JP2555477B2 - Superconducting thin film and manufacturing method thereof - Google Patents

Superconducting thin film and manufacturing method thereof

Info

Publication number
JP2555477B2
JP2555477B2 JP2300396A JP30039690A JP2555477B2 JP 2555477 B2 JP2555477 B2 JP 2555477B2 JP 2300396 A JP2300396 A JP 2300396A JP 30039690 A JP30039690 A JP 30039690A JP 2555477 B2 JP2555477 B2 JP 2555477B2
Authority
JP
Japan
Prior art keywords
thin film
superconducting thin
oxide
laminated
superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2300396A
Other languages
Japanese (ja)
Other versions
JPH04170322A (en
Inventor
洋 市川
秀明 足立
利文 佐藤
謙太郎 瀬恒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2300396A priority Critical patent/JP2555477B2/en
Publication of JPH04170322A publication Critical patent/JPH04170322A/en
Application granted granted Critical
Publication of JP2555477B2 publication Critical patent/JP2555477B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、高性能な超伝導薄膜、および超伝導薄膜の
製造方法に関するものである。
Description: TECHNICAL FIELD The present invention relates to a high-performance superconducting thin film and a method for producing the superconducting thin film.

[従来の技術] 現在、最も応用が急がれている材料のひとつに酸化物
高温超伝導体がある。このプロブスカイト系化合物は、
金属化合物超伝導体よりさらに高い転移温度が期待さ
れ、Ba−La−Cu−O系の高温超伝導体が提案された[J.
G.Bednorz and K.A.Muller,ツァイトシュリフト・フュ
ア・フィジーク(Zeitshrift Fur Physik B)−Condens
ed Matter Vol,64,189−193(1986)]。さらに、Bi−S
r−Ca−Cu−O系の材料が100K以上の転移温度を示すこ
とも発見された[H,Maeda,Y,Tanaka,M,Fukutomi and T.
Asano,ジャパニーズ・ジャーナル・オブ・アプライド・
フィジックス(Japanese Journal of Applied Physic
s)Vol,27,L209−L210(1988)]。この種の材料の超伝
導機構の詳細は明らかではないが、転移温度が室温以上
に高くなる可能性があり、高温超伝導体として従来の2
元系化合物より、電子デバイス分野での応用が期待され
ている。
[Prior Art] One of the most urgently applied materials is an oxide high temperature superconductor. This perovskite compound is
Higher transition temperatures than metal compound superconductors are expected, and Ba-La-Cu-O high-temperature superconductors have been proposed [J.
G. Bednorz and KAMuller, Zeitshrift Fur Physik B-Condens
ed Matter Vol, 64, 189-193 (1986)]. Furthermore, Bi-S
It was also discovered that the r-Ca-Cu-O-based material exhibits a transition temperature of 100 K or higher [H, Maeda, Y, Tanaka, M, Fukutomi and T.
Asano, Japanese Journal of Applied
Physics (Japanese Journal of Applied Physic
s) Vol, 27, L209-L210 (1988)]. Although the details of the superconducting mechanism of this kind of material are not clear, the transition temperature may be higher than room temperature, and it is not possible to use the conventional high-temperature superconductor as a high-temperature superconductor.
The application in the electronic device field is expected from the original compound.

超伝導体と絶縁体とを交互に積層することにより、よ
り高い超伝導転移温度が従来から期待されていた[M.H.
Cohen and D.H.Douglass,Jr.,フィジカル・レビュー・
レターズ(Physical Review Letters)Vol.19,118−121
(1967)]。
Higher superconducting transition temperatures have been conventionally expected by alternately stacking superconductors and insulators [MH
Cohen and DHDouglass, Jr., Physical Review ·
Letters (Physical Review Letters) Vol.19, 118-121
(1967)].

また、本発明に関係する公知例として特開平2−2279
11号公報には、超伝導体(Bi2Sr2Ca2Cu3Oy)と常伝導体
(Bi2Sr2CuOy(Srを含む酸化物)を交互に積層すること
が提案されている。また、先行例として特開平2−2931
36号公報には、超伝導体(Bi2Sr2Ca2Cu3Oy)薄膜と絶縁
体(Ca2PbOu(Caを含む酸化物)薄膜を交互に積層する
ことが提案され、特開平3−235088号公報には、超伝導
(Bi−Sr−Ca−Cu−O)薄膜とBi系超伝導体に類する組
成物(Sr−Ca−Cu−O)薄膜を交互に積層する」ことが
提案され、特開平4−65320号公報には、超伝導(Bi−S
r−Ca−Cu−O)薄膜とBi−(Ca,Ba,Sr)−Cu−Re−O
(ここでReは希土類)薄膜を交互に積層することが提案
されている。
Further, as a publicly known example related to the present invention, JP-A-2-2279
The publication No. 11 proposes stacking superconductors (Bi 2 Sr 2 Ca 2 Cu 3 O y ) and normal conductors (Bi 2 Sr 2 CuO y (oxide containing Sr) alternately. As a prior example, Japanese Patent Laid-Open No. 2-2931
In Japanese Patent Laid-Open No. 36-36, it is proposed to alternately superpose a superconductor (Bi 2 Sr 2 Ca 2 Cu 3 O y ) thin film and an insulator (Ca 2 PbO u (oxide containing Ca) thin film). In JP 3-235088 A, a superconducting (Bi-Sr-Ca-Cu-O) thin film and a composition similar to a Bi-based superconductor (Sr-Ca-Cu-O) thin film are alternately laminated ". Proposed, Japanese Patent Laid-Open No. 4-65320 discloses superconducting (Bi-S
r-Ca-Cu-O) thin film and Bi- (Ca, Ba, Sr) -Cu-Re-O
(Where Re is a rare earth) It has been proposed to stack thin films alternately.

[発明が解決しようとする課題] しかしながら、酸化物超伝導体の材料は、良好な超伝
導特性を得るためには少なくとも600℃以上の熱処理あ
るいは形成時の加熱が必要であり、そのため絶縁体の結
晶性が崩れ、絶縁体および絶縁薄膜と超伝導体との間で
各元素の相互拡散が起こり、超伝導体の特性劣化並びに
絶縁体の特性劣化が起こり、さらには絶縁体と超伝導体
との結晶の格子定数の違いから生じる不整合による絶縁
体および超伝導体の特性劣化から、特に高温酸化物超伝
導体と絶縁膜との周期的な積層構造を得ることは極めて
困難であり、ジョセフソンデバイスが代表応用例として
あげられるこの構造を利用した集積化デバイスを構成を
不可能に近いものとしていた。たとえば前記した特開平
2−227911号公報、特開平2−293136号公報、特開平3
−235088号公報、特開平4−65320号公報の提案も、各
層間の格子定数が異なるため、各層間の元素の相互拡散
を防止することができないという問題があった。
[Problems to be Solved by the Invention] However, in order to obtain good superconducting properties, the material of the oxide superconductor needs to be heat-treated at 600 ° C. or higher or heated at the time of formation. The crystallinity collapses, interdiffusion of each element occurs between the insulator and the insulating thin film, and the superconductor, resulting in deterioration of the characteristics of the superconductor and deterioration of the characteristics of the insulator. It is extremely difficult to obtain a periodic laminated structure of a high-temperature oxide superconductor and an insulating film, especially because of the deterioration of the characteristics of the insulator and the superconductor due to the mismatch caused by the difference in the lattice constants of the crystals. Son devices have made the configuration of an integrated device using this structure, which is a typical application example, almost impossible. For example, the above-mentioned JP-A-2-227911, JP-A-2-293136, and JP-A-3
The proposals of Japanese Patent Laid-Open No. 235088 and Japanese Patent Laid-Open No. 4-65320 also have a problem that mutual diffusion of elements between layers cannot be prevented because the lattice constants between layers are different.

