JPH0316920A - Oxide superconductive thin film and its production - Google Patents

Oxide superconductive thin film and its production

Info

Publication number
JPH0316920A
JPH0316920A JP1151806A JP15180689A JPH0316920A JP H0316920 A JPH0316920 A JP H0316920A JP 1151806 A JP1151806 A JP 1151806A JP 15180689 A JP15180689 A JP 15180689A JP H0316920 A JPH0316920 A JP H0316920A
Authority
JP
Japan
Prior art keywords
oxide
thin film
alkaline earth
bismuth
periodically
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1151806A
Other languages
Japanese (ja)
Inventor
Hideaki Adachi
秀明 足立
Hiroshi Ichikawa
洋 市川
Masaru Yoshida
勝 吉田
Kiyotaka Wasa
清孝 和佐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1151806A priority Critical patent/JPH0316920A/en
Publication of JPH0316920A publication Critical patent/JPH0316920A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Physical Vapour Deposition (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To obtain a superconducting thin film of increased superconductive transition temperature by laminating on the base alternately specific 2 kinds of oxide thin films using Bi in one oxide, and Cu and alkaline earth in the other. CONSTITUTION:The first oxide containing at least Bi and the second oxide containing at least Cu and alkaline earth (group IIa) are periodically laminated to form an oxide thin film. Meanwhile, the above-stated first oxide containing at least Bi and another oxide containing at least Cu and alkaline earth (group IIa) whose thickness differs from that of the above-stated second oxide are periodically laminated to form another oxide thin film. Then, these thin films are alternately laminated to give the objective thin film wherein the alkaline earth means one or more elements in group IIa.

Description

【発明の詳細な説明】 産業上の利用分野 本発明it,IOOK以上の高臨界温度が期待されるビ
スマスを含む酸化物超電導体の薄膜の製造方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for producing a thin film of an oxide superconductor containing bismuth, which is expected to have a critical temperature higher than IOOK.

従来の技術 高温超電導体として、A15型2元系化合物として窒化
ニオプ(NbN)やゲルマニウムニオプ(Nb*Ge)
などが知られていた力曳 これらの材料の超電導転移温
度はたかだか24Kであっ九 一方、ペロブスカイト系
3元化合物(よ さらに高い転移温度が期待さt′LB
a−La−Cu−0系の高温超電導体が提案された [
シゞエイ・シゞ−・へ゛′トゝノルツ アント8 ケー
・工−・ミュラー、(ツァイトシュリフト・7ユア・7
イシゝ−ク ヘ゛一)  一  コンテゝンスト マタ
ー (J.G.Bednorz  and  K.A.
Muller  .   (Zetshrift  F
arPhysik  B)−Condensed  M
atter,vo1.64,189−193(1986
))上 さらに Bi−Sr−Ca−Cu−0系の材料がIOO
K以上の転移温度を示すことも発見された[エイチ・マ
エタ′゛、エム・フクトミ アントゝ ティー・アサバ
シ゛ヤハ゜ニースゝ・シゝヤーナル・才7″・ア7゜ラ
イド・フィシ”7クス)(H,Maeda,  Y,T
anaka,  M,Fukutomiand  T.
Asano,   (Japanese  Journ
al  of  AppliedPhysics)Vo
l, 27, L209−210(1988)) ]。
Conventional technology As high-temperature superconductors, niobium nitride (NbN) and germanium niopium (Nb*Ge) are used as A15 type binary compounds.
The superconducting transition temperature of these materials is at most 24K.9 On the other hand, perovskite-based ternary compounds (t'LB) are expected to have even higher transition temperatures.
A-La-Cu-0-based high-temperature superconductor was proposed [
KA/SHIFT/NORZ Ant 8 K/K/Müller, (Zeitschrift 7 your 7
Contains Matter (J.G. Bednorz and K.A.)
Muller. (Zetshrift F
arPhysik B)-Condensed M
atter, vol. 64, 189-193 (1986
)) Furthermore, Bi-Sr-Ca-Cu-0 material is IOO
It was also discovered that it exhibits a transition temperature higher than K [H Maeta'゛, M Fukutomi Ant. (H, Maeda, Y, T
anaka, M., Fukutomiand.
Asano, (Japanese Journal
al of Applied Physics)Vo
1, 27, L209-210 (1988)].

この種の材料の超電導機構の詳細は明らかではない力丈
 転移温度が室温以上に高くなる可能性があり、高温超
電導体として従来の2元系化合物より、より有望な特性
が期待される。
The details of the superconducting mechanism of this type of material are not clear.The transition temperature may be higher than room temperature, so it is expected to have more promising properties as a high-temperature superconductor than conventional binary compounds.

