JPH0492816A - Production of thin-film superconductor - Google Patents

Production of thin-film superconductor

Info

Publication number
JPH0492816A
JPH0492816A JP2207428A JP20742890A JPH0492816A JP H0492816 A JPH0492816 A JP H0492816A JP 2207428 A JP2207428 A JP 2207428A JP 20742890 A JP20742890 A JP 20742890A JP H0492816 A JPH0492816 A JP H0492816A
Authority
JP
Japan
Prior art keywords
thin film
production
superconductor
producing
sputtering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2207428A
Other languages
Japanese (ja)
Inventor
Hideaki Adachi
秀明 足立
Seiji Adachi
成司 安達
Hiroshi Ichikawa
洋 市川
Kentaro Setsune
瀬恒 謙太郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2207428A priority Critical patent/JPH0492816A/en
Publication of JPH0492816A publication Critical patent/JPH0492816A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To excellently obtain a thin film having a crystal structure of a Pb- based superconductor by specifying oxygen partial pressure in a preparation atmosphere. CONSTITUTION:A thin-film superconductor containing principal components composed of Pb, at least one element (A) selected from alkaline earth metallic elements, at least one element (Ln) selected from rare earth elements and Cu is formed on a substrate heated at 400-600 deg.C by regulating the oxygen partial pressure in a preparation atmosphere to <=0.1Pa and using a molecular-beam epitaxial, electron beam vacuum deposition, ion beam sputtering or laser vacuum deposition method.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は 高臨界温度を有する酸化物超伝導体薄膜の製
造方法に関するものであム 従来の技術 高温超伝導体として、ミスーラ−(Mul 1er)等
によりペロブスカイト類型構造の酸化物超伝導体が発見
され九 それ以抵 種々の酸化物系で超伝導性の確認が
為され 主体成分力丈組  アルカリ土類元素 希土類
元素 銅の酸化物からなるPb系超伝導セラミックス4
L70に程度の超伝導臨界温度をもつということが発見
され九[R,J、ケイ八3ユ(Cava)、  B、 
 八’)oり’(Batlogg)、  J、J、  
クラシ′ユースキー(Krajewski)、  L、
W、  ラフツブ(Rupp)、  L、F、  シx
ニメイヤ(SchneeIIleyer)、  T、 
ν1−クリスト(Siegrist)、  R,B、 
 77ン ビー八゛(van  Dover)、  P
、  vルシx(Marsh)、  W、F、 へa、
り(Peck)、Jr、  P、に、 キ′ヤラj”−
(Gallagher)、  S、H,り′ラルム(G
larum)、  J、H,マーシャル(Marsha
ll)、  RoC,フ70つ(Farrow)、  
J、V、  フサ0ツク(Waszczak)、  R
,へル(Hull)  and  P。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for producing an oxide superconductor thin film having a high critical temperature. discovered an oxide superconductor with a perovskite-like structure.9 Since then, superconductivity has been confirmed in various oxide systems. Superconducting ceramics 4
It was discovered that superconductivity has a critical temperature of about L70 [R, J, Cava, B,
8') ori' (Batlogg), J, J,
Krajewski, L.
W, Rupp, L, F, Six
Schnee IIlayer, T.
ν1-Siegrist, R,B,
77 van Dover, P
, v Luci x (Marsh), W, F, to a,
Peck, Jr.
(Gallagher), S.H.
larum), J.H. Marshall
ll), RoC, Farrow,
J, V, Waszczak, R
, Hull and P.

