr−Ti−O層を原子オーダ
ーで周期的に積層したときにBi系層状強誘電体薄膜の
結晶性、特性が向上することを見いだし、この方法を適
用すると実施例1に示した作製方法より格段に制御性良
く、安定した膜質の、しかも膜表面が極めて平坦な絶縁
膜が得られることを見いだした。
Further, the present inventors have found that the Bi-based layered ferroelectric substance is (Bi 2 O 2 ) 2+ (Bi 2 Sr n- 1 Ti 2 + n O 3n + 7 )
Paying attention to the fact that it is represented by the composition formula of 2- , when a Bi-O layer and a pseudo-phase perovskite layer Bi-Sr-Ti-O layer are periodically laminated in atomic order, a Bi-based layered ferroelectric thin film is formed. It was found that the crystallinity and characteristics are improved, and that when this method is applied, it is possible to obtain an insulating film with much better controllability, stable film quality, and an extremely flat film surface than the manufacturing method shown in Example 1. I found it.

【0026】Bi4 Srn-1 Ti2+n 3n+9結晶はc軸
方向に(Bi2 2 2+層と(Bi 2 Srn-1 Ti2+n
3n+72-層からなる積層構造と考えられる。そこでそ
れぞれ層状構造を構成する異なる元素または単位層を別
々に順次積層していくことにより、基体表面に対し平行
な面内だけで積層された蒸着元素が動くだけで、基体表
面に対し垂直方向への元素の移動がないことによるもの
と考えられる。
BiFourSrn-1Ti2 + nO3n + 9Crystal is c-axis
Direction (Bi2O2)2+Layer and (Bi 2Srn-1Ti2 + n
O3n + 7)2-It is considered to be a laminated structure including layers. There
Separate the different elements or unit layers that make up the layered structure.
Parallel to the substrate surface by sequentially stacking each
The surface of the substrate can be moved by simply moving the vapor deposition elements
Due to the absence of element movement in the direction perpendicular to the plane
it is conceivable that.

【0027】さらに意外にも、良好な超電導特性を得る
に必要な基体の温度、熱処理温度も、従来より低いこと
を見いだした。Bi−Sr−Ti−O薄膜を作製するの
には、Bi−O→(Bi−Sr−Ti−O)→Bi−O
積層方法が考えられる。一般に、MBE装置または多元
のEB蒸着装置で蒸発源の前を開閉シャッターで制御し
たり、気相成長法で作製する際にガスの種類を切り替え
たりすることにより、周期的積層を達成することができ
る。しかしこの種の非常に薄い層の積層には従来スパッ
タリング蒸着は不向きとされていた。この理由は、成膜
中のガス圧の高さに起因する不純物の混入およびエネル
ギーの高い粒子によるダメージと考えられている。しか
しながら、本発明者らは、このBi−Ti−O薄膜に対
してスパッタリングにより異なる薄い層の積層を行なっ
たところ、以外にも良好な積層膜作製が可能なことを見
いだした。
Surprisingly, it was also found that the temperature of the substrate and the heat treatment temperature required to obtain good superconducting properties are lower than those of the conventional ones. To prepare a Bi-Sr-Ti-O thin film, Bi-O->(Bi-Sr-Ti-O)-> Bi-O.
Lamination methods are possible. In general, periodic stacking can be achieved by controlling an opening / closing shutter in front of an evaporation source in an MBE apparatus or a multi-source EB vapor deposition apparatus, or by switching a gas type when manufacturing by a vapor phase growth method. it can. However, sputtering deposition has hitherto been unsuitable for stacking very thin layers of this type. The reason for this is considered to be contamination of impurities due to high gas pressure during film formation and damage by particles having high energy. However, the present inventors have found that a good laminated film can be produced in addition to the case where different thin layers are laminated on this Bi-Ti-O thin film by sputtering.