発明が解決しようとする課題 しかしながら、Bi−Sr−Ca−Cu−0系の材料(
よ 現在の技術では主として焼結という過程でしか形成
できないたへ セラミックの粉末あるいはブロックの形
状でしか得られない。一方、この種の材料を実用化する
場合、薄膜状に加工することが強く要望されている力丈
 従来の技術では良好な超電導特性を有する薄膜作製は
難しいものであっ九 その原因の一つとして、Bi−S
r−Ca−Cu−0系物質における結晶相の多様性が挙
げられる。Bi系物質には 隣接する酸化ビスマス層間
に挟まれた層に存在するCu−○面数が異なり、 しか
も超電導転移温度の異なるいくつかの相が存在する。従
って複数の相が混在し易く、特に転移温度が高い相を薄
膜の形態で再現性良く達或するのは困難であっtラ  
このためこの種の薄膜でIOOK程度の超電導転移温度
を実現するのは非常に難しいものとされてぃあ またこ
の種の物質の臨界温度は105K程度が限度であり、液
体窒素温度での安定な使用のためにはさらに転移温度の
高温化が望まれていた本発明(よ このような従来技術
の課題を解決することを目的とする。
Problems to be Solved by the Invention However, Bi-Sr-Ca-Cu-0 based materials (
With current technology, it can only be formed primarily through the process of sintering, and it can only be obtained in the form of ceramic powder or blocks. On the other hand, when this type of material is put into practical use, it is strongly desired to process it into a thin film.One of the reasons for this is that it is difficult to fabricate a thin film with good superconducting properties using conventional techniques. , Bi-S
An example of this is the diversity of crystal phases in r-Ca-Cu-0 based materials. In Bi-based materials, there are several phases in which the number of Cu-◯ planes in the layer sandwiched between adjacent bismuth oxide layers differs, and the superconducting transition temperature also differs. Therefore, multiple phases tend to coexist, and it is particularly difficult to achieve a phase with a high transition temperature in the form of a thin film with good reproducibility.
For this reason, it is considered extremely difficult to achieve a superconducting transition temperature on the order of IOOK with this kind of thin film.Also, the critical temperature of this kind of material is limited to about 105K, and it is stable at liquid nitrogen temperature. The purpose of the present invention is to solve the problems of the prior art, as it is desired to have a higher transition temperature for use.

課題を解決するための手段 第]の本発明の酸化物超電導薄膜(よ 主体成分が少な
くともビスマス(B1)、銅(Cu)、およびアルカリ
土類(IIa族)を含むビスマス酸化物層状構造物質の
結晶構造において、隣接する酸化ビスマスまたは酸化ビ
スマスを主体とする層の間の、酸化銅(Cu−0)の面
の数の異なる結晶構造の薄膜力文 交互に積層された構
造を持つことを特徴とするものである。
[Means for Solving the Problems] The oxide superconducting thin film of the present invention is made of a bismuth oxide layered structure material whose main components include at least bismuth (B1), copper (Cu), and alkaline earth (group IIa). Thin film structure with a crystal structure in which the number of copper oxide (Cu-0) planes differs between adjacent bismuth oxide or bismuth oxide-based layers.It is characterized by having an alternately laminated structure. That is.

さらに第2の本発明の酸化物超電導薄膜の製造方法は 
基体上に 少なくともBjを含む第1の酸化物と少なく
とも銅およびアルカリ土類(IIa族)を含む第2の酸
化物とを周期的に積層させて形成する酸化物薄膜と、少
なくともBiを含む前記第1の酸化物と前記第2の層と
は厚みの異なる少なくとも銅およびアルカリ土類(I 
I a族)を含む酸化物を周期的に積層させて形戊する
酸化物薄膜とを、交互に積層させて得ることを特徴とす
るものである。
Furthermore, the second method of manufacturing an oxide superconducting thin film of the present invention is
an oxide thin film formed by periodically stacking a first oxide containing at least Bj and a second oxide containing at least copper and alkaline earth (group IIa) on a substrate; The first oxide and the second layer contain at least copper and alkaline earth (I) having different thicknesses.
It is characterized in that it is obtained by alternately stacking oxide thin films formed by periodically stacking oxides containing Group Ia).