トレへ’−(Trevor)、  ネイチ+−(Nat
ure)、  Vol、336. 211−214  
(1988)] 詳細な解析の結果 この物質は他の高温酸化物超伝導体
と同様に層状構造をとり、ペロブスカイト構造ユニッ)
(A、Ln)CuO*の2層が隣接するPbO−Cu−
PbOブロック層で挟まれた構造となっていも 理想化
学組成は(P bpc u )(A、Ln ) s C
u t Oxであり、代表的な物質として(PbpCu
 )S r s(Y、Ca )CueO−が知られティ
も発明が解決しようとする課題 しかしながらP b−A−L n −Cu−0系の材料
は現在の技術では焼結という過程でしか形成できないた
数 セラミックの粉末あるいはブロックの形状でしか得
られな1.%  −4,この種の材料を実用化する場合
、薄膜状に加工することが強く要望されている力(他の
酸化物超伝導体と違し\ この系の材料は薄膜にするこ
とが非常に困難とされてい課題を解決するための手段 本発明の薄膜超伝導体の製造方法!よ 主体成分が鉛(
Pb)、アルカリ土類元素(A)、希土類元素(Ln)
、銅(Cu)からなる酸化物超伝導体薄膜Pb−A−L
n−Cu−○の製造において、作製雰囲気中の酸素分圧
を0.1Pa以下にするというものであも 作用 従来の酸化物超伝導薄膜作製においては薄膜の酸化の促
進が重要であり、出来る限り作製雰囲気中の酸素分圧を
上げる力\ あるいは通常の酸素分子の代わりに酸化能
力のより高い活性酸点 原子酸点 オゾンを用いて製造
されてい九 この技術を同じ高温酸化物超伝導体である
Pb系超伝導体Pb−A−Ln−Cu−○に応用して杖
 薄膜において超伝導体の結晶構造を得ることが出来な
かつ九本発明者ら(戴 酸化物材料であるにもかかわら
ず作製雰囲気中の酸素分圧を極端に下げていったところ
、ある酸素分圧以下で意外にもPb系超伝導体の結晶構
造の薄膜が良好に得られるということを発見し九 この
場合なぜ酸素分圧が低いと薄膜構造が出来るかは定かで
はない力<、PbO−CuPbOブロック層の金属元素
の価数が低いたへ酸化が過剰になるとブロック層の構造
が壊れるからではないかと考えられも 酸素分圧は適度
に低い方がよい力丈 上限は0.1Pa程度であっ九ま
たこの系の材料は 作製中の基体の温度が比較的低い4
00〜600℃で作製可能なことも合わせて見いだし九
 基体温度がこれ以上高いと、膜中のpb元素が再蒸発
するた敢 やはりPb系超伝導体の結晶構造が得られな
いことを確認した特にスパッタリング蒸着でこの系の薄
膜を作製する場合、通常酸化物薄膜ではスパッタガスと
して酸素と不活性ガスの混合ガスが使用されるところを
、酸素を含まない不活性ガスのみにすると良好なPb系
超伝導薄膜が得られることを確認しなまたMBB、  
電子ビーム蒸着、イオンビームスパッタ、 あるいはレ
ーザー蒸着などの高真空蒸着装置を用いてこの系の薄膜
を作製する場合には 通常の酸化物超伝導体薄膜作製時
によく用いられる酸化力の強い活性酸黒 原子酸黒 オ
ゾンのような特別なガスを使う必要がなく、その際の基
体近傍の真空度が10−2Pa以下の高真空で作製が可
能なことを確認でき、原子層制御蒸着を行なう上で特に
効果を発すム 実施例 本発明者らによる発明の内容をさらに深く理解されるた
めへ 以下に具体的な実施例を用いて説明すも 実施例1 高周波マグネトロンスパッタ装置を用り、Pb系酸化物
超伝導体Pb−3r−Y−Ca−Cu−0薄膜の作製を
行なった スパッタリングターゲット(よPb5S r
tY+、a6cam、〒cu*、so6の直径80mm
の円盤とし九 550℃に加熱したMgO単結晶(10
0)面基体上E、0.5Paのスパッタガスのもと、 
100Wのスパッタリング放電を行な1、%  薄膜を
作製し九 約30分で2000人程度のP bes r
aYs、sCa@、5cusQx薄膜が形成された ス
パッタガス中のアルゴン・酸素混合比を変えて、作製さ
れる膜の特性を調べた 第1図(a)、(b)、(c)
G−02/Ar=1/3 (酸素分圧0.125Pa:
  サンプルa) 、Oe/A r = 174(酸素
分圧0.1Pa:  サンプルb)、純アルゴン(サン
プルC)のスパッタガスで作製された薄膜のX線回折パ
ターンをそれぞれ示す。酸素分圧0.125Paで作製
したサンプルaの膜は絶縁体であり、X線パターンは他
層の出現を示していもところが酸素分圧を0.1Paと
減らして作製したサンプルb f友  丸印で示すPb
系超伝導体の構造が出来ているのが確認されも さらに
酸素を減らして純アルゴンのみのスパッタガスを用いた
サンプルCの場合に1友 良好にC軸配向したPb系超
伝導薄膜が得られ九 この膜の格子定数はc=15.7
5人であり、 Pb系超伝導セラミックスと−致しな 
この結果からスパッタ蒸着中の酸素分圧が0.1Pa以
下の場合、Pb系超伝導体の結晶構造が得られることが
判った Pb系超伝導体の結晶構造が出現した膜の超伝導特性を
測定し九 そのままの状態でも薄膜は超伝導転移を示し
た力(空気中で300℃、30分間熱処理を加えること
により再現性および特性が向上し九 第2図(b)、(
c)はそれぞれサンプルbとサンプルCの特性であム 
サンプルbは50にで、サンプルCは85にで超伝導を
示した このよう番ミ スパッタガスに酸素をいれず不
活性ガスのみにしてPb系超伝導体のスパッタ蒸着を行
なうと、サンプルCのように良好な結晶構造と超伝導特
性が得られることが判っ九 また超伝導特性が得られる
基体温度3表 400〜600℃と従来の酸化物超伝導
体より低めであった 実施例2 MBE装置を用いてPb−3r−Y−Ca−Cu−0薄
膜作製を行なっ九 原材料としてPbO化合物、Sr金
属、Y金属、Ca金属、Cu金属を用(X、5個の加熱
るつぼにそれぞれ充填して各元素を個別に蒸発させも 
蒸着室を10−’Pa以下に排気した後、 550℃に
加熱したMgO基体に蒸着を行なっ九 薄膜の化学組成
がP bt3 rtYs、もCan5CU*08となる
ように各元素の蒸着量の設定を行なっ九 成膜中に蒸着
室には酸素ガスを導入する力丈 基板付近の真空度が1
0−2Pa以下の時にPb系超伝導体の結晶構造の薄膜
が得られ九 すなわち高真空装置を用いたこの系の材料
の膜作製に(よ 従来の酸化物超伝導体で必要であった
活性酸素を使わなくてL 微量の酸素で充分であっ九ま
たこの際酸素ガスを導入しなくてもPb系酸化物超伝導
体の構造が得られ九 これはPb元素の原材料であるP
bOの酸素が膜に供給されるためであると考えられも 
従ってこのような高真空蒸着装置で酸化物を原材料とし
て用いると、Pb系超伝導薄膜作製において特に酸素ガ
スを用いる必要がなく、容易に薄膜作製が可能になム 
この際の基板付近の真空度は10−’Paとかなり高真
空であり、原子層制御などの精密な構造制御が可能であ
る。得られた薄膜It  c軸が垂直に配向しMgo基
体と結晶方位の揃ったエピタキシャル薄膜であることが
反射電子線回折で確認された この膜は85にで急峻な
超伝導転移を示し九発明の効果 本発明による薄膜超伝導体の製造方法ζL 従来得られ
なかったPb系酸化物超伝導薄膜の製造を最初に可能な
らしめたものであム 特にこの種の材料の薄膜作製に(
よ 酸素があまり必要なくまた比較的低温で合成が可能
ということを発見したものであり、簡単な装置で容易に
超伝導薄膜製造が可能となム 従って、デバイス応用上
最適な薄膜材料の製法を提供することができも
Torehe'-(Trevor), Nat+-(Nat
ure), Vol. 336. 211-214
(1988)] As a result of detailed analysis, this material has a layered structure similar to other high-temperature oxide superconductors, and has a perovskite structure unit).
(A, Ln) Two layers of CuO* are adjacent to PbO-Cu-
Even if the structure is sandwiched between PbO block layers, the ideal chemical composition is (P bpc u ) (A, Ln) s C
u t Ox, and as a representative substance (PbpCu