本発明は、前記従来技術の課題を解決するため、基体
の上に層状酸化物超伝導薄膜と、酸化物薄膜とを交互に
積層させることにより、高性能な酸化物超伝導薄膜積層
体を得ることを目的とする。
In order to solve the problems of the prior art, the present invention obtains a high-performance oxide superconducting thin film laminate by alternately laminating layered oxide superconducting thin films and oxide thin films on a substrate. The purpose is to

[課題を解決するための手段] 前記目的を達成するため、本発明の超伝導薄膜は、基
体上に少なくとも酸化物超伝導薄膜を有する積層体であ
って、主成分が少なくともビスマス(Bi)、銅(Cu)、
アルカリ土類金属(IIa族)から成る層状酸化物超伝導
薄膜と、主成分に少なくともカルシウム(Ca)、ストロ
ンチウム(Sr)、バリウム(Ba)の一種以上の元素を含
む電気絶縁体または半導体である酸化物薄膜が交互に積
層された構造を有するとともに、前記超伝導薄膜と前記
酸化物薄膜との間で元素の相互拡散を実質的に防止して
いることを特徴とする。
[Means for Solving the Problems] In order to achieve the above object, the superconducting thin film of the present invention is a laminate having at least an oxide superconducting thin film on a substrate, and the main component is at least bismuth (Bi), Copper (Cu),
A layered oxide superconducting thin film made of alkaline earth metal (IIa group) and an electrical insulator or semiconductor containing at least one element of calcium (Ca), strontium (Sr), and barium (Ba) as a main component. It is characterized in that it has a structure in which oxide thin films are alternately laminated and substantially prevents mutual diffusion of elements between the superconducting thin film and the oxide thin film.

また本発明方法は、基体上に少なくとも酸化物超伝導
薄膜を有する積層体の製造方法であって、少なくともビ
スマス(Bi)を含む化合物と、少なくとも銅(Cu)およ
びアルカリ土類金属(IIa族)を含む化合物とを、周期
的に積層させて形成する層状酸化物超伝導薄膜と、主成
分に少なくともCa、Sr、Baの一種以上の元素を含む電気
絶縁体または半導体である酸化物薄膜とを、交互に積層
させ前記超伝導薄膜と前記酸化物薄膜との間で元素の相
互拡散を実質的に防止することを特徴とする。
The method of the present invention is a method for producing a laminate having at least an oxide superconducting thin film on a substrate, which comprises a compound containing at least bismuth (Bi), at least copper (Cu) and an alkaline earth metal (group IIa). A compound containing a layered oxide superconducting thin film formed by periodically laminating, and an oxide thin film which is an electric insulator or semiconductor containing at least one element of at least Ca, Sr, and Ba as a main component. The layers are alternately stacked to substantially prevent mutual diffusion of elements between the superconducting thin film and the oxide thin film.

前記本発明方法においては、積層体の各成分の積層を
それぞれ分子堆積方によって行なうとともに、前記各積
層成分を形成する積層物質の蒸発を少なくとも二種以上
の蒸発源で行うことが好ましい。
In the method of the present invention, it is preferable that the respective components of the laminated body are laminated by the molecular deposition method, and the laminated substances forming the respective laminated components are evaporated by at least two kinds of evaporation sources.

また前記本発明方法においては、積層物質の蒸発をス
パッタリングで行なうことが好ましい。
In addition, in the method of the present invention, it is preferable that evaporation of the laminated material is performed by sputtering.

さらに前記本発明方法においては、層状酸化物超伝導
薄膜と、酸化物薄膜とを交互に積層させた後、酸化性雰
囲気下で熱処理することが好ましい。
Further, in the method of the present invention, it is preferable that the layered oxide superconducting thin film and the oxide thin film are alternately laminated and then heat-treated in an oxidizing atmosphere.

ここでアルカリ土類金属は、IIa族元素のうちの少な
くとも一種あるいは二種以上の元素を示す。
Here, the alkaline earth metal refers to at least one element or two or more elements of the IIa group elements.

[作用] 前記した本発明の構成によれば、主成分が少なくとも
ビスマス(Bi)、銅(Cu)、アルカリ土類金属(IIa
族)から成る層状酸化物超伝導薄膜と、主成分に少なく
ともカルシウム(Ca)、ストロンチウム(Sr)、バリウ
ム(Ba)の一種以上の元素を含む酸化物薄膜が交互に積
層された構造を有するので、超伝導薄膜と酸化物薄膜と
の間での元素の相互拡散のない積層が可能になり、その
結果Bi系超伝導薄膜における超伝導転移温度が安定に再
現性よく実現することができる。
[Operation] According to the above-described configuration of the present invention, the main components are at least bismuth (Bi), copper (Cu), and alkaline earth metal (IIa
Group) and a layered oxide superconducting thin film composed of at least one element of at least one element of calcium (Ca), strontium (Sr), and barium (Ba) as a main component are alternately laminated. , It becomes possible to stack the elements between the superconducting thin film and the oxide thin film without mutual diffusion of elements, and as a result, the superconducting transition temperature in the Bi-based superconducting thin film can be stably realized with good reproducibility.

また前記本発明によれば、基体上に少なくとも超伝導
薄膜と酸化物薄膜とからなる積層体を効率よく製造する
ことができる。
Further, according to the present invention, it is possible to efficiently manufacture a laminated body including at least a superconducting thin film and an oxide thin film on a substrate.

また、積層体の各成分の積層をそれぞれ分子堆積方に
よって行なうとともに、前記各積層成分を形成する積層
物質の蒸発を少なくとも二種以上の蒸発源で行うという
本発明方法の好ましい構成によれば、分子レベルの制御
を精密に行なうことができる。
In addition, according to a preferred configuration of the method of the present invention, each of the components of the laminate is laminated by a molecular deposition method, and evaporation of the laminated material forming each of the laminated components is performed by at least two or more evaporation sources, Precise control at the molecular level is possible.

また、積層物質の蒸発をスパッタリングで行なうとい
う本発明方法の好まし構成によれば、膜厚などの制御を
精密に行なうことができる。
Further, according to the preferred configuration of the method of the present invention in which the evaporation of the laminated material is performed by sputtering, the film thickness and the like can be precisely controlled.

さらに、層状酸化物超伝導薄膜と、酸化物薄膜とを交
互に積層させた後、酸化性雰囲気下で熱処理するという
本発明方法の好ましい構成によれば、結晶性をさらに向
上させることができる。
Further, according to the preferable constitution of the method of the present invention in which the layered oxide superconducting thin film and the oxide thin film are alternately laminated and then heat-treated in an oxidizing atmosphere, the crystallinity can be further improved.

[実施例] 以下一実施例を用いて本発明をさらに具体的に説明す
る。
[Examples] The present invention will be described in more detail with reference to the following examples.