作用 第1の本発明において、安定なBi20a (rJI.
化ビスマス)層またはこれを主体とした層で挟まれた結
晶構造を持つBi系酸化物層状物質において、異なる結
晶相すなわち隣接する酸化ビスマス層間の厚みの異なる
相の境界を、Bi202酸化膜層で共用させて交互に積
層した構造をとると、両者を安定に存在させ得る。しか
も前記構造をとらせることにより、積層させるもとの相
自身の超電導転移温度を越える転移温度力上 積層構造
をとらせることにより実現される。
Effect In the first invention, stable Bi20a (rJI.
In a Bi-based oxide layered material with a crystal structure sandwiched between bismuth oxide (bismuth oxide) layers or layers mainly composed of bismuth oxide, the boundaries between different crystal phases, that is, phases with different thicknesses between adjacent bismuth oxide layers, are formed with a Bi202 oxide film layer. If a structure is adopted in which they are shared and laminated alternately, both can be stably present. Moreover, by adopting the above structure, the layered structure can be realized due to the transition temperature force exceeding the superconducting transition temperature of the original phases themselves to be laminated.

さらに第2の本発明においては上記構造を達戊するたべ
 少なくともB1を含む酸化物と、少なくとも銅および
アルカリ土類(IIa族)を含む酸化物とを、周期的に
積層させて分子レベルの制御による薄膜の作製を行なし
\ その際に 少なくとも銅およびアルカリ土類(II
a族)を含む酸化物の層の厚さを結晶相に応じて変化さ
せるという方法で、所望の結晶相の積層膜を再現性良く
得られる。
Furthermore, in the second invention, in order to achieve the above structure, an oxide containing at least B1 and an oxide containing at least copper and alkaline earth (group IIa) are periodically laminated to achieve molecular level control. At that time, at least copper and alkaline earth (II
By changing the thickness of the oxide layer containing group a) according to the crystal phase, a laminated film having a desired crystal phase can be obtained with good reproducibility.

実施例 以下に 本発明の実施例について図面を参照しながら説
明する。
EXAMPLES Below, examples of the present invention will be described with reference to the drawings.

実施例l 第1図法 本実施例で用いた二元マグネトロンスパッタ
装置内部の概略図であり、 11はBiターゲット、 
12はSr−Ca−Cuターゲット、 13はシャッタ
ー、 14はアパーチャー、 15は基体 16は基体
加熱用ヒーターを示す。 2個の金属ターゲット11、
 12を、第1図に示すように配置させ1,  すなわ
%  l+lgO(100)基体15に焦点を結ぶよう
に各ターゲットが約30゜傾いて設置されている。ター
ゲットの前方には回転するシャッター13があり、その
中′に設けられたアパーチャ−14の回転をパルスモー
ターで制御することにより、BiとSrCaCuターゲ
ットが周期的に基板と対面する。
Example 1 Diagram 1 This is a schematic diagram of the inside of the binary magnetron sputtering apparatus used in this example, 11 is a Bi target,
12 is an Sr-Ca-Cu target, 13 is a shutter, 14 is an aperture, 15 is a substrate, and 16 is a heater for heating the substrate. two metal targets 11,
12 were arranged as shown in FIG. 1, and each target was set at an angle of about 30° so as to focus on the 1, ie, % l+lgO (100) substrate 15. There is a rotating shutter 13 in front of the target, and by controlling the rotation of an aperture 14 provided in the shutter with a pulse motor, the Bi and SrCaCu targets are periodically brought into contact with the substrate.

