JPH03197319A - Production of superconductor of thin film - Google Patents

Production of superconductor of thin film

Info

Publication number
JPH03197319A
JPH03197319A JP1339011A JP33901189A JPH03197319A JP H03197319 A JPH03197319 A JP H03197319A JP 1339011 A JP1339011 A JP 1339011A JP 33901189 A JP33901189 A JP 33901189A JP H03197319 A JPH03197319 A JP H03197319A
Authority
JP
Japan
Prior art keywords
thin film
film
oxygen
substrate
superconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1339011A
Other languages
Japanese (ja)
Inventor
Shigenori Hayashi
重徳 林
Takeshi Kamata
健 鎌田
Takashi Hirao
孝 平尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1339011A priority Critical patent/JPH03197319A/en
Publication of JPH03197319A publication Critical patent/JPH03197319A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To obtain a superconductor of thin film having excellent superconducting characteristics in good reproducibility by oxidizing a sputtering deposited film of specific compound oxide consisting essentially of Nd2CuO4 type crystal structure on a substrate. CONSTITUTION:A sputtering deposited film of compound oxide consisting of a main component of Nd2CuO4 type crystal structure shown by the formula on a substrate is oxidized to give the objective superconductor material of thin film. In the formula, A is Nd, Sm or Pr; B is Ce or Th; X is 0.06<=x<=0.08. Crystallizability of the film of sputtering deposition, especially of the film treated at 750-1,000 deg.C substrate temperature is enough to provide superconducting characteristics, further crystallizability can be increased by heating the film in the atmosphere or in an atmosphere containing >=10<-3> atmospheric pressure at 900-1,100 deg.C for a given time and further excellent superconducting properties can be obtained.

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は、高臨界温度を持つ酸化物超電導体の薄膜製造
方法、特にNd2CuOa型結晶構造の薄膜超電導体の
製造方法に間するものである。 従来の技術 高い超電導転移温度を持つ酸化物超電導体として、Ba
−ta−Cu−0系の超電導体が発見された
INDUSTRIAL APPLICATION FIELD The present invention relates to a method for manufacturing a thin film of an oxide superconductor having a high critical temperature, particularly a method for manufacturing a thin film superconductor having an Nd2CuOa type crystal structure. Conventional technology Ba is an oxide superconductor with a high superconducting transition temperature.
-ta-Cu-0 superconductor discovered