【0028】スパッタ蒸着で異なる物質を積層させる方
法としては、組成分布を設けた1ケのスパッタリングタ
ーゲットの放電位置を周期的に制御するという方法があ
るが、組成の異なる複数個のターゲットのスパッタリン
グという方法を用いると比較的簡単に達成することがで
きる。この場合、複数個のターゲットの各々のスパッタ
量を周期的に制御したり、またはターゲットの前にシャ
ッターを設けて周期的に開閉したりして、周期的積層膜
を作製することができる。また基板を周期的運動させて
各々ターゲットの上を移動させる方法でも作製が可能で
ある。レーザースパッタまたはイオンビームスパッタを
用いた場合には、複数個のターゲットを周期運動させて
ビームの照射するターゲットを周期的に変えれば、周期
的積層膜が実現される。このように複数個のターゲット
を用いたスパッタリングにより比較的簡単にBi−Sr
−Ti−O系酸化物の周期的積層が作製可能となる。
As a method of stacking different substances by sputter deposition, there is a method of periodically controlling the discharge position of one sputtering target having a composition distribution, but it is called sputtering of a plurality of targets having different compositions. This can be achieved relatively easily using the method. In this case, the sputtering amount of each of the plurality of targets can be periodically controlled, or a shutter can be provided in front of the target to periodically open and close the target to form a periodic laminated film. It can also be manufactured by a method in which the substrate is moved cyclically and moved over each target. When laser sputtering or ion beam sputtering is used, a periodic laminated film is realized by periodically moving a plurality of targets to periodically change the targets irradiated by the beams. In this way, it is relatively easy to perform Bi-Sr sputtering by using a plurality of targets.
It becomes possible to fabricate a periodic stack of —Ti—O-based oxides.

【0029】(実施例2)本実施例では、図2に示した
実施例1で用いた装置を用いて行った。すなわち、図2
においてBiメタルディスクターゲット1、Bi−Sr
−Ti−O焼成ディスクターゲット2、基体5としてす
でにMg O(100) に作製したBi−Sr−Ca−Cu−
O超電導薄膜を用いた。ターゲット1、2にはそれぞれ
シャッター3、4があり、各ターゲットのサイクル及び
スパッタ時間を設定することができる。基体5をヒータ
ー6で650℃に加熱し、アルゴン・酸素(4:1)混
合雰囲気1Paのガス中で各ターゲットのスパッタリン
グを行なった。Bi:60W、Bi−Sr−Ti−O:
200Wの高周波電力を注入し、(Bi−O)→(Bi
−Sr−Ti−O)→(Bi−O)のサイクルでBi−
Sr−Ti−O薄膜を作製した。
Example 2 In this example, the apparatus used in Example 1 shown in FIG. 2 was used. That is, FIG.
At Bi Metal Disc Target 1, Bi-Sr
-Ti-O fired disk target 2 and Bi-Sr-Ca-Cu-
An O 2 superconducting thin film was used. The targets 1 and 2 have shutters 3 and 4, respectively, and the cycle and sputtering time of each target can be set. The substrate 5 was heated to 650 ° C. by the heater 6 and each target was sputtered in a gas containing 1 Pa of a mixed atmosphere of argon and oxygen (4: 1). Bi: 60W, Bi-Sr-Ti-O:
High-frequency power of 200 W is injected, and (Bi-O) → (Bi-O)
-Sr-Ti-O)-> (Bi-O) cycle
An Sr-Ti-O thin film was prepared.

【0030】このようにして作製したBi−Sr−Ti
−O薄膜のリーク電流を実施例1と同様に測定した結果
を図6に示した。図6に観られるように本発明者らによ
る絶縁膜の作製方法によりリーク電流が約1桁下がって
いることがわかる。この原因として、本発明者らによる
方法で、Bi−Sr−Ti−O薄膜はその結晶構造を構
成するよう(Bi−O)層、(Bi−Sr−Ti−O)
層を順次積層したために層状結晶本来の特性が向上した
ためと考えられる。
Bi-Sr-Ti thus prepared
The result of measuring the leak current of the -O thin film in the same manner as in Example 1 is shown in FIG. As seen in FIG. 6, it can be seen that the leak current is reduced by about one digit by the method of forming the insulating film by the present inventors. The reason for this is that the Bi-Sr-Ti-O thin film has a (Bi-O) layer and a (Bi-Sr-Ti-O) layer so that the Bi-Sr-Ti-O thin film constitutes its crystal structure.
It is considered that the original characteristics of the layered crystal were improved because the layers were sequentially stacked.