アルゴン・酸素(1:  1)混合雰囲気3Paのガス
中で各ターゲットのスパッタリングを行なうことにより
、それぞれの酸化物層が周期的に積層されていく。基体
15をヒーター16で約700℃に加熱して、戒膜を行
なっtも 本実施例で番ヨ  各ターゲットのシャッタ
ーの開口時間を60秒一定とヒ スバッタ電流を変化さ
せて実験し氾 まず単一相ができる条件を探索した 各
ターゲットの人力電流をBi: 50 mA,Sr−C
a−Cu: 300 mAとして周期的に積層すること
により、C軸長が30人で隣接する酸化ビスマス層の間
にCu−0面が2面挿入された結晶構造(D,c軸配向
膜が得られたことが確認された この物質は80K程度
の超電導転移温度を持つことが知られている。また 各
ターゲットの入力電流着Bi: 50 mA,Sr−C
a−Cu: 400 mAとして周期的に積層すること
により、 C軸長が36人で隣接する酸化ビスマス層の
間にCu−0面が3面挿入された結晶構造q C軸配向
膜が得られたことが確認された この物質は105K程
度の超電導転移温度を持つことが知られている。次にS
’r−Ca’−Cuターゲットの入力電流を周期的に変
化させて、CuO面の2面構造 3面構造をそれぞれ約
150ん180人ずつ交互に積層させた このときの構
造を模式的に第2図に未す。第2図において、 2lは
Cu−02面構造の欣 22はCu−03面構造の膜を
せルコとにより、Bit02層23の間(7) Sr−
Ca−Cu−0層の厚さが変わって薄い層24及び厚い
層25が作り分けられることによりCu−0面数の異な
る結晶構造の形成が制御卒へ  これらの交互の積層が
達或されることが判る。このようにして作製された膜厚
2000人の3つの薄膜について、特性を評価した な
お特性測定の前に 超電導性出現を確実にするたム 酸
素雰囲気中において850℃の熱処理を5時間施した 
薄膜の抵抗の温度特性を第3図に示す。第3図において
、特性31はC+.+−02面構造の薄脱 特性32は
Cu−0 3面構造の薄風 特性33はSr−Ca−C
uターゲットの入力電流を周期的に変化させて作ったC
u−0 2面構造と3面構造の積層膜である。特性3l
においてはゼロ抵抗温度が約7(IKと見積ら外 2面
構造セラミックスと同.学の特性が出ていることが確認
される。また特性32においてもゼロ抵抗温度が約10
0Kと見積られ3面構造セラミックスと同様の特性が出
ているこ?が確認される。ところがこの2面構造と3面
構造を積層した膜の特性33(よ 本来の単一構造の超
電導特性を卓越したものとなっており、ゼロ抵抗温度■
も110Kと向上していtラ  すなわ板 本発明者ら
は積層構造をとらせることにより、以外にも超電導転移
温度(ゼロ抵抗温度)が上昇すること?見いだし氾 こ
の効果の詳細な理由については未だ不明”である力交 
上■記構造の積層膜の場合、各々の膜の界面を酸化ビス
マスの層(Bi*Oa)で共用させているた幽鼻常に急
4で熱的にも安定な境界を保ったまま積層構造が実現さ
れ この構造が超電導機構1となんら■かの変化を引き
起こしたもの12に鉛(Pb)を添加してスパッタした
とき、基体15の温度が上記実施例よりも約100℃低
くてL−上記実澁例牛同等な結果が得ξれることも併せ
て見いだした −Q− 1〇一 発させ、基体上にBi−0→Sr−Cu−0→Ca−C
u−0−* Sr−CuO−+Bi−0の順で周期的に
積層させた場合、 (実施例l)に示した積層構造作製
方法より極めて制御性良く、安定した膜質の、しかも膜
表面が極めて平坦なBi−Sr−Ca−Cu−0超電導
薄膜が得られることを見いだした Bi−0, Sr−Cu−0, Ca−Cu−0を周期
的に積層させる方法として(よ いくつか考えられる。
By sputtering each target in an argon/oxygen (1:1) mixed atmosphere of 3 Pa, each oxide layer is periodically stacked. In this example, the substrate 15 was heated to about 700°C with the heater 16, and the test was carried out. We searched for the conditions for one phase.The human power current for each target was Bi: 50 mA, Sr-C.
a-Cu: By stacking periodically at 300 mA, a crystal structure with a C-axis length of 30 and two Cu-0 planes inserted between adjacent bismuth oxide layers (D, c-axis oriented film This material is known to have a superconducting transition temperature of about 80 K.The input current of each target Bi: 50 mA, Sr-C
a-Cu: By periodically stacking layers at 400 mA, a crystal structure qC-axis oriented film with a C-axis length of 36 and three Cu-0 planes inserted between adjacent bismuth oxide layers can be obtained. This material is known to have a superconducting transition temperature of about 105K. Next, S
By periodically changing the input current of the 'r-Ca'-Cu target, approximately 150 to 180 CuO surfaces were alternately stacked. Shown in Figure 2. In FIG. 2, 2l is a layer with a Cu-02 surface structure, and 22 is a film with a Cu-03 surface structure formed between the Bit02 layers 23 (7) Sr-
By changing the thickness of the Ca-Cu-0 layer and creating a thin layer 24 and a thick layer 25, the formation of crystal structures with different numbers of Cu-0 planes can be controlled.Alternate stacking of these layers is achieved. I understand that. The properties of the three thin films fabricated in this manner with a film thickness of 2,000 were evaluated.Before measuring the properties, heat treatment was performed at 850°C in an oxygen atmosphere for 5 hours to ensure the appearance of superconductivity.
Figure 3 shows the temperature characteristics of the resistance of the thin film. In FIG. 3, characteristic 31 is C+. Thin winding of +-02 plane structure Characteristic 32 is Cu-0 Thin wind of three plane structure Characteristic 33 is Sr-Ca-C
uC made by periodically changing the input current of the target
u-0 This is a laminated film with a two-sided structure and a three-sided structure. Characteristic 3l
It is confirmed that the zero resistance temperature is about 7 (IK) and the same characteristics as two-sided structure ceramics.Also, even for the characteristic 32, the zero resistance temperature is about 10
It is estimated to be 0K and has the same characteristics as three-sided ceramics. is confirmed. However, the characteristics of a film with a stack of two-sided and three-sided structures (33) surpass the original superconducting properties of a single structure, and it has a zero resistance temperature.
The present inventors have found that by creating a laminated structure, the superconducting transition temperature (zero resistance temperature) also increases. The detailed reason for this effect is still unknown.
In the case of a laminated film with the structure described above, the interface between each film is shared by a layer of bismuth oxide (Bi*Oa), so the laminated structure maintains a sharp and thermally stable boundary. This structure caused some changes from the superconducting mechanism 1.When lead (Pb) was added to the structure 12 and sputtered, the temperature of the base 15 was about 100°C lower than in the above example, and L- It was also found that results equivalent to the above-mentioned practical example could be obtained.
When laminated periodically in the order of u-0-* Sr-CuO-+Bi-0, the controllability is much better than the laminated structure fabrication method shown in (Example 1), stable film quality is obtained, and the film surface is We discovered that an extremely flat Bi-Sr-Ca-Cu-0 superconducting thin film could be obtained by periodically stacking Bi-0, Sr-Cu-0, and Ca-Cu-0 (there are several possible methods). .