【シー!イ
シ゛−へ゛シ゛ノルフ rンド ケー■−ミ】ラー(J
、G、Bednorzand  に、A、Mulle)
r、フフイシシ1リフト フ1r フイシー−り(Ze
itsh−rifLfur Physik B)−Co
ndensed Matter、 vol、64,18
9−193(1986)]、  これ以来数々の新しい
酸化物超電導体が発見されるに至7た。 ところで最近、これら従来の酸化物超電導体とは常電導
状態における電荷輸送担体が異なる、Nd−Ce−Cu
−0ζこ代表されるN dzc tjo a型結晶構造
の新しい酸化物超電導体が発見された[ワイ、トクラ、
エイf5りh4− ・?シトー lス、ウチタ゛(Y、
Tokura、H,Takagi  and  S。 υchida)、24f+−(Nature)vol 
、337,345−347(1989)]。 この種の材料の超電導機構の詳細は明らかではないが、
転移温度がさらに高くなる可能性があり、また新しいデ
バイスの実現等の有望な応用が期待される。 発明が解決しようとする課題 しかしながら、N d−Ce−Cu−0系の材料は、現
在の技術では主として焼結という過程でしか形成できな
いため、セラミックの粉末あるいはブロックの形状でし
か得られない、一方、この種の材料を実用化する場合、
薄膜状に加工することが強く要望されているが、従来の
技術では、良好な超電導特性を有する薄膜作製は非常に
困難とされている。 本発明は、このような従来技術の課題を解決することを
目的とする。 rRaを解決するための手段 本発明は、基体上の、主成分がN d2Cuo a型結
晶構造の(A + −y B x ) 2 Cu Oa
で表される複合酸化物のスパッタ蒸着膜に対し、酸化処
理を施す(なお、ここで、AはNd、  S+s、  
Prのうちの少なくとも一種、BはCe、Thのうちの
少なくとも一種の元素を示す、また、Xは、0.06≦
x≦0. 08の範囲の数値である)ことを特徴とする
薄膜超電導体の製造方法である。 作用 本発明は、主成分が、N d2CuOa型結晶構造の(
A + −x B +e ) 2 C1304で表わさ
レルl1合M化物+7)超電導薄膜を作製するため、基
本的にスパッタ蒸着法を用いて、適当な基体上に結晶性
の高いWi膜を形成すると共に、酸素の含有量を調整し
て、超電導特性を制御しようとするものである。 実施例 以下に本発明の実施例を図面をII照して説明する。 本発明者らはこのNd2CuOa型結晶構造の酸化物超
電導体に対して、スパッタ蒸着法による薄膜作製を行な
い、作製条件とFILMの超電導性の関係について詳細
に調べた。スパッタリングターゲ・ントとしては、へ元
素、B元素、Cuを含む酸化物を大気中において高温で
熱処理して得た焼結体を用いた。ただしAC,iNd、
  Ss、  Prのうちの少なくとも一種、BはCe
、Thのうちの少なくとも一種の元素を示す、その結果
400℃〜1000 ℃ζこ加熱した単結晶基体上に、
例えばNd+、esCe@、+5Cubsの薄膜を、N
dとCeとCuを含むターゲ・ソトをスパッタして成膜
させ、結晶化fII膜を得ることが出来た。特にSrT
iO3、BaTiO3、LaAlO3、L aG ao
 3等のペロプスカイト型の結晶構造を有する単結晶を
基板として使用した場合には、その結晶軸にそってNd
+、5sCe@、+sCL+04の結晶軸が配向し、良
好な結晶性を持つ薄膜が得られることを発明者らは見い
だした。 さらに、通常酸化物薄膜の作製の場合、スノク・ンタガ
スとして、アルゴンなどの不活性ガスと酸素または酸化
ガスをほぼ等Il混合して用いる。ところがNd2Cu
Oa型結晶構造の酸化物超電導体においては、スパッタ
ガス中の酸素あるいは酸化ガスの分圧を極端に低くして
成膜すると、以外にも良好な超電導性が、すなわち、セ
ラミックス材料とほぼ等しい20にのものが、再現性良
く得られることを得られることを本発明者らは発見した
。この原因は現在のところ明らかではないが、この種の
材料のセラミックスの焼結においては還元雰囲気がよい
とも言われており、スパッタ蒸着中の酸素分圧を低くす
ることにより不必要な酸素が薄膜の結晶構造中に入らな
い、あるいは、薄膜の組成が、Nd+、8sCes、+
5CuOa−yと適当な量yの酸素欠損が導入されてい
るため、良い結果が得られているのではないかと思われ
る。さらに、酸素あるいは酸化ガスを全く含まない不活
性ガスのみの場合にも良好な超電導特性が得られること
を見いだした。不活性ガスとしてはアルゴンが比較的利
用し易く、また結果も良いことを確認した。これらの理
由は、Nd2CuO4型の結晶構造を作るにはある程度
の酸素が必要ではあるが、その酸素はターゲットから十
分供給することが可能であると思われる。 スパッタ蒸着した膜、特に、基体温度を750℃〜10
00 ℃とした膜の結晶性は、超電導特性を得るには十
分であるが、さらに大気中もしくは10−3気圧以上の
酸素を含んだ雰囲気で、900℃〜1100℃の温度範
囲で一定時間加熱することによって結晶性を高めること
ができ、さらに優れた超電導特性を得ることができるこ
とを確認した。あわせて、熱処理後、室温以下に急冷す
ることが、酸素含有量を少なくして後の還元処理を容易
にすることを見いだした。 また、本発明者らは、適当な還元処理を行い、酸素欠損
の導入により酸素の含有量を化学量論比より少ない最適
値にすることによって、最適の超電導特性を得ることが
できろことを見いだした。 還元処理の方法としては、真空中もしくは#索分圧10
−3気圧以下のアルゴン等の不活性ガス雰囲気で、加熱
することが有効であることを見いだした。その際の、酸
素の脱離量あるいは欠損量は、酸素の拡散過程に強く依
存する。すなわち、加熱する際の処理温度範囲としては
、500℃〜900℃が適当であるが、必要な処理時閉
は、超電導体の膜厚及び表面状態によっても影響を受け
るが、処理温度が高いほど短い時間で済むことを見いだ
した。しかしながら、処理時閉が長ずざると、かえって
超電導性を損なわせる結果となり、各処理温度には最適
な処理時閉が存在することを見いだした。 しかしながら、この種の還元処理の方法では、特に、処
理温度が高い場合には、還元量が多すぎて最低限必要な
酸素が欠損したり、膜中の酸素濃度分布が非平衡あるい
は不均一であったりして、最高の超電導特性を得ること
ができない場合がある0本発明者らは、酸化処理は、上
述のように高温で結晶化を促進する場合だけでなく、最
終的に酸素濃度を均一に最適値に調整し最高の超電導特
性を得る意味に於て、400℃〜600℃の温度範囲で
行なえば、非常に有効であることを見いだした。また、
逆に過剰の酸素をあたえ超電導性を失わせしめる意味に
おいては、600℃〜900℃の温度範囲の酸化処理が
有効であることを、本発明者らは、あわせて発見した。 酸化処理の方法としては、大気中もしくは10−3気圧
以上の酸素を含んだ雰囲気で、一定時−加熱する方法の
他、酸素イオンあるいは酸素原子を照射して酸化処理す
れば、300℃程度の比較的低温で、しかも選択的に処
理できることを見いだした。 以下に、更に詳しい実施例を説明する。 NdとCeとCuを含む酸化物セラミックス焼結体をタ
ーゲットとして用い、チタン酸ストロンチウム(100
)面の基体上に、高周波プレナーマグネトロンスバッタ
により薄膜作製を行なった。このターゲットは、Nd2
O3、CeO2、C【10を大気中1050℃で8時閉
熱処理し得た焼結体を用いた。スパッタガスは純アルゴ
ンガスとしたが、良好な結晶性の薄膜が形成可能であっ
た。この理由は、NdzCuOa型の結晶構造を作るに
はある程度の酸素が必要で、その酸素はターゲットから
供給されるのが一番適していることによると思われる。 蒸着中の基体の温度としては400℃〜1000℃とし
た場合に、低温で薄膜の電気抵抗に超伝導の兆候が認め
られたが、特に750℃〜1000℃で形成した薄膜に
おいては、ゼロ抵抗が20に程度で確認され、また結晶
性も良く再現性もすぐれていた。以下本発明の内容を深
く理解されるために、さらに具体的な実施例を示す。 Nd+、5sCe@、+sCu”0x(D酸化物セラミ
ックス焼結体をターゲットとして用い、M2O,あるい
は、SrTiO3の(100)、  あるいは(110
)面の単結晶基体上に、薄膜形成を行なった。スパッタ
電力160W、スパッタガス圧力3 X 10−’To
rrの条件のもとで、約1時閏スパッタ蒸着することに
より、約0.5〜0.8μm厚の薄膜が得られた。 スパッタガスは純アルゴンガスとし、この際の基体温度
を変化させて、結晶性および出現する超伝導特性との関
係を調べた。上記過程の後、薄膜の組成を調べたところ
、金属元素の比率はNd: Ce:Cu=1.85: 
0.15:  1.0とほぼ化学量論比になっていた。 また薄膜の結晶構造は、X線回折法により調べられた。 この結果、基板として5rTiO3(100)基板を用
いた場合、形成された薄膜はC軸が基板に垂直に配向し
たN d2 Cuo a型の結晶構造であることが判っ
た。5rTiO3(110)基板を用いた場合には、 
(103)面の薄膜が成長し、MgO(100)面には
、 (110)面、 (110)面には、(100)面
が、それぞれ成長した。基体温度を750℃〜1000
℃とした膜の結晶性は、超電導特性を得るには十分であ
るが、さらに大気中もしくは10−3気圧以上の酸素を
含んだ雰囲気で、900℃〜1100℃の温度範囲で1
時閉〜2時閏加熱することによって結晶性を高めること
ができ、さらに優れた超電導特性を得ることができるこ
とを確認した。優れた超電導特性を与える薄膜の結晶構