【0031】(実施例3)図7に本実施例で作製した薄
膜の断面図を模式的にあらわす。図7において、基体上
にBi−Sr−Ca−Cu−O膜とBi−Sr−Ti−
O膜を交互に積層した。積層の方法としては、実施例1
で用いた2元高周波マグネトロンスパッタ法でターゲッ
ト1として焼成Bi−Sr−Ca−Cu−O、ターゲッ
ト2としてBi−Sr−Ti−Oを用い、Bi−Sr−
Ca−Cu−O膜100nmとBi−Sr−Ti−O膜
を5周期交互にスパッタし、Bi−Sr−Ti−O薄膜
の膜厚を変えて薄膜の抵抗率の変化を調べ、結果を図8
に示す。Bi−Sr−Ti−O膜が20nmのとき、最
も高い超電導転移温度およびゼロ抵抗温度、すなわち特
性8が得られた。特性8の超電導転移温度、ゼロ抵抗温
度はBi−Sr−Ca−Cu−O膜本来のそれらの値よ
りも約8K高いものであった。この効果の詳細な理由に
ついては未だ不明であるが、図7に示すように、Bi−
Sr−Ca−Cu−O膜とBi−Sr−Ti−O膜とを
周期的に積層することによって、Bi−Sr−Ca−C
u−O膜とBi−Sr−Ti−O膜が互いにBi2 2
層を介してエピタキシャル成長していることにより積層
界面での元素の相互拡散の影響がなく、かつ結晶性に優
れた薄いBi−Sr−Ti−O膜を介して同じく結晶性
に優れたBi−Sr−Ca−Cu−O膜を積層すること
によりBi−Sr−Ca−Cu−O膜において超電導機
構になんらかの変化が引き起こされたことが考えられる
が、機構はまだあきらかできない。
(Embodiment 3) FIG. 7 schematically shows a cross-sectional view of the thin film produced in this embodiment. In FIG. 7, a Bi-Sr-Ca-Cu-O film and a Bi-Sr-Ti- film are formed on the substrate.
O films were alternately stacked. As a stacking method, Example 1 was used.
In the binary high-frequency magnetron sputtering method used in Example 1, a baked Bi-Sr-Ca-Cu-O is used as the target 1, and Bi-Sr-Ti-O is used as the target 2, and Bi-Sr-
The Ca-Cu-O film 100 nm and the Bi-Sr-Ti-O film were alternately sputtered for 5 cycles, the Bi-Sr-Ti-O thin film thickness was changed, and the change in the resistivity of the thin film was investigated. 8
Shown in. When the Bi-Sr-Ti-O film was 20 nm, the highest superconducting transition temperature and zero resistance temperature, that is, characteristic 8, was obtained. The superconducting transition temperature and zero resistance temperature of characteristic 8 were about 8K higher than those values originally present in the Bi-Sr-Ca-Cu-O film. Although the detailed reason for this effect is still unknown, as shown in FIG.
Bi-Sr-Ca-C is obtained by periodically stacking the Sr-Ca-Cu-O film and the Bi-Sr-Ti-O film.
The u-O film and the Bi-Sr-Ti-O film are mutually Bi 2 O 2
Bi-Sr, which is also excellent in crystallinity, is not affected by mutual diffusion of elements at the stacking interface because it is epitaxially grown through the layer, and Bi-Sr is also excellent in crystallinity through a thin Bi-Sr-Ti-O film having excellent crystallinity. It is considered that some changes were caused in the superconducting mechanism in the Bi-Sr-Ca-Cu-O film by stacking the -Ca-Cu-O film, but the mechanism is still unclear.