まず、第1の発明による超伝導薄膜は、Bi2O2酸化膜
層またはこれを主体とした層によりともに覆われた結晶
構造となっているところの、Bi系超伝導薄膜とBi系超伝
導薄膜と形成温度およびa軸、b軸長がほぼ等しいCa
1-x-ySrxBayO絶縁体薄膜とを積層された構造をとること
によって、超伝導薄膜と絶縁膜との間での元素の相互拡
散のない積層が可能になり、その結果Bi系超伝導薄膜に
おける超伝導転移温度が安定に再現性よく実現されたも
のである。
First, the superconducting thin film according to the first aspect of the present invention has a crystal structure covered by a Bi 2 O 2 oxide layer or a layer mainly composed of the Bi 2 O 2 oxide layer. Ca whose film formation temperature and a-axis and b-axis length are almost the same as those of the thin film
By taking 1-xy Sr x Ba y O insulator thin film and the laminated structure, it allows stacking without interdiffusion of elements between the superconducting thin insulating film, resulting Bi system than The superconducting transition temperature of the conductive thin film was stably realized with good reproducibility.

さらに第2の発明方法においては、極めて安定に、し
かも微細スケールでの構造を達成するため、少なくとも
Biを含む酸化物と、少なくとも銅およびアルカリ土類金
属元素を含む酸化物とを周期的に積層させてなるBi系層
状構造酸化物超伝導薄膜と、Ca1-x-ySrxBayO絶縁体薄膜
とを交互に積層させる分子レベルの制御による薄膜の作
製を行うことによって、再現性よくBi系超伝導薄膜と絶
縁膜との積層を実現させるものである。
Furthermore, in the second invention method, in order to achieve a structure extremely stable and on a fine scale, at least
Bi-based layered structure oxide superconducting thin film obtained by periodically stacking an oxide containing Bi and an oxide containing at least copper and an alkaline earth metal element, and a Ca 1-xy Sr x Bay y O insulator By stacking the thin film and the thin film alternately, the thin film is manufactured by controlling the molecular level, and thus the stack of the Bi-based superconducting thin film and the insulating film is realized with good reproducibility.

次に、酸化物超伝導薄膜について説明する。 Next, the oxide superconducting thin film will be described.

通常、Bi−Sr−Ca−Cu−O系等の酸化物超伝導薄膜は
600〜700℃に加熱した基体上に蒸着して得る。蒸着後、
そのままでも薄膜は超伝導特性を示すが、その後700〜9
50℃の熱処理を施し、超伝導特性を向上させる。
Bi-Sr-Ca-Cu-O-based oxide superconducting thin films are usually
Obtained by vapor deposition on a substrate heated to 600 to 700 ° C. After vapor deposition,
The thin film shows superconducting properties as it is, but after that 700 ~ 9
Heat treatment at 50 ℃ is applied to improve superconducting properties.

しかしながら、基体温度が高い時に絶縁膜を酸化物超
伝導薄膜に続いて積層したり、絶縁膜を形成後熱処理を
行った場合、超伝導膜と絶縁膜との間で、元素の相互拡
散が起こり超伝導特性が大きく劣化することが判明し
た。相互拡散を起こさないためには、超伝導膜、絶縁膜
の結晶性が優れていること、超伝導膜・絶縁膜間での格
子の整合性が優れていること、絶縁膜が700〜950℃の熱
処理に対して安定であることが不可欠と考えられる。な
お絶縁膜は半導体膜であっても良い。
However, when the insulating film is laminated after the oxide superconducting thin film when the substrate temperature is high, or when heat treatment is performed after the insulating film is formed, mutual diffusion of elements occurs between the superconducting film and the insulating film. It was found that the superconducting properties were significantly degraded. In order to prevent mutual diffusion, the crystallinity of the superconducting film and the insulating film is excellent, the lattice matching between the superconducting film and the insulating film is excellent, and the insulating film is 700 to 950 ° C. It is considered essential that it is stable to the heat treatment. The insulating film may be a semiconductor film.

まず、Bi2O2酸化物層に挟まれた構造を持つBi系超伝
導体が高温の熱処理に対して、極めて安定であること、
そしCaO、SrO、BaOの材料が高融点で、安定であり、(C
a,Sr,Ba)−OについてはCa、Sr、Baの比率を変えるこ
とにより結晶の格子定数が自在に変化させることができ
ることに着目し、Bi−Sr−Ca−Cu−O超伝導薄膜用の絶
縁膜としての検討を行なった。
First, the Bi-based superconductor having a structure sandwiched between Bi 2 O 2 oxide layers is extremely stable against high-temperature heat treatment,
The materials CaO, SrO, and BaO have high melting points and are stable,
a, Sr, Ba) -O for the Bi-Sr-Ca-Cu-O superconducting thin film, paying attention to the fact that the crystal lattice constant can be freely changed by changing the ratio of Ca, Sr, and Ba. Was investigated as an insulating film.

第1図に(Ca,Sr,Ba)0結晶の構造概略図を示す。結
晶は単純立方格子でNaCl構造を持ち、SrOの場合a=5.1
40Åであり、融点2460℃、熱膨張係数11×10-6/℃であ
る。主に、格子定数はSr2+をCa2+またはBa2+で一部置換
することによって、変化させることができる。
Figure 1 shows the schematic structure of the (Ca, Sr, Ba) 0 crystal. The crystal is a simple cubic lattice and has a NaCl structure. In the case of SrO, a = 5.1
It has a melting point of 2460 ° C and a thermal expansion coefficient of 11 × 10 -6 / ° C. Mainly, the lattice constant can be changed by partially replacing Sr 2+ with Ca 2+ or Ba 2+ .

次に、CaO、SrO、BaOを単独に、あるいは固溶体を電
子ビーム加熱し、蒸発させMgO基体上に堆積させ、その
結晶性をX線回折法、電子線回折法にて解析、検討し
た。その結果、この種の材料は600〜800℃の形成温度で
結晶化することがわかった。また、Bi系を初めとする酸
化物高温超伝導体結晶のa軸、b軸長はほぼ5.4Åであ
ることから、この種の材料を絶縁膜として考えた場合、
a軸長がそれぞれ5.140Å、5.542ÅのSrO、BaOを固相反
応的に組み合わせれば、酸化物超伝導薄膜に最適な絶縁
膜の形成が実現できるものと考え、Sr1-XBaxOのxによ
る結晶構造の変化を検討した結果、Sr1-XBaxOはx=0
〜1に対してa軸長が5.14〜5.54の間で連続的に変化す
ることがわかった。
Next, CaO, SrO, and BaO were used alone, or a solid solution was heated by electron beam heating, evaporated and deposited on a MgO substrate, and its crystallinity was analyzed and examined by X-ray diffraction method and electron beam diffraction method. As a result, it was found that this kind of material crystallizes at a forming temperature of 600-800 ℃. In addition, since the a-axis and b-axis lengths of oxide high-temperature superconductor crystals such as Bi series are approximately 5.4Å, considering this kind of material as an insulating film,
the a-axis length, respectively 5.140A, SrO of 5.542A, Combine BaO solid-phase reaction, the thought that the formation of the optimum insulating film to the oxide superconductor thin film can be realized, Sr 1-X Ba x O As a result of examining the change of the crystal structure with respect to x, Sr 1-X Ba x O is x = 0.
It was found that the a-axis length continuously changed between 5.14 and 5.54 for ~ 1.