造は、C軸が基板に垂直に配向したものが適しているこ
とが分かった。その意味で基体としては、5rTiOi
(100)基板のほかBaTiO3、LaA IO3,
LaGaO3等のペロプスカイト型の結晶構造を有する
単結晶の(100)基板が優れていることを確認した。 得られた薄膜の中には、成膜後あるいは上述の結晶化を
促進させるための加熱処理後にに超電導特性を示すもの
もあったが、その超電導特性は、適当な還元処理によっ
て、さらに高めることができ、また、超電導特性を示さ
なかったものについても、超電導特性を向上させること
ができることを見いだした。また、熱処理後、室温以下
に急冷することが、酸素含有量を少なくして後の還元処
理を容易にすることを見いだした。還元処理の方法とし
ては、真空中もしくは酸素分圧10−3気圧以下のアル
ゴン等の不活性ガス雰囲気で、加熱することが有効であ
ることを見いだした。膜厚5000Aの代表的な薄膜に
ついて、処理温度および処理時開を変化させて、真空中
で加熱した際の電気抵抗の温度依存性を第1図に示す0
曲線11は還元処理前、曲線12.13.14は、60
0℃でそれぞれ2.16.522時間処理たもの、曲線
15は、800℃で2時間処理したものである。 臨界温度22に以上の優れた超電導特性を得るのに必要
な処理時開は、600℃で8〜30時間、800℃で1
〜3時閏時間であった。これより、酸素の脱離量あるい
は欠損量は、酸素の拡散過程に強く依存し、加熱する際
の処理温度範囲としては、500℃〜900℃が適当で
あるが、最適な処理時開は、超電導体の膜厚及び表面状
態によっても影響を受けるが、処理温度が高いほど短い
時間で済むが、最適時開範囲は狭いことを見いだした。 上述の52時閏還元処理したものに対し、さらに、1気
圧の酸素雰囲気中で熱処理することにより酸化処理を行
った。電気抵抗の温度依存性を第2図に示す0曲$92
1,22.23は、それぞれ400℃、600℃、70
0℃で5時閏ずつ処理したものである。400℃で処理
したものについては、臨界温度、臨W’fll流電流密
度共に、最高値まで回復し、600℃で処理したものに
ついても臨界温度、臨界電流密度の向上がみられること
を確認した。また、700℃で処理したものについては
、超電導特性そのものを失わせしめることができるを確
認した。 さらに、酸化処理の手段として、例えば、ECRIil
i*プラズマ発生装置を用いれば、効率よくイオン化さ
れた高エネルギーの酸素イオンおよび中性酸素原子によ
って、超電導薄膜を効率的に酸化できることを見いだし
た。その際の処理温度は、室温から300℃の低温で十
分であり、マスク等を活用することによって、選択的に
酸化処理を行うことができることを確認した。この場合
にも、上述の522時閏還元処理によって超電導特性の
低下したものに対し、超電導特性の向上をもたらすこと
ができるとともに、さらに酸化性の強い条件下では超電
導特性そのものを失わせしめることができることを確認
した。 なおこの結果は、Ndの代わりにS+s、Prあるいは
この少なくとも一種を含む組合せ、またCeの代わりに
T11あるいはこの少なくとも一種を含む組合せでも、
同様であることが確認された。 発明の効果 本発明により、良質で高性能なNd2CuOa型結晶構
造の薄膜超電導体を再現性良く得ることが可能となった
。本発明の製造方法は、この種の物質を用いたデバイス
等の応用には必須であり、本発明の工業的価値は大きい
【C! Ishi-ni-shi-Norf rnd k-mi]ra (J
, G. Bednorzand, A. Mulle)
r, fuishishi 1 lift fuishishi 1r
itsh-rifLfur Physik B)-Co
ndensed Matter, vol, 64, 18
9-193 (1986)], since then many new oxide superconductors have been discovered. By the way, recently, Nd-Ce-Cu, which has a different charge transport carrier in the normal conductive state from these conventional oxide superconductors, has been developed.
A new oxide superconductor with an a-type crystal structure represented by -0ζ has been discovered.
Stingray f5ri h4- ・? Shitous, home (Y,
Tokura, H., Takagi and S. υchida), 24f+-(Nature)vol
, 337, 345-347 (1989)]. Although the details of the superconducting mechanism of this type of material are not clear,
The transition temperature may be even higher, and promising applications such as the realization of new devices are expected. Problems to be Solved by the Invention However, with current technology, Nd-Ce-Cu-0 based materials can only be formed through the process of sintering, so they can only be obtained in the form of ceramic powder or blocks. On the other hand, when putting this type of material into practical use,
Although there is a strong demand for processing into thin films, it is extremely difficult to fabricate thin films with good superconducting properties using conventional techniques. The present invention aims to solve the problems of the prior art. Means for solving rRa The present invention provides a method for solving rRa using (A + -yB
An oxidation treatment is performed on a sputter-deposited film of a composite oxide represented by (here, A is Nd, S+s,
At least one element of Pr, B represents at least one element of Ce and Th, and X is 0.06≦
x≦0. 08) is a method for producing a thin film superconductor. Effect of the present invention The main component of the present invention is (
A + -x B +e ) 2 C1304 rel l1 M compound +7) In order to fabricate a superconducting thin film, a highly crystalline Wi film is basically formed on a suitable substrate using a sputter deposition method. , which attempts to control superconducting properties by adjusting the oxygen content. EXAMPLES Examples of the present invention will be described below with reference to the drawings. The present inventors fabricated a thin film of this oxide superconductor having the Nd2CuOa type crystal structure by sputter deposition, and investigated in detail the relationship between the fabrication conditions and the superconductivity of FILM. As a sputtering target, a sintered body obtained by heat-treating an oxide containing He element, B element, and Cu at high temperature in the atmosphere was used. However, AC, iNd,