【0032】(実施例4)図9は、本実施例で用いた3
元マグネトロンスパッタ装置内部の概略図であり、10
はBiディスクターゲット、11は焼成Sr−Ca−C
u−Oディスクターゲット、12は焼成Bi−Sr−T
i−Oディスクターゲット、13、14、15はシャッ
ター、16は基体、17は基体加熱用ヒーターを示す。
ターゲット11元素比率Sr:Ca:Cu=2: 2: 3、ター
ゲット12は元素比率Bi:Sr:Ti=2: 2: 5であり、
図9に示すように配置させた。すなわち、Mg O(100)
基体16に焦点を結ぶように各ターゲットが約30°傾
いて設置されている。各ターゲットの前方にはシャッタ
ー13、14、15があり、ターゲット10、11、1
2から基体16上に別々に膜を蒸着することができる。
シャッター13、14、15の開閉を制御することによ
り、(Bi−O)→(Sr−Ca−Cu−O)→(Bi
−O)のサイクルと(Bi−O)→(Bi−Sr−Ti
−O)→(Bi−O)のサイクルでスパッタ蒸着が行な
うことができる。積層の様子を概念的に図7に示した
が、ターゲット10、1112への入力電力、それぞれ
のターゲットのスパッタ時間を制御することにより、基
体16上に蒸着するBi−Sr−Ca−Cu−O膜、B
i−Sr−Ti−O膜の膜厚を変えることができる。基
体16をヒーター17で約700℃に加熱し、アルゴン
・酸素(1:1)混合雰囲気0.5Paのガス中で各タ
ーゲットのスパッタリングを行なった。薄膜作製後は酸
素雰囲気中において、850 ℃の熱処理を5時間施した。
本実施例では、Bi−Sr−Ca−Cu−O膜の元素の
組成比率がBi:Sr:Ca:Cu=2: 2: 2: 3、Bi−S
r−Ti−O膜の元素の組成比率がBi:Sr:Ti=4:
2: 5になるよう、スパッタ時間スパッタ電流を調節し
た。さらに結晶性を維持したまま、薄くできる膜厚の限
界は数nmであると思われる。絶縁膜はできるだけ薄い
方が好ましいので、本発明者らはh・((Bi−O)→
(Sr−Ca−Cu−O)→(Bi−O))→i・
((Bi−O)→(Bi−Sr−Ti−O)→(Bi−
O))と書き表せる周期を20周期行なった。なお、良
好な結晶構造を保ったまま作製できるBi−Sr−Ti
−O膜の膜厚はi= 2が限度であった。そこで、本発明
者らはi= 2のとき、hを変化させできあがった薄膜の
抵抗率の温度変化を調べた。そのときの結果を図10に
示す。図10において、18はh= 2、19はh=6、
20はh= 10のときの結果を示す。この図からわかる
ように、h= 6のとき最も超電導転移温度並びにゼロ抵
抗温度が絶縁膜Bi−Sr−Ti−Oと積層しない場合
に比べ上昇することがわかった。この物理的な原因はよ
くわからないが、Bi−Sr−Ca−Cu−O薄膜とB
i−Sr−Ti−O薄膜の両方をきわめて制御性よく積
層できたことによるものと考えられる。
(Embodiment 4) FIG. 9 shows the three components used in this embodiment.
FIG. 10 is a schematic view of the inside of the former magnetron sputtering apparatus.
Is a Bi disk target, 11 is a sintered Sr-Ca-C
u-O disk target, 12 is fired Bi-Sr-T
i-O disk targets, 13, 14, and 15 are shutters, 16 is a substrate, and 17 is a substrate heating heater.
The target 11 has an element ratio Sr: Ca: Cu = 2: 2: 3, and the target 12 has an element ratio Bi: Sr: Ti = 2: 2: 5.
It was arranged as shown in FIG. That is, Mg O (100)
Each target is installed so as to be tilted by about 30 ° so as to focus on the substrate 16. There are shutters 13, 14, 15 in front of each target, and targets 10, 11, 1
Films can be separately deposited from 2 to the substrate 16.
By controlling the opening and closing of the shutters 13, 14, and 15, (Bi-O)->(Sr-Ca-Cu-O)-> (Bi-O)
-O) cycle and (Bi-O) → (Bi-Sr-Ti
Sputter deposition can be performed in a cycle of -O)-> (Bi-O). Although the state of stacking is conceptually shown in FIG. 7, Bi-Sr-Ca-Cu-O deposited on the substrate 16 by controlling the input power to the targets 10 and 1112 and the sputtering time of each target. Membrane, B
The film thickness of the i-Sr-Ti-O film can be changed. The substrate 16 was heated to about 700 ° C. by the heater 17 and each target was sputtered in a gas containing 0.5 Pa of an argon / oxygen (1: 1) mixed atmosphere. After forming the thin film, heat treatment was performed at 850 ° C. for 5 hours in an oxygen atmosphere.
In this embodiment, the composition ratio of elements of the Bi-Sr-Ca-Cu-O film is Bi: Sr: Ca: Cu = 2: 2: 2: 3, Bi-S.
The composition ratio of elements in the r-Ti-O film is Bi: Sr: Ti = 4 :.
The sputtering time was adjusted to a sputtering current of 2: 5. Furthermore, it seems that the limit of the film thickness that can be reduced while maintaining the crystallinity is several nm. Since it is preferable that the insulating film be as thin as possible, the present inventors have found that h · ((Bi−O) →
(Sr-Ca-Cu-O)->(Bi-O))-> i.
((Bi-O)->(Bi-Sr-Ti-O)-> (Bi-
O)) was written for 20 cycles. Note that Bi-Sr-Ti that can be produced while maintaining a good crystal structure
The film thickness of the -O film was limited to i = 2. Therefore, the present inventors investigated the temperature change of the resistivity of the thin film that was completed by changing h when i = 2. The result at that time is shown in FIG. In FIG. 10, 18 is h = 2, 19 is h = 6,
20 shows the result when h = 10. As can be seen from this figure, when h = 6, the superconducting transition temperature and the zero resistance temperature were found to be higher than those when the insulating film Bi-Sr-Ti-O was not laminated. The physical cause of this is not clear, but the Bi-Sr-Ca-Cu-O thin film and B
It is considered that both of the i-Sr-Ti-O thin films were able to be laminated with extremely good controllability.