さらにこの種の絶縁材料をもちいて、発明をより明確
に理解されるために、以下の実施例1、2に具体的に示
す。前段階の実験としては、(Ca,Sr,Ba)O薄膜形成を
電子ビーム蒸着法にて行ったが、実施例1および2では
実験室でBi系超伝導薄膜を連続的に形成するために、多
元スパッタ法にて実験を行った。
Further, in order to understand the invention more clearly by using the insulating material of this kind, the invention will be concretely shown in Examples 1 and 2 below. In the previous step, the (Ca, Sr, Ba) O thin film was formed by the electron beam evaporation method, but in Examples 1 and 2, in order to continuously form the Bi-based superconducting thin film in the laboratory. An experiment was conducted by the multi-source sputtering method.

実施例1 第2図に本実施例にて作製した薄膜の断面図を模式的
にあらわす。第2図において、基体上にBi−Sr−Ca−Cu
−O膜とSr−Ba−O膜を交互に積層した。積層の方法と
しては、2元マグネトロンスパッタ法により行なった。
Example 1 FIG. 2 schematically shows a cross-sectional view of the thin film produced in this example. In FIG. 2, Bi-Sr-Ca-Cu was formed on the substrate.
The -O film and the Sr-Ba-O film were alternately laminated. As a stacking method, a binary magnetron sputtering method was used.

第3図に本実施例で用いた2元マグネトロンスパッタ
装置の概略図を示す。第3図において、31はBi−Sr−Ca
−Cu−O焼成粉末ターゲット、32はSrF2+BaF2粉末ター
ゲット、33はシャッター、34は基体、35は基体加熱用ヒ
ーターを示す。計2個のターゲット31、32は第2図に示
すように配置させた。即ち、MgO(100)基体34に焦点を
結ぶように各ターゲットが約30°傾いて設置されてい
る。Bi−Sr−Ca−Cu−O焼成粉末ターゲット31は組成比
がBi:Sr:Ca:Cu=2:1:1:1.5になるようBi2O3、SrCO3、Ca
CO3、CuO粉体を秤量し、空気中で900℃、5時間焼成・
粉砕した粉体を直径60mmの銅製の皿に盛ったものであ
る。SrF2+BaF2粉末ターゲット32は組成比がSr:Ba=3:7
になるようSrF2粉体とBaF2粉体を秤量し混ぜ合わせたも
のを直径60mmの銅製の皿に盛ったものである。ターゲッ
トの前方には回転するシャッター33があり、パルスモー
タで駆動することによりその中に設けられたスリット36
の回転が制御され、各ターゲットのサイクル及びスパッ
タ時間を設定することができる。基体34をヒーター35で
約650℃に加熱し、アルゴン・酸素(5:1)混合雰囲気3P
aのガス中で各ターゲットのスパッタリングを行なっ
た。各ターゲットに注入する高周波スパッタ電力を、タ
ーゲット31:30W、32:10Wにして実験を行った。
FIG. 3 shows a schematic diagram of the binary magnetron sputtering apparatus used in this embodiment. In FIG. 3, 31 is Bi-Sr-Ca.
A —Cu—O fired powder target, 32 is a SrF 2 + BaF 2 powder target, 33 is a shutter, 34 is a substrate, and 35 is a heater for heating the substrate. A total of two targets 31, 32 were arranged as shown in FIG. That is, each target is installed so as to be tilted by about 30 ° so as to focus on the MgO (100) substrate 34. Bi-Sr-Ca-Cu- O sintered powder target 31 composition ratio Bi: Sr: Ca: Cu = 2: 1: 1: 1.5 to so as Bi 2 O 3, SrCO 3, Ca
CO 3 and CuO powder are weighed and baked in air at 900 ° C for 5 hours.
The crushed powder is placed on a copper dish with a diameter of 60 mm. The composition ratio of the SrF 2 + BaF 2 powder target 32 is Sr: Ba = 3: 7.
The SrF 2 powder and the BaF 2 powder were weighed and mixed so that the resulting mixture was placed in a copper dish having a diameter of 60 mm. There is a rotating shutter 33 in front of the target, and a slit 36 provided in it by being driven by a pulse motor.
Rotation is controlled and the cycle and sputter time for each target can be set. The substrate 34 is heated to about 650 ° C. by the heater 35, and an argon / oxygen (5: 1) mixed atmosphere 3P
Each target was sputtered in the gas of a. Experiments were carried out with the target high frequency sputter power of 31:30 W and 32:10 W.

第2図の積層膜概略図において一層あたりのBi−Sr−
Ca−Cu−O薄膜の膜厚は約500Åであり、Bi−Sr−Ca−C
u−O薄膜層の膜厚の合計が2000Åとなるよう4回積層
した。
Bi-Sr-per layer in the schematic diagram of the laminated film in FIG.
The thickness of Ca-Cu-O thin film is about 500Å, and Bi-Sr-Ca-C
The u-O thin film layers were laminated four times so that the total film thickness was 2000Å.

Sr−Ba−O膜の膜厚を変化させ、薄膜の抵抗率の変化
を調べ、結果を第4図に示す。薄膜はスパッタリング蒸
着終了後でも超伝導転移を起こすが、結晶性を更によく
するために酸素ガス雰囲気中において、800℃、5時間
の熱処理を施した。
The thickness of the Sr-Ba-O film was changed, and the change in the resistivity of the thin film was examined. The results are shown in FIG. Although the thin film undergoes a superconducting transition even after completion of sputtering deposition, it was heat-treated at 800 ° C. for 5 hours in an oxygen gas atmosphere in order to further improve the crystallinity.

第4図において41、42、43はそれぞれSr−Ba−O薄膜
層の厚みが100Å、50Å、20Åの時の薄膜試料の抵抗率
の温度特性を示す。抵抗率の温度特性41、42、43の超伝
導転移温度はそれぞれ、118K、123K、110Kであった。Sr
−Ba−O膜と積層しない膜厚2000ÅのBi−Sr−Ca−Cu−
O膜そのものの超伝導転移温度は120Kであり、膜厚50Å
のSr−Ba−O膜と交互に積層させたときの方が超伝導転
移温度が上昇することがわかった。さらにこの効果の詳
細な理由については未だ不明であるが、第4図に示すよ
うに、Bi−Sr−Ca−Cu−O膜とSr−Ba−O膜とを周期的
に積層することによって、Bi−Sr−Ca−Cu−O膜とSr−
Ba−O膜が結晶のa軸(もしくはb軸)長がほぼ等し
く、互いに界面においてエピタキシャル成長しているこ
とにより積層界面での元素の相互拡散の影響がなく、か
つ結晶性に優れた薄いSr−Ba−O膜を介してBi−Sr−Ca
−Cu−O膜を積層することによりBi−Sr−Ca−Cu−O膜
において超伝導機構になんらかの変化が引き起こされた
ことが考えられるが、機構はまだあきらかにできない。
ところが、Bi−Sr−Ca−Cu−Oのバルク焼成体の超伝導
転移温度120〜125Kであり、本実施例で行なったことに
より、本質的にBi−Sr−Ca−Cu−O材料の超伝導転移温
度が上昇したのかどうかは今のところ断定はできない
が、少なくとも本実施例で示した様な積層構造にするこ
とによって、安定に超伝導転移温度の高い結晶相を形成
できるものと考えられる。
In FIG. 4, reference numerals 41, 42, and 43 respectively show the temperature characteristics of the resistivity of the thin film sample when the thickness of the Sr-Ba-O thin film layer is 100Å, 50Å, 20Å. The superconducting transition temperatures of the temperature characteristics 41, 42 and 43 of resistivity were 118K, 123K and 110K, respectively. Sr
-Bai-Sr-Ca-Cu- with a film thickness of 2000Å that is not laminated with a Ba-O film
The superconducting transition temperature of the O film itself is 120K, and the film thickness is 50Å
It was found that the superconducting transition temperature was higher when the Sr-Ba-O films of No. 2 were alternately laminated. Further, although the detailed reason for this effect is still unknown, as shown in FIG. 4, by periodically stacking the Bi—Sr—Ca—Cu—O film and the Sr—Ba—O film, Bi-Sr-Ca-Cu-O film and Sr-
Since the Ba-O film has substantially the same a-axis (or b-axis) length of the crystal and is epitaxially grown at the interface with each other, there is no influence of mutual diffusion of elements at the stacking interface, and a thin Sr- Bi-Sr-Ca through the Ba-O film
It is considered that some changes in the superconducting mechanism were caused in the Bi-Sr-Ca-Cu-O film by stacking the -Cu-O film, but the mechanism is not yet clear.
However, the superconducting transition temperature of the bulk fired body of Bi-Sr-Ca-Cu-O is 120 to 125 K, and it was confirmed that the superconducting temperature of the Bi-Sr-Ca-Cu-O material was essentially higher than that of the Bi-Sr-Ca-Cu-O material. Although it cannot be determined at present whether or not the conduction transition temperature has risen, it is considered that a crystalline phase having a high superconducting transition temperature can be stably formed by at least using the layered structure shown in this example. .