At least one of Ss and Pr, B is Ce
, Th, and as a result, on a single crystal substrate heated to 400°C to 1000°C,
For example, a thin film of Nd+, esCe@, +5 Cubs, N
A crystallized fII film was obtained by sputtering a target film containing d, Ce, and Cu. Especially SrT
iO3, BaTiO3, LaAlO3, LaGao
When a single crystal with a perovskite crystal structure of grade 3 is used as a substrate, Nd is applied along its crystal axis.
The inventors have discovered that the crystal axes of +, 5sCe@, and +sCL+04 are oriented and a thin film with good crystallinity can be obtained. Furthermore, in the case of producing a normal oxide thin film, an inert gas such as argon and oxygen or an oxidizing gas are mixed in approximately equal proportions and used as a snoken gas. However, Nd2Cu
For oxide superconductors with an Oa-type crystal structure, if the partial pressure of oxygen or oxidizing gas in the sputtering gas is extremely low, they will have good superconductivity, that is, almost the same as that of ceramic materials. The present inventors have discovered that the following can be obtained with good reproducibility. The cause of this is not clear at present, but it is said that a reducing atmosphere is good for sintering ceramics made of this type of material, and by lowering the oxygen partial pressure during sputter deposition, unnecessary oxygen is removed from the thin film. or the composition of the thin film is Nd+, 8sCes, +
It seems that good results are obtained because 5CuOa-y and an appropriate amount of oxygen vacancies are introduced. Furthermore, it has been found that good superconducting properties can be obtained even when using only an inert gas that does not contain any oxygen or oxidizing gas. It was confirmed that argon is relatively easy to use as an inert gas and gives good results. The reason for these is that although a certain amount of oxygen is required to create the Nd2CuO4 type crystal structure, it is thought that the oxygen can be sufficiently supplied from the target. Sputter-deposited films, especially when the substrate temperature is 750°C to 10°C.
Although the crystallinity of the film at 00°C is sufficient to obtain superconducting properties, it is further heated in the air or in an atmosphere containing oxygen at 10-3 atmospheres or higher in the temperature range of 900°C to 1100°C for a certain period of time. It was confirmed that by doing so, it was possible to improve crystallinity and obtain even better superconducting properties. Additionally, it has been found that rapid cooling to room temperature or lower after heat treatment reduces the oxygen content and facilitates subsequent reduction treatment. In addition, the present inventors have found that optimal superconducting properties can be obtained by performing an appropriate reduction treatment and reducing the oxygen content to an optimal value lower than the stoichiometric ratio by introducing oxygen vacancies. I found it. The method of reduction treatment is in vacuum or # cable partial pressure 10
It has been found that heating in an inert gas atmosphere such as argon at a pressure of -3 atmospheres or less is effective. At this time, the amount of oxygen desorbed or the amount of defects strongly depends on the oxygen diffusion process. In other words, the appropriate processing temperature range for heating is 500°C to 900°C, but the required closing during processing is also affected by the film thickness and surface condition of the superconductor, but the higher the processing temperature, the more I found out that it only takes a short amount of time. However, if the closing time during processing is not long, the superconductivity will be impaired, and it was found that there is an optimum closing time for each processing temperature. However, with this type of reduction treatment method, especially when the treatment temperature is high, the amount of reduction may be too large and the minimum necessary oxygen may be deficient, or the oxygen concentration distribution in the film may be non-equilibrium or uneven. The present inventors believe that oxidation treatment not only promotes crystallization at high temperatures as described above, but also ultimately reduces the oxygen concentration. It has been found that in order to obtain the best superconducting properties by uniformly adjusting the optimum value, it is very effective to carry out the process in the temperature range of 400°C to 600°C. Also,