【0033】さらに本発明者らは、スパッタリング法を
用いなくても、Biの酸化物と、Sr 、Ca、Cu、T
iの酸化物を異なる蒸発源から真空中で別々に蒸発さ
せ、同様の構造を周期的に積層させた場合、実施例2、
実施例4に示したスパッタリングを用いた、積層構造作
製方法と同じく制御性良く、安定した膜質の、薄膜をう
ることが可能であることも併せて見いだした。Bi−
O、Sr−Ca−Cu−O、Bi−Sr−Ti−Oを周
期的に積層させる方法としては、いくつか考えられる。
一般に、MBE装置または多元のEB蒸着装置で蒸発源
の前を開閉シャッターで制御したり、気相成長法で作製
する際にガスの種類を切り替えたりすることにより、周
期的積層を達成することができる。しかしこの種の非常
に薄い層の積層には従来スパッタリング蒸着は不向きと
されていた。この理由は、成膜中のガス圧の高さに起因
する不純物の混入およびエネルギーの高い粒子によるダ
メージと考えられている。しかしながら、本発明者ら
は、このBi系酸化物超電導体また、絶縁薄膜に対して
スパッタリングにより異なる薄い層の積層を行なったと
ころ、以外にも良好な積層膜作製が可能なことを発見し
た。スパッタ中の高い酸素ガス圧およびスパッタ放電に
より、膜内への酸素導入がより促進され、超電導特性の
再現性、安定化が図られ、、Bi系の100K以上の臨
界温度を持つ相の形成、および絶縁薄膜の形成に都合が
よいためではなかろうかと考えられる。
Furthermore, the present inventors have found that Bi oxide, Sr, Ca, Cu, and T can be used without using the sputtering method.
Example 2 when the oxides of i were separately evaporated in vacuum from different evaporation sources and the same structure was periodically stacked.
It was also found that it is possible to obtain a thin film with good controllability and stable film quality as in the method of manufacturing a laminated structure using sputtering shown in Example 4. Bi-
There are several possible methods for periodically stacking O, Sr-Ca-Cu-O, and Bi-Sr-Ti-O.
In general, periodic stacking can be achieved by controlling an opening / closing shutter in front of an evaporation source in an MBE apparatus or a multi-source EB vapor deposition apparatus, or by switching a gas type when manufacturing by a vapor phase growth method. it can. However, sputtering deposition has hitherto been unsuitable for stacking very thin layers of this type. The reason for this is considered to be contamination of impurities due to high gas pressure during film formation and damage by particles having high energy. However, the inventors of the present invention have found that a good laminated film can be produced in addition to the case where different thin layers are laminated on the Bi-based oxide superconductor and the insulating thin film by sputtering. Due to the high oxygen gas pressure during sputtering and sputter discharge, introduction of oxygen into the film is further promoted, reproducibility and stabilization of superconducting characteristics are achieved, and formation of a Bi-based phase having a critical temperature of 100 K or higher, This is probably because it is convenient for the formation of the insulating thin film.