なお、超伝導転移温度が上昇する効果が、Bi−Sr−Ca
−Cu−O膜とSr−Ba−O膜を交互に積層することで確認
されたが、酸化物超伝導体のY−Ba−Cu−O系、Pb−Sr
−(Ca,Y)−Cu−O系、Tl−Ba−Ca−Cu−O系もBi系と
ほぼ等しいa軸、b軸長を有していることから、本実施
例で示したBi−Sr−Ca−Cu−O膜とSr−Ba−O膜を交互
に積層することと同様にCa、Sr、Baの混合比率を変えた
Ca1-x-ySrxBayO薄膜と他種の酸化物高温超伝導体薄膜
とを交互に積層しても同様な効果が得られることを確認
した。
Note that the effect of increasing the superconducting transition temperature is Bi-Sr-Ca.
It was confirmed by alternately stacking a -Cu-O film and a Sr-Ba-O film, but it was confirmed that the Y-Ba-Cu-O-based oxide superconductor, Pb-Sr
Since the-(Ca, Y) -Cu-O system and the Tl-Ba-Ca-Cu-O system also have a-axis and b-axis lengths almost equal to those of the Bi system, the Bi- The mixing ratio of Ca, Sr, and Ba was changed in the same manner as the Sr-Ca-Cu-O film and the Sr-Ba-O film were alternately laminated.
C a1-xy Sr x Ba y O thin film and the same effect even by laminating the oxide high temperature superconductor thin film of another kind alternately it was confirmed that the obtained.

実施例2 第5図は、本実施例で用いた4元マグネトロンスパッ
タ装置内部の概略図であり、51はBi金属ターゲット、52
はSr−Cu合金ターゲット、53はCa−Cu合金ターゲットで
ある。54はSrF2+BaF2の混合粉体ターゲット、55はシャ
ッター、56はスリット、57は基体、58は基体加熱用ヒー
ターを示す。ターゲット52、53は元素比率Sr(もしくは
Ca):Cu=1:1の合金ターゲットであり、ターゲット54に
おいてSr:Ba=3:7である。ターゲット51、52、53、54は
第5図に示すように配置させた。すなわち、MgO(100)
基体57に焦点を結ぶように各ターゲットが約30°傾いて
設置されている。合金ターゲット51、52、53には直流電
力、54には高周波電力を印加し、それぞれのターゲット
をスパッタした。ターゲットの前方には回転するシャッ
ター55があり、その中に設けられたスリット56の回転を
パルスモーターで制御することにより、(Bi→Sr−Cu→
Ca−Cu→Sr−Cu→Bi)のサイクルでスパッタ蒸着が行な
うことができ、さらに酸素を含む雰囲気中でスパッタを
行なうので、(Sr,Ba)O膜と交互に積層することがで
きる。
Embodiment 2 FIG. 5 is a schematic view of the inside of the quaternary magnetron sputtering apparatus used in this embodiment, 51 is a Bi metal target, and 52 is
Is an Sr-Cu alloy target, and 53 is a Ca-Cu alloy target. 54 is a mixed powder target of SrF 2 + BaF 2 , 55 is a shutter, 56 is a slit, 57 is a substrate, and 58 is a heater for heating the substrate. The targets 52 and 53 are the element ratio Sr (or
Ca): Cu = 1: 1 alloy target, and Sr: Ba = 3: 7 in the target 54. The targets 51, 52, 53, 54 were arranged as shown in FIG. That is, MgO (100)
Each target is installed so as to be focused on the base 57 with an inclination of about 30 °. DC power was applied to the alloy targets 51, 52 and 53, and high frequency power was applied to 54, and the targets were sputtered. There is a rotating shutter 55 in front of the target, and by controlling the rotation of the slit 56 provided therein with a pulse motor, (Bi → Sr-Cu →
Since sputter deposition can be performed in a cycle of (Ca-Cu->Sr-Cu-> Bi) and further sputtering is performed in an atmosphere containing oxygen, it is possible to alternately stack (Sr, Ba) O films.

積層の様子を概念的に第6図に示したが、ターゲット
51、52、53、54への入力電力、それぞれのターゲットの
スパッタ時間を制御することにより、基体57上に蒸着す
るSr−Ba−O膜、Bi−Sr−Ca−Cu−O膜の膜厚を変える
ことができる。基体57をヒーター58で約700℃に加熱
し、アルゴン・酸素(1:1)混合雰囲気0.5Paのガス中で
各ターゲットのスパッタリングを行なった。薄膜作製後
は酸素雰囲気中において、850℃の熱処理を5時間施し
た。
The state of stacking is conceptually shown in FIG.
By controlling the input power to 51, 52, 53, 54 and the sputtering time of each target, the film thickness of the Sr-Ba-O film and the Bi-Sr-Ca-Cu-O film deposited on the substrate 57. Can be changed. The substrate 57 was heated to about 700 ° C. by the heater 58, and each target was sputtered in a gas containing 0.5 Pa of an argon / oxygen (1: 1) mixed atmosphere. After forming the thin film, a heat treatment was performed at 850 ° C. for 5 hours in an oxygen atmosphere.

本実施例では、Bi−Sr−Ca−Cu−O膜の元素の組成比
率がBi:Sr:Ca:Cu=2:2:2:3になるよう、スパッタ時間ス
パッタ電流を調節した。
In this example, the sputtering time sputtering current was adjusted so that the composition ratio of the elements of the Bi-Sr-Ca-Cu-O film was Bi: Sr: Ca: Cu = 2: 2: 2: 3.