一般に MBE装置あるいは多元のEB蒸着装置で蒸発
源の前を開閉シャッターで制御したり、気相戒長法で作
製する際にガスの種類を切り替えたりすることにより、
周期的積層を達戊することができる。しかしこの種の非
常に薄い層の積層には従来スパッタリング蒸着は不向き
とされていtも  この理由(よ或膜中のガス圧の高さ
に起因する不純物の混入およびエネルギーの高い粒子に
よるダメージと考えられている。しかしながら、本発明
者ら(上 このBl系酸化物超電導体に対してスパッタ
リングにより異なる薄い層の積層を行なったとこム 意
外にも良好な積層膜作製が可能なことを発見した ス1
1 バッタ中の高い酸素ガス圧およびスパッタ放電力丈Bi
系の100K以上の臨界温度を持つ相の形成に都合がよ
いためではないかと考えられる。
Generally, by controlling an opening/closing shutter in front of the evaporation source in an MBE device or a multi-source EB evaporation device, or by switching the type of gas when producing by the vapor phase method,
Periodic stacking can be achieved. However, sputtering deposition has traditionally been considered unsuitable for this type of extremely thin layer stacking. However, the present inventors (above) discovered that when different thin layers were laminated by sputtering on this Bl-based oxide superconductor, it was possible to fabricate a surprisingly good laminated film. 1
1 High oxygen gas pressure in the grasshopper and sputter discharge power height Bi
It is thought that this is because it is convenient for the formation of a phase having a critical temperature of 100 K or higher in the system.

スパッタ蒸着で異なる物質を積層させる方法として(戴
 組成分布を設けた1ヶのスパッタリングターゲットの
放電位置を周期的に制御するという方法がある力文 組
或の異なる複数個のターゲッ1・のスパッタリングとい
う方法を用いると比較的簡単に達或することができる。
One method of layering different materials by sputter deposition is to periodically control the discharge position of one sputtering target with a composition distribution. This method can be achieved relatively easily.

この場合、複数個のターゲットの各々のスパッタ量を周
期的に制御したり、あるいはターゲットの前にシャッタ
ーを設けて周期的に開閉したりして、周期的積層膜を作
製することができる。また基板を周期的運動させて各々
のターゲットの上を移動させる方法でも作製が可能であ
る。レーザースパッタあるいはイオンビームスパッタを
用いた場合に(よ 複数個のターゲットを周期運動させ
てビームの照射するターゲットを周期的に変えれば 周
期的積層膜が実現される。このように複数個のターゲッ
トを用いたスパッタリングにより比較的簡単にBi系酸
化物の12− 周期的積層が作製可能となる。
In this case, a periodic laminated film can be produced by periodically controlling the amount of sputtering for each of a plurality of targets, or by providing a shutter in front of the target and opening and closing it periodically. It can also be manufactured by a method in which the substrate is moved periodically and moved over each target. When using laser sputtering or ion beam sputtering, periodic laminated films can be realized by periodically moving multiple targets and periodically changing the targets irradiated with the beam. By using sputtering, a 12-periodic stack of Bi-based oxides can be produced relatively easily.