【0034】スパッタ蒸着で異なる物質を積層させる方
法としては、組成分布を設けた1ケのスパッタリングタ
ーゲットの放電位置を周期的に制御するという方法があ
るが、組成の異なる複数個のターゲットのスパッタリン
グという方法を用いると比較的簡単に達成することがで
きる。この場合、複数個のターゲットの各々のスパッタ
量を周期的に制御したり、またはターゲットの前にシャ
ッターを設けて周期的に開閉したりして、周期的積層膜
を作製することができる。また基板を周期的運動させて
各々ターゲットの上を移動させる方法でも作製が可能で
ある。レーザースパッタまたはイオンビームスパッタを
用いた場合には、複数個のターゲットを周期運動させて
ビームの照射するターゲットを周期的に変えれば、周期
的積層膜が実現される。このように複数個のターゲット
を用いたスパッタリングにより比較的簡単にBi系酸化
物の周期的積層が作製可能となる。
As a method of laminating different substances by sputter deposition, there is a method of periodically controlling the discharge position of one sputtering target having a composition distribution, but it is called sputtering of a plurality of targets having different compositions. This can be achieved relatively easily using the method. In this case, the sputtering amount of each of the plurality of targets can be periodically controlled, or a shutter can be provided in front of the target to periodically open and close the target to form a periodic laminated film. It can also be manufactured by a method in which the substrate is moved cyclically and moved over each target. When laser sputtering or ion beam sputtering is used, a periodic laminated film is realized by periodically moving a plurality of targets to periodically change the targets irradiated by the beams. As described above, the periodic stacking of Bi-based oxides can be relatively easily manufactured by sputtering using a plurality of targets.

【0035】[0035]

【発明の効果】以上のように本発明の絶縁体は、酸化物
超電導薄膜のデバイス構成にかかせない要素部を提供す
るものである。また本発明の絶縁薄膜の製造方法は、デ
バイス等の応用には必須の低温でのプロセス確立したも
のである。また本発明の超電導薄膜は、酸化物超電導薄
膜の高性能化を実現したものである。また本発明の超電
導薄膜の製造方法は、デバイス等の応用には必須の低温
でのプロセス確立したものであり、本発明の工業的価値
は大きい。
INDUSTRIAL APPLICABILITY As described above, the insulator of the present invention provides the element portion which is indispensable for the device constitution of the oxide superconducting thin film. Further, the method for producing an insulating thin film of the present invention has established a process at a low temperature which is essential for application of devices and the like. Further, the superconducting thin film of the present invention realizes high performance of the oxide superconducting thin film. Further, the method for producing a superconducting thin film of the present invention has established a process at a low temperature, which is essential for application of devices and the like, and the industrial value of the present invention is great.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例のBi−Ti−O薄膜、Bi
−Sr−Ca−Cu−O薄膜、Bi−Ti−O/Bi−
Sr−Ca−Cu−O積層薄膜のX線回折スペクトル。
FIG. 1 is a Bi—Ti—O thin film of one embodiment of the present invention, Bi
-Sr-Ca-Cu-O thin film, Bi-Ti-O / Bi-
The X-ray-diffraction spectrum of a Sr-Ca-Cu-O laminated thin film.

【図2】本発明の実施例1の実験装置概略図。FIG. 2 is a schematic diagram of an experimental apparatus of Example 1 of the present invention.

【図3】本発明の実施例1のBi−Sr−Ti−O薄膜
のTi/Sr 添加に対するリーク電流の変化。
FIG. 3 is a graph showing changes in leak current of the Bi—Sr—Ti—O thin film of Example 1 of the present invention with respect to addition of Ti / Sr.

【図4】本発明の実施例1のBi−Sr−Ti−O薄膜
の添加したTiとSr の比率に対するリーク電流の変
化。
FIG. 4 shows changes in leak current with respect to the ratio of Ti and Sr added to the Bi—Sr—Ti—O thin film of Example 1 of the present invention.

【図5】本発明の実施例1のBi−Sr−Ti−O薄膜
のTi/Sr 添加に対する比誘電率の変化。
FIG. 5 shows changes in relative permittivity of Bi—Sr—Ti—O thin film of Example 1 of the present invention with addition of Ti / Sr.