)S r s (Y, Ca )CueO- is known, and the problem that the invention seeks to solve.However, with current technology, Pb-A-Ln-Cu-0-based materials can only be formed through the process of sintering. 1. Only available in ceramic powder or block form. % -4, When this type of material is put into practical use, it is strongly desired to process it into a thin film (unlike other oxide superconductors, it is extremely difficult to process this type of material into a thin film). A method for producing a thin film superconductor according to the present invention, which is a method for solving problems that are considered difficult to solve.The main component is lead (
Pb), alkaline earth element (A), rare earth element (Ln)
, oxide superconductor thin film Pb-A-L made of copper (Cu)
In the production of n-Cu-○, it is necessary to reduce the oxygen partial pressure in the production atmosphere to 0.1 Pa or less.In the production of conventional oxide superconducting thin films, it is important to promote oxidation of the thin film, and it is possible to As long as the power to increase the oxygen partial pressure in the fabrication atmosphere is \ or instead of normal oxygen molecules, active acid sites with higher oxidizing ability atomic acid sites are manufactured using ozone. When applied to a certain Pb-based superconductor Pb-A-Ln-Cu-○, the present inventors were unable to obtain the crystal structure of a superconductor in a thin film (despite being an oxide material). By extremely lowering the oxygen partial pressure in the production atmosphere, they discovered that a thin film with a crystalline structure of a Pb-based superconductor could be obtained surprisingly well below a certain oxygen partial pressure. It is not certain whether a thin film structure can be formed when the partial pressure is low. It is thought that this is because the valence of the metal element in the PbO-CuPbO block layer is low, and excessive oxidation will destroy the structure of the block layer. It is better to have a moderately low oxygen partial pressure.The upper limit is about 0.1 Pa.9 Also, this type of material has a relatively low base temperature during fabrication4.
We also discovered that it can be fabricated at temperatures between 00 and 600 degrees Celsius.We also confirmed that if the substrate temperature were higher than this, the Pb element in the film would re-evaporate, so it was confirmed that the crystal structure of a Pb-based superconductor could not be obtained. In particular, when producing thin films of this type by sputtering deposition, a mixture of oxygen and inert gas is normally used as the sputtering gas for oxide thin films, but if only an inert gas that does not contain oxygen is used, a good Pb-based film can be produced. MBB must be confirmed that a superconducting thin film can be obtained.
When producing thin films of this type using high-vacuum deposition equipment such as electron beam evaporation, ion beam sputtering, or laser evaporation, active acid black with strong oxidizing power, which is often used in the production of ordinary oxide superconductor thin films, is used. Atomic acid black It was confirmed that there is no need to use a special gas such as ozone, and that it can be produced in a high vacuum of 10-2 Pa or less near the substrate. Examples of particularly effective examples In order to provide a deeper understanding of the content of the invention by the present inventors, the following is an explanation using specific examples. Example 1 Using a high-frequency magnetron sputtering device, A sputtering target (YoPb5S r
tY+, a6cam, 〒cu*, SO6 diameter 80mm
A disk of MgO single crystal (10
0) On the plane substrate E, under sputtering gas of 0.5 Pa,
A 1.% thin film was prepared by sputtering discharge at 100 W, and about 2,000 P bers were deposited in about 30 minutes.
Thin films of aYs, sCa@, and 5cusQx were formed. The characteristics of the films produced were investigated by changing the argon/oxygen mixing ratio in the sputtering gas. Figure 1 (a), (b), (c)