実施例2 第4図に本実施例で用いた3元マグネトロンスパッタ装
置の概略図を示i−.  第4図において、4lはBi
ターゲット、 42はSrCu合金ターゲット、43は
CaCu合金ターゲット、 44はシャッター、45は
スリット、 46は基体 47は基体加熱用ヒーターを
示す。計3個のターゲット41、 42、43を第2図
に示すように配置させた 即ち、MgO(100)基体
46に焦点を結ぶように各ターゲットが約30゜傾いて
設置されている。ターゲットの前方には回転ずるシャッ
ター44があり、パルスモータで駆動することによりそ
の中に設けられたスリット45の回転が制御さf5  
Bi→SrCu→CaCu→SrCu→Biのサイクル
でスパッタ蒸着が行なわれる。基体46をヒーター47
で約600℃に加熱し アルゴン・酸素(5:  1)
混合雰囲気3Paのガス中で各ターゲットのスパッタリ
ングを行なった 各ターゲットのスパッタ電流を、Bi
:30 mA, SrCu:80 mA, CaCu:
300 mAとして実験を行った このスパッタ蒸着で
作製された結晶構造におけるCu−0面数tit,  
Ca−Cu−0の厚みにより制御される力交 この例の
場合スリットの開口時間で制御すると非常に簡単に設定
可能である。実験の結気 上記の入力電圧での開口時間
としてBi・60秒;  SrCu:60秒とした場合
、CaCu・60秒ではCu−0 2面構造八〇aCu
:90秒ではCu−03面構造が作製されることが判っ
た 従ってCaCuターゲットの開口時間を60秒と9
0秒で周期的に変化させることにより、 2面構造と3
面構造の積層膜を非常に容易にかつ良好に得ることに或
功しtも さらに本発明者らはこの装置を用いて、m×[Bi(6
0秒)−”SrCu(60秒)→CaCu(60秒)→
SrCu(60秒)−”Biコ→n x  [Bi(6
0秒)−SrCu(60秒)→CaCu(90秒)→S
rCu(60秒)→Bi]のザイクルで各ターゲットを
スパッタL  m (Cu−02面構造)  ・n (
Cu−03面構造)積層薄膜を基体上に作製した ここ
でれnは正の整数を示す。本発明者らはn=4のとき、
mを変化させて周期的に積層して得た膜の超電導特性を
調べt.,m=6のとき、最も高い超電導転13− 14 移温度およびゼロ抵抗温度が得られた このゼロ抵抗温
度は113Kに達L.  13i−Sr−Ca−Cu−
0系単一相本来のそれらの値よりも約8K高いものであ
っtも発明の効果 以上のようにps1の本発明の酸化物超電導薄膜1;L
  Bi系酸化物超電導薄膜の超電導転移温度を上昇さ
せる構造を提供するものであり、第2の本発明の酸化物
超電導薄膜の製造方法は第1の本発明−をより効果的に
実現し デバイス等の応用には必須の低温でのプロセス
確立したものであり、本発明の工業的価値は大きl,%
Example 2 FIG. 4 shows a schematic diagram of the ternary magnetron sputtering apparatus used in this example. In Fig. 4, 4l is Bi
42 is a SrCu alloy target, 43 is a CaCu alloy target, 44 is a shutter, 45 is a slit, 46 is a base body, and 47 is a heater for heating the base body. A total of three targets 41, 42, and 43 were arranged as shown in FIG. 2. That is, each target was set at an angle of about 30° so as to focus on the MgO (100) substrate 46. There is a rotating shutter 44 in front of the target, and the rotation of a slit 45 provided therein is controlled by driving it with a pulse motor f5.
Sputter deposition is performed in a cycle of Bi→SrCu→CaCu→SrCu→Bi. The base body 46 is connected to the heater 47
Heat to about 600℃ with argon/oxygen (5:1)
Sputtering was performed on each target in a mixed atmosphere of 3 Pa gas.The sputtering current for each target was
:30 mA, SrCu:80 mA, CaCu:
The experiment was conducted at 300 mA.
Force exchange controlled by the thickness of Ca-Cu-0 In this example, it can be set very easily by controlling by the opening time of the slit. Experimental gas When the opening time at the above input voltage is Bi・60 seconds; SrCu: 60 seconds, Cu-0 dihedral structure 80aCu for CaCu・60 seconds
: It was found that a Cu-03 surface structure was created when the opening time of the CaCu target was 60 seconds and 90 seconds.
By changing periodically at 0 seconds, two-sided structure and three
The present inventors succeeded in obtaining a laminated film with a planar structure very easily and well.
0 seconds) - “SrCu (60 seconds) → CaCu (60 seconds) →
SrCu (60 seconds) - “Bi ko → n x [Bi (6
0 seconds) - SrCu (60 seconds) → CaCu (90 seconds) → S
sputter each target with a cycle of rCu (60 seconds) → Bi] L m (Cu-02 surface structure) ・n (
Cu-03 plane structure) A laminated thin film was produced on a substrate. Here, n represents a positive integer. The present inventors when n=4,
The superconducting properties of films obtained by periodically stacking films with varying m were investigated. , m=6, the highest superconducting transition temperature and zero resistance temperature were obtained. This zero resistance temperature reached 113K. 13i-Sr-Ca-Cu-
The oxide superconducting thin film 1 of the present invention has a ps1 which is about 8K higher than those values of the 0-series single phase, and t is more than the effect of the invention; L
The present invention provides a structure for increasing the superconducting transition temperature of a Bi-based oxide superconducting thin film, and the method for producing an oxide superconducting thin film according to the second invention more effectively realizes the first invention and provides devices, etc. The process has been established at a low temperature, which is essential for the application of