さらに、結晶性を維持したまま、薄くできる膜厚の限
界は数十Åであると思われる。絶縁膜はできるだけ薄い
方が好ましいので、Sr−Ba−O薄膜層の膜厚を40Å一定
とし、k・(Bi→SrCu−CaCu→SrCu→Bi)→50ÅSr-Ba-
Oと書き表せる周期を20周期行なった。そして、kを変
化させてできあがった薄膜の抵抗率の温度変化を調べ
た。そのときの結果を第7図に示す。
Furthermore, it seems that the limit of the film thickness that can be reduced while maintaining the crystallinity is several tens of liters. Since it is preferable that the insulating film be as thin as possible, the film thickness of the Sr-Ba-O thin film layer is kept constant at 40Å, and k ・ (Bi → SrCu-CaCu → SrCu → Bi) → 50ÅSr-Ba-
20 cycles of writing O were performed. Then, the temperature change of the resistivity of the thin film formed by changing k was examined. The result at that time is shown in FIG.

第7図において、抵抗率の温度変化71、72、73はそれ
ぞれk=2、6、10のときの結果を示す。この図からわ
かるように、k=6のとき最も超伝導転移温度並びにゼ
ロ抵抗温度が高くなった。第7図の結果において、抵抗
率の温度変化71、72、73の超伝導転移温度は、それぞれ
112K、125K、118Kであった。Sr−Ba−Oと積層しない場
合の超伝導転移温度は120Kであり、k=6のときにそれ
が上昇することがわかった。この物理的な原因は今のと
ころ正確には不明であるが、第2実施例により、Bi−Sr
−Ca−Cu−O薄膜とSr−Ba−O薄膜の両方をきわめて制
御性よく積層できたことによるものと考えられる。
In FIG. 7, the changes in resistivity with temperature 71, 72, 73 show the results when k = 2, 6, 10, respectively. As can be seen from this figure, the superconducting transition temperature and the zero resistance temperature were highest when k = 6. In the results of FIG. 7, the superconducting transition temperatures of the temperature changes 71, 72, 73 of the resistivity are respectively
It was 112K, 125K and 118K. It was found that the superconducting transition temperature without stacking with Sr-Ba-O was 120K, and that it increased when k = 6. Although the physical cause of this is not exactly known so far, according to the second embodiment, Bi-Sr
It is considered that this is because both the -Ca-Cu-O thin film and the Sr-Ba-O thin film could be laminated with extremely good controllability.

さらに、第1、第2の実施例においてスパッタリング
法を用いて行なったが、Biの酸化物と、Sr、Ca、Cu、Ba
の酸化物を異なる蒸発源から真空中で別々に蒸発させ、
同様の構造を周期的に積層させた場合、実施例2に示し
たスパッタリングを用いた、積層構造作製方法と同じく
制御性良く、安定した膜質の、薄膜をうることが可能で
ある。Bi-O,Sr-Cu-O,Ca-Cu-O,Sr-Ba-Oを周期的に積層さ
せる方法としては、いくつか考えられる。一般に、MBE
装置あるいは多元のFB蒸着装置で蒸発源の前を開閉シャ
ッターで制御したり、気相成長法で作製する際にガスの
種類を切り替えたりすることにより、周期的積層を達成
することができる。しかしこの種の非常に薄い層の積層
には従来スパッタリング蒸着は不向きとされていた。こ
の理由は、成膜中のガス圧の高さに起因する不純物の混
入およびエネルギーの高い粒子によるダメージと考えら
れている。
Further, although the sputtering method was used in the first and second examples, the oxide of Bi and Sr, Ca, Cu, Ba were used.
The oxides of
When the same structure is periodically laminated, it is possible to obtain a thin film having stable film quality with good controllability as in the laminated structure manufacturing method using the sputtering described in the second embodiment. There are several conceivable methods for periodically stacking Bi-O, Sr-Cu-O, Ca-Cu-O, and Sr-Ba-O. MBE in general
Periodic stacking can be achieved by controlling the opening and closing shutters in front of the evaporation source in the apparatus or a multi-source FB deposition apparatus, and by switching the type of gas when the vapor phase growth method is used. However, sputtering deposition has hitherto been unsuitable for stacking very thin layers of this type. The reason for this is considered to be contamination of impurities due to high gas pressure during film formation and damage by particles having high energy.

しかしながら、このBi系酸化物超伝導体また、絶縁薄
膜に対してスパッタリングにより異なる薄い層の積層を
行なったところ、意外にも良好な積層膜作製が可能なこ
とを見い出した。スパッタ中の高い酸素ガス圧およびス
パッタ放電により、膜内への酸素導入がより促進され、
超伝導特性の再現性、安定化が図られ、Bi系の100K以上
の臨界温度を持つ相の形成、および絶縁薄膜の形成に都
合がよいためと考えられる。
However, it was found that, when different thin layers were laminated on the Bi-based oxide superconductor and the insulating thin film by sputtering, surprisingly good laminated film could be prepared. Due to the high oxygen gas pressure during sputtering and sputter discharge, the introduction of oxygen into the film is further promoted,
It is considered that the superconducting property is reproducible and stabilized, and it is convenient for the formation of a Bi-based phase having a critical temperature of 100 K or higher and the formation of an insulating thin film.

スパッタ蒸着で異なる物質を積層させる方法として
は、組成分布を設けた1台(1個)のスパッタリングタ
ーゲットの放電位置を周期的に制御するとう方法がある
が、組成の異なる複数個のターゲットのスパッタリング
という方法を用いると比較的簡単に達成することができ
る。この場合、複数個のターゲットの各々のスパッタ量
を周期的に制御したり、あるいはターゲットの前にシャ
ッターを設けて周期的に開閉したりして、周期的積層膜
を作製することができる。また基体を周期的運動させて
各々ターゲットの上を移動させる方法でも作製が可能で
ある。レーザースパッタあるいはイオンビームスパッタ
を用いた場合には、複数個のターゲットを周期運動させ
てビームの照射するターゲットを周期的に変えれば、周
期的積層膜が実現される。このように複数個のターゲッ
トを用いたスパッタリングにより比較的簡単にBi系酸化
物の周期的積層が作製可能となる。
As a method of stacking different substances by sputter deposition, there is a method of periodically controlling the discharge position of one (one) sputtering target having a composition distribution, but sputtering of a plurality of targets having different compositions This can be achieved relatively easily using this method. In this case, the sputtering amount of each of the plurality of targets can be periodically controlled, or a shutter can be provided in front of the target to periodically open and close the target to form a periodic laminated film. It can also be manufactured by a method in which the substrate is moved cyclically and moved over each target. When laser sputtering or ion beam sputtering is used, a periodic laminated film is realized by periodically moving a plurality of targets to periodically change the targets irradiated by the beams. As described above, the periodic stacking of Bi-based oxides can be relatively easily prepared by sputtering using a plurality of targets.