G-02/Ar=1/3 (oxygen partial pressure 0.125Pa:
The X-ray diffraction patterns of thin films made with sputtering gases of sample a), Oe/A r = 174 (oxygen partial pressure 0.1 Pa: sample b), and pure argon (sample C) are shown, respectively. The film of sample a prepared at an oxygen partial pressure of 0.125 Pa is an insulator, and the X-ray pattern shows the appearance of other layers. Pb shown as
Although it was confirmed that the structure of a Pb-based superconductor was formed, in the case of sample C, in which oxygen was further reduced and a sputtering gas containing only pure argon was used, a Pb-based superconducting thin film with good C-axis orientation was obtained. 9. The lattice constant of this film is c=15.7
There are 5 people, and there is no connection with Pb-based superconducting ceramics.
From this result, it was found that the crystal structure of a Pb-based superconductor can be obtained when the oxygen partial pressure during sputter deposition is 0.1 Pa or less. The thin film showed superconducting transition even in its original state (reproducibility and characteristics improved by heat treatment at 300°C for 30 minutes in air).
c) are the characteristics of sample b and sample C, respectively.
Sample B showed superconductivity at 50, and sample C showed superconductivity at 85.When sputter deposition of Pb-based superconductor was performed using only inert gas without oxygen in the sputtering gas, sample C showed superconductivity at 85. It was found that a good crystal structure and superconducting properties can be obtained as shown in Table 3. Also, the substrate temperature at which superconducting properties can be obtained Example 2 MBE device, which was 400 to 600°C, lower than conventional oxide superconductors A Pb-3r-Y-Ca-Cu-0 thin film was prepared using Pb-3r-Y-Ca-Cu-0 thin film using PbO compound, Sr metal, Y metal, Ca metal, and Cu metal as raw materials. Each element can be evaporated individually
After the vapor deposition chamber was evacuated to below 10-'Pa, vapor deposition was performed on the MgO substrate heated to 550°C. Step 9: During film formation, oxygen gas is introduced into the deposition chamber.The degree of vacuum near the substrate is 1.
A thin film with the crystal structure of a Pb-based superconductor can be obtained at a pressure of 0-2 Pa or less. A very small amount of oxygen is sufficient without using oxygen. Also, the structure of a Pb-based oxide superconductor can be obtained without introducing oxygen gas.
It is thought that this is because oxygen from bO is supplied to the membrane.
Therefore, if oxides are used as raw materials in such high vacuum evaporation equipment, there is no need to use oxygen gas in the production of Pb-based superconducting thin films, making it possible to easily produce thin films.
At this time, the degree of vacuum near the substrate is a fairly high vacuum of 10-'Pa, and precise structural control such as atomic layer control is possible. It was confirmed by backscattered electron diffraction that the obtained thin film was an epitaxial thin film whose c axis was oriented perpendicularly and whose crystal orientation was aligned with that of the Mgo substrate. Effects The method for producing a thin film superconductor according to the present invention ζL This is the first method that makes it possible to produce a Pb-based oxide superconducting thin film, which could not be obtained in the past.Especially for producing thin films of this type of material (
We discovered that it does not require much oxygen and can be synthesized at relatively low temperatures, making it possible to easily produce superconducting thin films using simple equipment.Therefore, we have developed a method for producing thin film materials that is optimal for device applications. can also provide