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明p実施例1における薄膜の製造装置の概
略を示す斜視は 第2図は同実施例1の薄膜の構造を示
す断面飄 第3図は実施例1で得た薄膜における抵抗の
温度特性グラス 第4図は本発明の実施例2における薄
膜の製造装置の概略を示す斜視図である。 11,12、41、42、43・・・ス八゜ツタリンク
ゝターケ1ット、13、44・・・シャ7ター、14・
・・アハ゜−チキー、45・・・スリット、15、46
・・・MgO基体、16、47−−−1−ター、21 
・・・Cu−0 2面構造のB系薄膜、22−・・Cu
−03面構造のB系薄WL23・・4i*O*l,  
24・−SrCaCuOの厚い層、25・・・SrCa
CuOの薄い層、31,32、33・・・薄膜の抵抗の
温度特也
Figure 1 is a perspective view schematically showing the thin film manufacturing apparatus in Example 1 of the present invention. Figure 2 is a cross-sectional view showing the structure of the thin film in Example 1. Figure 3 is the resistance of the thin film obtained in Example 1. FIG. 4 is a perspective view schematically showing a thin film manufacturing apparatus in Example 2 of the present invention. 11, 12, 41, 42, 43...S8゜tsuta link target 1t, 13, 44...sha7tah, 14.
...Aha゜-Chikey, 45...Slit, 15, 46
...MgO base, 16, 47--1-ter, 21
...Cu-0 B-based thin film with two-sided structure, 22-...Cu
-03 plane structure B-based thin WL23...4i*O*l,
24.-thick layer of SrCaCuO, 25...SrCa
Thin layer of CuO, 31, 32, 33...Temperature characteristics of thin film resistance

Claims (4)

【特許請求の範囲】[Claims] (1) 主体成分が少なくともビスマス(Bi)、銅(
Cu)、およびアルカリ土類( I I a族)を含むビス
マス酸化物層状構造物質の結晶構造で、隣接する酸化ビ
スマスまたは酸化ビスマスを主体とする層の間の、酸化
銅(Cu−O)の面の数の異なる結晶構造の薄膜が、交
互に積層された構造を持つ(ここでアルカリ土類は、
I I a族元素のうちの少なくとも一種あるいは二種以
上の元素を示す。)ことを特徴とする酸化物超電導薄膜
(1) The main components are at least bismuth (Bi) and copper (
A crystal structure of a bismuth oxide layered structure material containing Cu) and alkaline earth (group IIa), in which the plane of copper oxide (Cu-O) between adjacent bismuth oxide or bismuth oxide-based layers It has a structure in which thin films with different crystal structures are stacked alternately (here, the alkaline earth is
II Indicates at least one or two or more elements of group a elements. ) An oxide superconducting thin film characterized by:
(2) 基体上に、少なくともビスマス(Bi)を含む
第1の酸化物と少なくとも銅およびアルカリ土類( I
I a族)を含む第2の酸化物とを周期的に積層させて
形成する酸化物薄膜と、少なくともビスマス(Bi)を
含む前記第1の酸化物と前記第2の層とは厚みの異なる
少なくとも銅およびアルカリ土類( I I a族)を含む
酸化物を周期的に積層させて形成する酸化物薄膜とを、
交互に積層させて得る(ここでアルカリ土類は、 I I
a族元素のうちの少なくとも一種あるいは二種以上の
元素を示す。)ことを特徴とする酸化物超電導薄膜の製
造方法。
(2) A first oxide containing at least bismuth (Bi) and at least copper and alkaline earth (I
an oxide thin film formed by periodically stacking a second oxide containing a group Ia), and a thickness of the first oxide and the second layer containing at least bismuth (Bi), which are different from each other. An oxide thin film formed by periodically stacking oxides containing at least copper and alkaline earth (group IIa),
obtained by alternating layers (where alkaline earth is II
Indicates at least one or two or more elements of group a elements. ) A method for producing an oxide superconducting thin film, characterized by:
(3) 積層物質の蒸発を少なくとも二種以上の蒸発源
で行うことを特徴とする請求項2記載の酸化物超電導薄
膜の製造方法。
(3) The method for producing an oxide superconducting thin film according to claim 2, wherein the evaporation of the laminated material is performed using at least two types of evaporation sources.
(4) 積層物質の蒸発をスパッタリングで行なうこと
を特徴とする請求項2記載の酸化物超電導薄膜の製造方
法。
(4) The method for producing an oxide superconducting thin film according to claim 2, wherein the evaporation of the laminated material is performed by sputtering.
JP1151806A 1989-06-14 1989-06-14 Oxide superconductive thin film and its production Pending JPH0316920A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1151806A JPH0316920A (en) 1989-06-14 1989-06-14 Oxide superconductive thin film and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1151806A JPH0316920A (en) 1989-06-14 1989-06-14 Oxide superconductive thin film and its production