【図6】本発明の実施例2のBi−Sr−Ti−O薄膜
のTi/Sr 添加に対するリーク電流の変化。
FIG. 6 shows a change in leak current with respect to addition of Ti / Sr in a Bi—Sr—Ti—O thin film of Example 2 of the present invention.

【図7】本発明の実施例3のBi−Sr−Ti−O強誘
電体/Bi−Sr−Ca−Cu−O超電導体の積層構造
結晶概略図。
FIG. 7 is a schematic diagram of a laminated structure crystal of a Bi—Sr—Ti—O ferroelectric / Bi—Sr—Ca—Cu—O superconductor according to Example 3 of the present invention.

【図8】本発明の実施例3のBi−Sr−Ca−Cu−
O薄膜の抵抗率の温度変化。
FIG. 8 is a Bi-Sr-Ca-Cu-of Example 3 of the present invention.
Temperature change of resistivity of O thin film.

【図9】本発明の実施例4の実験装置概略図。FIG. 9 is a schematic diagram of an experimental apparatus of Example 4 of the present invention.

【図10】本発明の実施例4のBi−Sr−Ca−Cu
−O薄膜の抵抗率の温度変化。
FIG. 10: Bi-Sr-Ca-Cu of Example 4 of the present invention
-Change in resistivity of O thin film with temperature.

【符号の説明】[Explanation of symbols]

1,2,10,11,12 スパッタリングターゲット 3,4,13,14,15 シャッター 5,16 基体 6,17 基体加熱用ヒーター 7,8,9,18,19,20 薄膜の抵抗率の温度変
1,2,10,11,12 Sputtering target 3,4,13,14,15 Shutter 5,16 Substrate 6,17 Substrate heating heater 7,8,9,18,19,20 Temperature change of resistivity of thin film

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C04B 35/00 ZAA 35/46 C23C 14/08 K 0827−4K C30B 29/22 501 M 8216−4G H01B 12/06 ZAA 7244−5G 13/00 565 D 7244−5G H01L 39/02 ZAA D 9276−4M ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Internal reference number FI Technical indication C04B 35/00 ZAA 35/46 C23C 14/08 K 0827-4K C30B 29/22 501 M 8216-4G H01B 12/06 ZAA 7244-5G 13/00 565 D 7244-5G H01L 39/02 ZAA D 9276-4M

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 主成分が少なくともビスマス(Bi)、
アルカリ土類(IIa族)、チタン(Ti)、酸素(O)
を含む薄膜の積層体である絶縁体。ここでアルカリ土類
は、IIa族元素のうちの少なくとも一種または二種以上
の元素を示す。
1. A main component is at least bismuth (Bi),
Alkaline earth (IIa group), titanium (Ti), oxygen (O)
An insulator which is a laminated body of thin films containing. Here, the alkaline earth refers to at least one element or two or more elements of the group IIa elements.
【請求項2】 基体上に少なくともBiを含む酸化物層
と、少なくともBi、アルカリ土類(IIa族)、Tiを
含む酸化物層を交互に積層する絶縁体の製造方法。ここ
でアルカリ土類は、IIa族元素のうちの少なくとも一種
または二種以上の元素を示す。
2. A method for producing an insulator, wherein an oxide layer containing at least Bi and an oxide layer containing at least Bi, alkaline earth (IIa group) and Ti are alternately laminated on a substrate. Here, the alkaline earth refers to at least one element or two or more elements of the group IIa elements.
【請求項3】 基体上に主成分に少なくともBi、Cu
およびアルカリ土類(IIa族)を含む酸化物層と、少な
くともBi、Ti、アルカリ土類を含む絶縁体酸化物層
が周期的に積層された構造を有する超電導薄膜。ここで
アルカリ土類は、IIa族元素のうちの少なくとも一種ま
たは二種以上の元素を示す。
3. A main component of at least Bi, Cu on a substrate.
And a superconducting thin film having a structure in which an oxide layer containing alkaline earth (group IIa) and an insulating oxide layer containing at least Bi, Ti and alkaline earth are periodically laminated. Here, the alkaline earth refers to at least one element or two or more elements of the group IIa elements.
【請求項4】 基体上に主成分に少なくともBiを含む
酸化物層と、少なくともCuおよびアルカリ土類(IIa
族)を含む酸化物層と、少なくともBi、Ti、アルカ
リ土類を含む酸化物層を周期的に積層堆積する超電導薄
膜の製造方法。ここでアルカリ土類は、IIa族元素のう
ちの少なくとも一種または二種以上の元素を示す。
4. An oxide layer containing at least Bi as a main component on a substrate, at least Cu and an alkaline earth (IIa
Group) and an oxide layer containing at least Bi, Ti, and an alkaline earth are periodically stacked and deposited. Here, the alkaline earth refers to at least one element or two or more elements of the group IIa elements.
【請求項5】 元素の比率が、Bi:A:Ti=4:
(n−1):(2+n)で表される請求項1に記載の絶
縁体、または請求項2に記載の絶縁体の製造方法、また
は請求項3に記載の超電導薄膜、または請求項4に記載
の超電導薄膜の製造方法。ここで、AはIIa族元素のう
ちの少なくとも一種または二種以上の元素を示し、nは
1以上の整数を示す。
5. The ratio of elements is Bi: A: Ti = 4 :.
(N-1): represented by (2 + n), the insulator according to claim 1, the method for producing the insulator according to claim 2, the superconducting thin film according to claim 3, or the claim 4. A method for producing the superconducting thin film described. Here, A represents at least one element or two or more elements of the IIa group elements, and n represents an integer of 1 or more.
JP5143327A 1993-06-15 1993-06-15 Insulation material and its manufacture, and superconductor thin film and its manufacture Pending JPH0722662A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5143327A JPH0722662A (en) 1993-06-15 1993-06-15 Insulation material and its manufacture, and superconductor thin film and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5143327A JPH0722662A (en) 1993-06-15 1993-06-15 Insulation material and its manufacture, and superconductor thin film and its manufacture