実施例1、2で示したようにBi-O,Sr-Cu-O,Ca-Cu-O,S
r-Ba-Oを別々の蒸発源から蒸発させ、Bi-Sr-Ca-Cu-O超
伝導薄膜とSr-Ba-O絶縁膜を周期的に積層した時、極め
て制御性良くm(Bi-Sr-Ca-Cu-O)・Sr-Ba-O)の周期構
造を持つ薄膜を形成できることを見いだした。ここでm
は正の整数を示す。また、蒸発源としてBi-Sr-Ca-Cu-
O、Sr-Ba-Oの複合酸化物(もしくは弗化物)を用いて
も、簡単な方法で薄膜を作製できる。別々の蒸発源を用
いると、より結晶性が優れ、組成制御性がきわめて良い
作製方法となる。また、超伝導転移温度、臨界電流密度
等の特性に勝っていることも併せて見いだした。
As shown in Examples 1 and 2, Bi-O, Sr-Cu-O, Ca-Cu-O, S
When r-Ba-O was evaporated from different evaporation sources and Bi-Sr-Ca-Cu-O superconducting thin film and Sr-Ba-O insulating film were periodically laminated, the controllability of m (Bi- It was found that a thin film having a periodic structure of (Sr-Ca-Cu-O) and Sr-Ba-O) can be formed. Where m
Indicates a positive integer. In addition, Bi-Sr-Ca-Cu-
A thin film can be formed by a simple method even if a complex oxide (or fluoride) of O and Sr-Ba-O is used. If different evaporation sources are used, the production method is superior in crystallinity and composition controllability. It was also found that they excel in characteristics such as superconducting transition temperature and critical current density.

さらに、上記の方法で作製したBi-Sr-Ca-Cu-O超伝導
薄膜とSr-Ba-O絶縁膜はともに薄膜表面が極めて平坦で
あることを見いだした。これは、それぞれ層状構造を構
成する異なる元素を別々に順次積層していくことによ
り、基体表面に対し平行な面内だけで積層さえた蒸着元
素が動くだけで、基体表面に対し垂直方向への元素の移
動がないことによるものと考えられる。さらに、この組
成の絶縁薄膜は層状ペロブスカイト構造の結晶であり、
a軸の長さは、Bi-Sr-Ca-Cu-Oのそれとほぼ等しく、連
続的にエピタキシャル成長が可能であることによるもの
と考えられる。
Furthermore, it was found that the surface of the Bi-Sr-Ca-Cu-O superconducting thin film and the Sr-Ba-O insulating film produced by the above method are both extremely flat. This is because the different elements forming the layered structure are sequentially laminated separately, so that the deposited elements move only in the plane parallel to the substrate surface, and the vapor deposition element in the direction perpendicular to the substrate surface moves. It is considered that there is no movement of the element. Furthermore, the insulating thin film of this composition is a crystal of a layered perovskite structure,
The length of the a-axis is almost the same as that of Bi-Sr-Ca-Cu-O, and it is considered that continuous epitaxial growth is possible.

さらに意外にも、良好な超伝導特性を得るに必要な基
体の温度、熱処理温度も、従来より低いことを見いだし
た。
Furthermore, it was surprisingly found that the temperature of the substrate and the heat treatment temperature required to obtain good superconducting properties are lower than those in the past.

以上のように第1の発明の超伝導薄膜は、酸化物超伝
導薄膜の高性能化を実現し、提供するものであり、第2
の発明の超伝導薄膜の製造方法は第1の発明をより効果
的に実現し、デバイス等の応用には必須の低温でのプロ
セス確立したものであり、本発明の工業的価値は大き
い。
As described above, the superconducting thin film of the first invention realizes and provides high performance of the oxide superconducting thin film.
The method for producing a superconducting thin film of the invention of 1) achieves the first invention more effectively and has established a process at low temperature which is essential for application of devices and the like, and the industrial value of the invention is great.

[発明の効果] 以上説明したように本発明によれば、主成分が少なく
ともビスマス(Bi)、銅(Cu)、アルカリ土類金属(II
a族)から成る層状酸化物超伝導薄膜と、主成分に少な
くともカルシウム(Ca)、ストロンチウム(Sr)、バリ
ウム(Ba)の一種以上の元素を含む酸化物薄膜が交互に
積層された構造を有するので、超伝導薄膜と酸化物薄膜
との間での元素の相互拡散のない積層が可能になり、そ
の結果Bi系超伝導薄膜における超伝導転移温度が安定に
再現性よく実現することができる。
As described above, according to the present invention, the main components are at least bismuth (Bi), copper (Cu), alkaline earth metal (II
It has a structure in which a layered oxide superconducting thin film composed of group a) and an oxide thin film containing at least one element of calcium (Ca), strontium (Sr), and barium (Ba) as main components are alternately laminated. Therefore, it is possible to stack the elements between the superconducting thin film and the oxide thin film without mutual diffusion of elements, and as a result, the superconducting transition temperature in the Bi-based superconducting thin film can be stably realized with good reproducibility.

また前記本発明方法によれば、基体上に少なくとも超
伝導薄膜と酸化物薄膜とからなる積層体を効率よく製造
することができる。
Further, according to the method of the present invention, it is possible to efficiently manufacture a laminated body including at least a superconducting thin film and an oxide thin film on a substrate.

また、積層体の各成分の積層をそれぞれ分子堆積方に
よって行なうとともに、前記各積層成分を形成する積層
物質の蒸発を少なくとも二種以上の蒸発源で行うという
本発明方法の好ましい構成によれば、分子レベルの制御
を精密に行なうことができる。
In addition, according to a preferred configuration of the method of the present invention, each of the components of the laminate is laminated by a molecular deposition method, and evaporation of the laminated material forming each of the laminated components is performed by at least two or more evaporation sources, Precise control at the molecular level is possible.

また、積層物質の蒸発をスパッタリングで行なうとい
う本発明方法の好ましい構成によれば、膜厚などの制御
を精密に行なうことができる。
Further, according to the preferable configuration of the method of the present invention in which the evaporation of the laminated material is performed by sputtering, the film thickness and the like can be precisely controlled.

さらに、層状酸化物超伝導薄膜と、酸化物薄膜とを交
互に積層させた後、酸化性雰囲気下で熱処理するという
本発明方法の好ましい構成によれば、結晶性をさらに向
上させることができる。
Further, according to the preferable constitution of the method of the present invention in which the layered oxide superconducting thin film and the oxide thin film are alternately laminated and then heat-treated in an oxidizing atmosphere, the crystallinity can be further improved.

【図面の簡単な説明】[Brief description of drawings]

第1図は(Ca,Sr,Ba)O結晶の構造概略図、第2図は第
1の発明の実施例における超伝導薄膜の構造概略図、第
3図は第1の発明の実施例において超伝導薄膜の作製に
用いた実験装置の構造概略図、第4図は第1の発明の実
施例において作製した超伝導薄膜の抵抗率の温度変化、
第5図は第2の発明の実施例で超伝導薄膜作製に用いた
実験装置の概略図、第6図は第2の発明の超伝導薄膜作
製構造概念図、第7図は第2の発明の実施例で得られた
薄膜の抵抗率の温度特性である。 31,32,51,52,53,54…スパッタリングターゲット、33,55
…シャッター、36,56…スリット、34,57…MgO基体、35,
58…ヒーター、41,42,43,71,72,73…薄膜の抵抗の温度
特性。
FIG. 1 is a schematic view of the structure of a (Ca, Sr, Ba) O crystal, FIG. 2 is a schematic view of the structure of a superconducting thin film in the embodiment of the first invention, and FIG. 3 is a view of the embodiment of the first invention. Schematic structure of the experimental apparatus used for producing the superconducting thin film, FIG. 4 is a temperature change of resistivity of the superconducting thin film produced in the embodiment of the first invention,
FIG. 5 is a schematic view of an experimental apparatus used for producing a superconducting thin film in the embodiment of the second invention, FIG. 6 is a conceptual diagram of a superconducting thin film producing structure of the second invention, and FIG. 7 is a second invention. 3 is a temperature characteristic of resistivity of the thin film obtained in the example of FIG. 31,32,51,52,53,54 ... Sputtering target, 33,55
… Shutter, 36,56… Slit, 34,57… MgO substrate, 35,
58… Heater, 41,42,43,71,72,73… Temperature characteristics of thin film resistance.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 瀬恒 謙太郎 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 特開 平2−227911(JP,A) 特開 平2−293136(JP,A) 特開 平3−235088(JP,A) 特開 平4−65320(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kentaro Se Tsune 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (56) Reference JP-A-2-227911 (JP, A) JP-A-2 -293136 (JP, A) JP-A-3-235088 (JP, A) JP-A-4-65320 (JP, A)