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例におけるPb−3r−Y−C
a −Cu−0薄膜のX線回折パターン医 第2図は同
実施例で得た薄膜における電気抵抗の温度特性図であム 代理人の氏名 弁理士 粟野重孝 はか1名第 図 θ(/l) 第 図 ま(k)
Figure 1 shows Pb-3r-Y-C in one embodiment of the present invention.
a - X-ray diffraction pattern of Cu-0 thin film Fig. 2 is a temperature characteristic diagram of electrical resistance in the thin film obtained in the same example. l) Figure ma(k)

Claims (4)

【特許請求の範囲】[Claims]  (1)主体成分が鉛(Pb)、アルカリ土類元素(A
)、希土類元素(Ln)、銅(Cu)からなる酸化物超
伝導体薄膜の製造において、作製雰囲気中の酸素分圧を
0.1Pa以下にすることを特徴とする薄膜超伝導体の
製造方法。ここでAはアルカリ土類元素のうち少なくと
も一種類以上の元素、Lnは希土類元素のうち少なくと
も一種類以上の元素を示す。
(1) The main components are lead (Pb) and alkaline earth elements (A
), rare earth element (Ln), and copper (Cu) in the production of an oxide superconductor thin film, a method for producing a thin film superconductor, characterized by reducing the oxygen partial pressure in the production atmosphere to 0.1 Pa or less. . Here, A represents at least one element among alkaline earth elements, and Ln represents at least one element among rare earth elements.
 (2)作製中の基体の温度を400℃〜600℃に保
つことを特徴とする請求項1に記載の薄膜超伝導体の製
造方法。
(2) The method for producing a thin film superconductor according to claim 1, characterized in that the temperature of the substrate during production is maintained at 400°C to 600°C.
 (3)薄膜作製をスパッタリング蒸着を用いて行ない
、その際のスパッタガスを不活性ガスのみにすることを
特徴とする請求項1に記載の薄膜超伝導体の製造方法。
(3) The method for producing a thin film superconductor according to claim 1, wherein the thin film is formed using sputtering vapor deposition, and the sputtering gas used at that time is only an inert gas.
 (4)薄膜作製を分子線エピタキシ(MBE)、電子
ビーム蒸着、イオンビームスパッタ、あるいはレーザー
蒸着を用いて行ない、その際の基体近傍の真空度を10
^−^2Pa以下にすることを特徴とする請求項1に記
載の薄膜超伝導体の製造方法。
(4) Thin film production is performed using molecular beam epitaxy (MBE), electron beam evaporation, ion beam sputtering, or laser evaporation, and the degree of vacuum near the substrate is 10
2. The method for producing a thin film superconductor according to claim 1, wherein the pressure is ^-^2 Pa or less.
JP2207428A 1990-08-03 1990-08-03 Production of thin-film superconductor Pending JPH0492816A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2207428A JPH0492816A (en) 1990-08-03 1990-08-03 Production of thin-film superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2207428A JPH0492816A (en) 1990-08-03 1990-08-03 Production of thin-film superconductor