On the other hand, the present inventors have also discovered that oxidation treatment in the temperature range of 600° C. to 900° C. is effective in the sense of applying excessive oxygen and causing the superconductivity to be lost. Oxidation treatment methods include heating for a certain period of time in the air or in an atmosphere containing oxygen at 10-3 atmospheres or more, and oxidation treatment by irradiating oxygen ions or oxygen atoms to a temperature of about 300℃. We have discovered that the process can be performed selectively at relatively low temperatures. More detailed examples will be described below. Using an oxide ceramic sintered body containing Nd, Ce, and Cu as a target, strontium titanate (100
) A thin film was fabricated on the surface of the substrate by high-frequency planar magnetron scattering. This target is Nd2
A sintered body obtained by heat-treating O3, CeO2, and C[10] at 1050° C. for 8 hours in the atmosphere was used. Although pure argon gas was used as the sputtering gas, a thin film with good crystallinity could be formed. The reason for this seems to be that a certain amount of oxygen is required to create an NdzCuOa type crystal structure, and that oxygen is most suitably supplied from the target. When the temperature of the substrate during vapor deposition was 400°C to 1000°C, signs of superconductivity were observed in the electrical resistance of the thin film at low temperatures, but especially in thin films formed at 750°C to 1000°C, zero resistance was observed. was confirmed to be about 20%, and the crystallinity was also good and the reproducibility was excellent. More specific examples will be shown below in order to better understand the content of the present invention. Nd+, 5sCe@, +sCu”0x (using D oxide ceramic sintered body as a target, M2O, or SrTiO3 (100) or (110
) A thin film was formed on a single-crystal substrate. Sputtering power 160W, sputtering gas pressure 3 x 10-'To
A thin film with a thickness of about 0.5 to 0.8 μm was obtained by performing interleaved sputter deposition for about 1 hour under conditions of rr. The sputtering gas was pure argon gas, and the substrate temperature was varied to investigate the relationship between crystallinity and superconducting properties. After the above process, we investigated the composition of the thin film and found that the ratio of metal elements was Nd:Ce:Cu=1.85:
The ratio was almost stoichiometric, 0.15:1.0. The crystal structure of the thin film was also investigated by X-ray diffraction. As a result, it was found that when a 5rTiO3 (100) substrate was used as the substrate, the formed thin film had an N d2 Cuo a type crystal structure in which the C axis was oriented perpendicular to the substrate. When using a 5rTiO3 (110) substrate,
A thin film with a (103) plane was grown, a (110) plane was grown on the MgO (100) plane, and a (100) plane was grown on the (110) plane. Substrate temperature from 750℃ to 1000℃
The crystallinity of the film at ℃ is sufficient to obtain superconducting properties.
It was confirmed that the crystallinity could be improved by heating in an interval of 1 to 2 hours, and even better superconducting properties could be obtained. It has been found that a thin film crystal structure in which the C-axis is oriented perpendicular to the substrate is suitable for providing excellent superconducting properties. In that sense, as a substrate, 5rTiOi
(100) In addition to the substrate, BaTiO3, LaA IO3,