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】基体上に少なくとも酸化物超伝導薄膜を有
する積層体であって、主成分が少なくともビスマス(B
i)、銅(Cu)、アルカリ土類金属(II族)から成る層
状酸化物超伝導薄膜と、主成分に少なくともカルシウム
(Ca)、ストロンチウム(Sr)、バリウム(Ba)の一種
以上の元素を含む電気絶縁体または半導体である酸化物
薄膜が交互に積層された構造を有するとともに、前記超
伝導薄膜と前記酸化物薄膜との間で元素の相互拡散を実
質的に防止していることを特徴とする超伝導薄膜。
1. A laminate having at least an oxide superconducting thin film on a substrate, the main component of which is at least bismuth (B
i), a layered oxide superconducting thin film composed of copper (Cu) and an alkaline earth metal (group II) and at least one element of at least calcium (Ca), strontium (Sr) and barium (Ba) as a main component. It has a structure in which oxide thin films which are electrical insulators or semiconductors are alternately laminated, and substantially prevent mutual diffusion of elements between the superconducting thin film and the oxide thin film. And a superconducting thin film.
【請求項2】基体上に少なくとも酸化物超伝導薄膜を有
する積層体の製造方法であって、少なくともビスマス
(Bi)を含む化合物と、少なくとも銅(Cu)およびアル
カリ土類金属(II族)を含む化合物とを、周期的に積層
させて形成する層状酸化物超伝導薄膜と、主成分に少な
くともCa、Sr、Baの一種以上の元素を含む電気絶縁体ま
たは半導体である酸化物薄膜とを、交互に積層させ前記
超伝導薄膜と前記酸化物薄膜との間で元素の相互拡散を
実質的に防止することを特徴とする超伝導薄膜の製造方
法。
2. A method for producing a laminate having at least an oxide superconducting thin film on a substrate, comprising a compound containing at least bismuth (Bi), at least copper (Cu) and an alkaline earth metal (group II). A compound containing a layered oxide superconducting thin film formed by periodically laminating, and an oxide thin film which is an electrical insulator or a semiconductor containing at least one element of at least Ca, Sr, and Ba as a main component, A method for producing a superconducting thin film, characterized in that the elements are alternately laminated to substantially prevent mutual diffusion of elements between the superconducting thin film and the oxide thin film.
【請求項3】積層体の各成分の積層をそれぞれ分子堆積
法によって行なうとともに、前記各積層成分を形成する
積層物質の蒸発を少なくとも二種以上の蒸発源で行う請
求項2記載の超伝導薄膜の製造方法。
3. The superconducting thin film according to claim 2, wherein the respective components of the laminated body are laminated by a molecular deposition method, and the laminated substances forming the respective laminated components are evaporated by at least two kinds of evaporation sources. Manufacturing method.
【請求項4】積層物質の蒸発をスパッタリングで行なう
請求項3記載の超伝導薄膜の製造方法。
4. The method for producing a superconducting thin film according to claim 3, wherein the evaporation of the laminated material is performed by sputtering.
【請求項5】層状酸化物超伝導薄膜と、酸化物薄膜とを
交互に積層させた後、酸化性雰囲気下で熱処理する請求
項2記載の超伝導薄膜の製造方法。
5. The method for producing a superconducting thin film according to claim 2, wherein the layered oxide superconducting thin film and the oxide thin film are alternately laminated and then heat-treated in an oxidizing atmosphere.
JP2300396A 1990-11-05 1990-11-05 Superconducting thin film and manufacturing method thereof Expired - Lifetime JP2555477B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2300396A JP2555477B2 (en) 1990-11-05 1990-11-05 Superconducting thin film and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2300396A JP2555477B2 (en) 1990-11-05 1990-11-05 Superconducting thin film and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH04170322A JPH04170322A (en) 1992-06-18
JP2555477B2 true JP2555477B2 (en) 1996-11-20

Family

ID=17884288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2300396A Expired - Lifetime JP2555477B2 (en) 1990-11-05 1990-11-05 Superconducting thin film and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2555477B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02227911A (en) * 1989-02-28 1990-09-11 Tonen Corp High magnetic field generating superconductor and manufacture thereof
JP2686646B2 (en) * 1989-05-09 1997-12-08 富士通株式会社 Superconductor film and manufacturing method thereof
JPH03235088A (en) * 1990-02-13 1991-10-21 Ngk Insulators Ltd Bismuth based superconductor composite
JPH0465320A (en) * 1990-06-29 1992-03-02 Matsushita Electric Works Ltd Superconducting thin film and its production

Also Published As

Publication number Publication date
JPH04170322A (en) 1992-06-18

Similar Documents

Publication Publication Date Title
Ramesh et al. Ferroelectric bismuth titanate/superconductor (Y‐Ba‐Cu‐O) thin‐film heterostructures on silicon
JP2933225B2 (en) Metal oxide material
US5114906A (en) Process for depositing tl-containing superconducting thin films on (110) mgo substrates
JP2555477B2 (en) Superconducting thin film and manufacturing method thereof
JP3037514B2 (en) Thin film superconductor and method of manufacturing the same
JP2979422B2 (en) Method of manufacturing insulator and insulating thin film, and method of manufacturing superconducting thin film and superconducting thin film
JP2975608B2 (en) Insulating composition
JP2669052B2 (en) Oxide superconducting thin film and method for producing the same
EP0624910B1 (en) Method of fabricating a Hg-based superconducting thin film
JP3478543B2 (en) Oxide superconducting thin film and method for producing the same
EP0392437B1 (en) Method for annealing thin film superconductors
JP2741277B2 (en) Thin film superconductor and method of manufacturing the same
JPH04275470A (en) Product composed of superconductor/insulator structure and manufacture of said product
EP0640994B1 (en) Superconductor thin film and manufacturing method
JPH0316920A (en) Oxide superconductive thin film and its production
JPH05171414A (en) Superconducting thin film and its production
JPH05170448A (en) Production of thin ceramic film
EP0333513B1 (en) Oxide superconductor
JP2866476B2 (en) Laminated superconductor and manufacturing method thereof
JP2557446B2 (en) Method for producing complex oxide-based superconducting thin film
JP3025891B2 (en) Thin film superconductor and method of manufacturing the same
JP2594271B2 (en) Superconductor thin film manufacturing apparatus and superconductor thin film manufacturing method
JP2502744B2 (en) Method of manufacturing thin film super-electric body
JPH0822742B2 (en) Thin film superconductor and method of manufacturing the same
JPH0822740B2 (en) Oxide superconducting thin film and method for producing the same