Publications (1)

Publication Number Publication Date
JPH0316920A true JPH0316920A (en) 1991-01-24

Family

ID=15526715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1151806A Pending JPH0316920A (en) 1989-06-14 1989-06-14 Oxide superconductive thin film and its production

Country Status (1)

Country Link
JP (1) JPH0316920A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5145713A (en) * 1990-12-21 1992-09-08 Bell Communications Research, Inc. Stoichiometric growth of compounds with volatile components
US6451000B1 (en) 1993-04-05 2002-09-17 Kao Corporation Disposable diaper
JP2009148607A (en) * 2002-01-30 2009-07-09 Uni Charm Corp Pants-type disposable wearing article
US7937777B2 (en) 2004-03-12 2011-05-10 Uni-Charm Corporation Disposable wearing article

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02175613A (en) * 1988-12-27 1990-07-06 Sumitomo Cement Co Ltd Production of oxide superconducting thin film
JPH02227911A (en) * 1989-02-28 1990-09-11 Tonen Corp High magnetic field generating superconductor and manufacture thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02175613A (en) * 1988-12-27 1990-07-06 Sumitomo Cement Co Ltd Production of oxide superconducting thin film
JPH02227911A (en) * 1989-02-28 1990-09-11 Tonen Corp High magnetic field generating superconductor and manufacture thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5145713A (en) * 1990-12-21 1992-09-08 Bell Communications Research, Inc. Stoichiometric growth of compounds with volatile components
US6451000B1 (en) 1993-04-05 2002-09-17 Kao Corporation Disposable diaper
JP2009148607A (en) * 2002-01-30 2009-07-09 Uni Charm Corp Pants-type disposable wearing article
US7937777B2 (en) 2004-03-12 2011-05-10 Uni-Charm Corporation Disposable wearing article

Similar Documents

Publication Publication Date Title
JPH0316920A (en) Oxide superconductive thin film and its production
JP3037514B2 (en) Thin film superconductor and method of manufacturing the same
JP2979422B2 (en) Method of manufacturing insulator and insulating thin film, and method of manufacturing superconducting thin film and superconducting thin film
JP2741277B2 (en) Thin film superconductor and method of manufacturing the same
JP2669052B2 (en) Oxide superconducting thin film and method for producing the same
JP3478543B2 (en) Oxide superconducting thin film and method for producing the same
JP3025891B2 (en) Thin film superconductor and method of manufacturing the same
JP2733368B2 (en) Superconducting thin film and method for producing the same
JPH04275470A (en) Product composed of superconductor/insulator structure and manufacture of said product
JP2502744B2 (en) Method of manufacturing thin film super-electric body
EP0640994B1 (en) Superconductor thin film and manufacturing method
JPH0822740B2 (en) Oxide superconducting thin film and method for producing the same
JP2555477B2 (en) Superconducting thin film and manufacturing method thereof
JPH0316919A (en) Superconductive thin film and its production
JP2502743B2 (en) Method of manufacturing thin film superconductor
JPH05170448A (en) Production of thin ceramic film
JPH02122065A (en) Production of thin film type superconductor
JPH0465320A (en) Superconducting thin film and its production
JPH0822742B2 (en) Thin film superconductor and method of manufacturing the same
JP2558880B2 (en) Method for producing copper oxide thin film
JPH03170333A (en) Thin filmy super conductor and its preparation
JPH0437609A (en) Oxide superconducting thin film and its production
JPH05171414A (en) Superconducting thin film and its production
JPH042617A (en) Oxide superconducting thin film and production thereof
JPH0714817B2 (en) Oxide superconducting thin film and method for producing the same