It was confirmed that a single crystal (100) substrate having a perovskite crystal structure such as LaGaO3 is superior. Some of the thin films obtained showed superconducting properties after film formation or after the heat treatment described above to promote crystallization, but the superconducting properties could be further enhanced by an appropriate reduction treatment. We also found that it is possible to improve the superconducting properties of materials that did not exhibit superconducting properties. It has also been found that rapid cooling to room temperature or lower after heat treatment reduces the oxygen content and facilitates subsequent reduction treatment. It has been found that heating in a vacuum or in an atmosphere of an inert gas such as argon with an oxygen partial pressure of 10@-3 atm or less is effective for the reduction treatment. Figure 1 shows the temperature dependence of the electrical resistance of a typical thin film with a film thickness of 5000A when heated in vacuum by varying the processing temperature and opening during processing.
Curve 11 is before reduction treatment, curve 12, 13, 14 is 60
Curve 15 was treated at 0° C. for 2, 16, and 522 hours, respectively, and curve 15 was treated at 800° C. for 2 hours. The processing time required to obtain excellent superconducting properties with a critical temperature of 22 or higher is 8 to 30 hours at 600°C and 100°C at 800°C.
It was leap time at ~3 o'clock. From this, the amount of oxygen desorbed or lost strongly depends on the oxygen diffusion process, and the appropriate treatment temperature range for heating is 500°C to 900°C, but the optimal opening during treatment is Although it is influenced by the film thickness and surface condition of the superconductor, we found that the higher the processing temperature, the shorter the processing time, but the optimum opening range is narrower. The above-mentioned sample subjected to the 52-hour step reduction treatment was further subjected to an oxidation treatment by heat treatment in an oxygen atmosphere of 1 atm. Figure 2 shows the temperature dependence of electrical resistance.0 songs $92
1, 22.23 are 400℃, 600℃, 70℃ respectively
It was processed at 0°C in 5 hour intervals. For those treated at 400°C, both critical temperature and critical W'full current density recovered to their maximum values, and it was confirmed that improvements in critical temperature and critical current density were also observed for those treated at 600°C. . Furthermore, it was confirmed that the superconducting property itself could be lost when treated at 700°C. Furthermore, as a means of oxidation treatment, for example, ECRIil
We have discovered that by using an i* plasma generator, superconducting thin films can be efficiently oxidized using efficiently ionized high-energy oxygen ions and neutral oxygen atoms. It was confirmed that the treatment temperature at that time is sufficient at a low temperature from room temperature to 300° C., and that the oxidation treatment can be performed selectively by using a mask or the like. In this case as well, it is possible to improve the superconducting properties of a product whose superconducting properties have been degraded by the above-mentioned 522-time step reduction treatment, and it is also possible to cause the superconducting properties themselves to be lost under strongly oxidizing conditions. It was confirmed. Note that this result also applies to combinations containing S+s, Pr, or at least one of these instead of Nd, and combinations containing T11 or at least one of these instead of Ce.
It was confirmed that they were the same. Effects of the Invention The present invention has made it possible to obtain a high-quality, high-performance thin film superconductor having an Nd2CuOa type crystal structure with good reproducibility. The manufacturing method of the present invention is essential for applications such as devices using this type of substance, and the present invention has great industrial value.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例において製造された薄膜超電
導体の、還元処理による電気抵抗の温度依存性を示すグ
ラフ、第2p!lは本発明の一実施例において製造され
た薄膜超電導体の、酸化処理による電気抵抗の温度依存
性を示すグラフである。
FIG. 1 is a graph showing the temperature dependence of electrical resistance due to reduction treatment of a thin film superconductor manufactured in one embodiment of the present invention, 2nd page! 1 is a graph showing the temperature dependence of electrical resistance due to oxidation treatment of a thin film superconductor manufactured in an example of the present invention.