Publications (1)

Publication Number Publication Date
JPH0722662A true JPH0722662A (en) 1995-01-24

Family

ID=15336210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5143327A Pending JPH0722662A (en) 1993-06-15 1993-06-15 Insulation material and its manufacture, and superconductor thin film and its manufacture

Country Status (1)

Country Link
JP (1) JPH0722662A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018002764A1 (en) * 2016-06-27 2018-01-04 株式会社半導体エネルギー研究所 Method for fabricating metal oxide using sputtering device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018002764A1 (en) * 2016-06-27 2018-01-04 株式会社半導体エネルギー研究所 Method for fabricating metal oxide using sputtering device

Similar Documents

Publication Publication Date Title
JP3037514B2 (en) Thin film superconductor and method of manufacturing the same
JPH0722662A (en) Insulation material and its manufacture, and superconductor thin film and its manufacture
JP2979422B2 (en) Method of manufacturing insulator and insulating thin film, and method of manufacturing superconducting thin film and superconducting thin film
JP2669052B2 (en) Oxide superconducting thin film and method for producing the same
JP2741277B2 (en) Thin film superconductor and method of manufacturing the same
JPS63225599A (en) Preparation of oxide superconductive thin film
JP3478543B2 (en) Oxide superconducting thin film and method for producing the same
JPH07223818A (en) Insulation material, production thereof, supreconductor thin film and production thereof
JPH05171414A (en) Superconducting thin film and its production
JP2555477B2 (en) Superconducting thin film and manufacturing method thereof
JPH03275504A (en) Oxide superconductor thin film and its production
JPS63236794A (en) Production of superconductive thin film of oxide
JP3315737B2 (en) Ferroelectric thin film and method of manufacturing the same
JP2961852B2 (en) Manufacturing method of thin film superconductor
JPH05170448A (en) Production of thin ceramic film
JP3025891B2 (en) Thin film superconductor and method of manufacturing the same
JP2594271B2 (en) Superconductor thin film manufacturing apparatus and superconductor thin film manufacturing method
JPH0437609A (en) Oxide superconducting thin film and its production
JPH02167827A (en) Thin-film superconductor
JPH02298257A (en) Thin film of oxide superconductor and its production
JPH0244029A (en) Production of thin oxide superconducting film
JPH06104498A (en) Superconducting element and manufacture thereof
JPH0244782A (en) Superconductive element and manufacture thereof
JPH0492816A (en) Production of thin-film superconductor
JPH0822741B2 (en) Superconducting thin film and manufacturing method thereof