Publications (1)

Publication Number Publication Date
JPH0492816A true JPH0492816A (en) 1992-03-25

Family

ID=16539595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2207428A Pending JPH0492816A (en) 1990-08-03 1990-08-03 Production of thin-film superconductor

Country Status (1)

Country Link
JP (1) JPH0492816A (en)

Similar Documents

Publication Publication Date Title
JPH029721A (en) Metal oxide material
JPS63224116A (en) Manufacture of thin film superconductor
JPH0492816A (en) Production of thin-film superconductor
JPH02167820A (en) Method for forming tl-base multiple oxide superconducting thin film
JPS63225599A (en) Preparation of oxide superconductive thin film
JP2979422B2 (en) Method of manufacturing insulator and insulating thin film, and method of manufacturing superconducting thin film and superconducting thin film
JPH06116094A (en) Thin film superconductor and its production
JPH02311396A (en) Thin-film superconductor and its production
JPH03275504A (en) Oxide superconductor thin film and its production
JPH02175613A (en) Production of oxide superconducting thin film
US4914080A (en) Method for fabricating superconductive film
JP2976427B2 (en) Method of manufacturing Josephson device
JPS63236794A (en) Production of superconductive thin film of oxide
JPH07106902B2 (en) Method of manufacturing thin film superconductor
JPH05170448A (en) Production of thin ceramic film
JPH03197319A (en) Production of superconductor of thin film
JP2555477B2 (en) Superconducting thin film and manufacturing method thereof
JPH02311312A (en) Production of thin film superconductor
JPH0722662A (en) Insulation material and its manufacture, and superconductor thin film and its manufacture
JPH01105416A (en) Manufacture of thin film superconductor
JPH0465306A (en) Oxide superconductor thin film
JPH07106904B2 (en) Method of manufacturing thin film superconductor
JPS63257127A (en) Manufacture of thin film superconductor
JPH0317253A (en) Production of thin-film superconductor
JPH05194095A (en) Production of thin-film electric conductor