Claims (4)

【特許請求の範囲】[Claims] (1)基体上の、主成分がNd_2CuO_4型結晶構
造の(A_1_−_xB_x)_2CuO_4で表され
る複合酸化物のスパッタ蒸着膜に対し、酸化処理を施す
(なお、ここで、AはNd、Sm、Prのうちの少なく
とも一種、BはCe、Thのうちの少なくとも一種の元
素を示す。また、xは、0.06≦x≦0.08の範囲
の数値である)ことを特徴とする薄膜超電導体の製造方
法。
(1) Oxidation treatment is performed on a sputter-deposited film of a composite oxide whose main component is (A_1_-_xB_x)_2CuO_4 having an Nd_2CuO_4 type crystal structure (here, A is Nd, S , B represents at least one element among Ce and Th, and x is a numerical value in the range of 0.06≦x≦0.08). Method for manufacturing superconductors.
(2)酸化処理の方法として、大気中もしくは10^−
^3気圧以上の酸素を含んだ雰囲気で、400℃〜11
00℃の温度範囲で一定時間加熱することを特徴とする
請求項1記載の薄膜超電導体の製造方法。
(2) As a method of oxidation treatment, in the atmosphere or 10^-
^400℃~11 in an atmosphere containing oxygen of 3 atmospheres or more
2. The method for producing a thin film superconductor according to claim 1, wherein the heating is performed at a temperature range of 00° C. for a certain period of time.
(3)酸化処理を施す前工程として、真空中もしくは酸
素分圧10^−^3気圧以下の不活性ガス雰囲気で、5
00℃〜900℃の温度範囲で一定時間加熱する還元処
理を施すことを特徴とする請求項1または、2記載の薄
膜超電導体の製造方法。
(3) As a pre-oxidation process, 5 % of
3. The method for producing a thin film superconductor according to claim 1, wherein the reduction treatment is performed by heating at a temperature range of 00C to 900C for a certain period of time.
(4)酸化処理の方法として、酸素イオンあるいは酸素
原子を照射して酸化処理することを特徴とする請求項1
または3記載の薄膜超電導体の製造方法。
(4) Claim 1, characterized in that the method of oxidation treatment is irradiation with oxygen ions or oxygen atoms.
Or the method for producing a thin film superconductor according to 3.
JP1339011A 1989-12-26 1989-12-26 Production of superconductor of thin film Pending JPH03197319A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1339011A JPH03197319A (en) 1989-12-26 1989-12-26 Production of superconductor of thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1339011A JPH03197319A (en) 1989-12-26 1989-12-26 Production of superconductor of thin film

Publications (1)

Publication Number Publication Date
JPH03197319A true JPH03197319A (en) 1991-08-28

Family

ID=18323428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1339011A Pending JPH03197319A (en) 1989-12-26 1989-12-26 Production of superconductor of thin film

Country Status (1)

Country Link
JP (1) JPH03197319A (en)

Similar Documents

Publication Publication Date Title
WO2003044836A2 (en) High temperature superconducting composite conductors
JPS63224116A (en) Manufacture of thin film superconductor
JP2740260B2 (en) Josephson element
KR970005158B1 (en) Superconducting thin film and wire and the process therefor
CA2003850C (en) Process for preparing a perovskite type superconductor film
JPS63239742A (en) Manufacture for film superconductor
JPH02167820A (en) Method for forming tl-base multiple oxide superconducting thin film
JPH03197319A (en) Production of superconductor of thin film
JPH01167221A (en) Production of superconducting thin film
JPH04275470A (en) Product composed of superconductor/insulator structure and manufacture of said product
JPH02175613A (en) Production of oxide superconducting thin film
JPH02311396A (en) Thin-film superconductor and its production
JPH02252618A (en) Production of bi-based superconducting thin film
JPH03275504A (en) Oxide superconductor thin film and its production
JPS63299019A (en) Manufacture of thin film superconductive material
JPH07106904B2 (en) Method of manufacturing thin film superconductor
JPH0492816A (en) Production of thin-film superconductor
JPH03242321A (en) Thin film superconductor and production thereof
JPS63247363A (en) Sputtering target
JPH05194095A (en) Production of thin-film electric conductor
JPH05194097A (en) Production of thin-film electric conductor
JPH01239004A (en) Oxide high-temperature superconductor and thin film superconductor therefrom and sputtering target therefor
JPH042181A (en) Thin film superconductor and manufacture thereof
Wang et al. PREPARATION OF SUPERCONDUCTING Bi–Pb–Sr–Ca–Cu–O FILMS BY DC MAGNETRON SPUTTERING METHOD
JPH01167218A (en) Production of superconducting thin film