JPH0465320A - Superconducting thin film and its production - Google Patents
Superconducting thin film and its productionInfo
- Publication number
- JPH0465320A JPH0465320A JP2173488A JP17348890A JPH0465320A JP H0465320 A JPH0465320 A JP H0465320A JP 2173488 A JP2173488 A JP 2173488A JP 17348890 A JP17348890 A JP 17348890A JP H0465320 A JPH0465320 A JP H0465320A
- Authority
- JP
- Japan
- Prior art keywords
- thin film
- superconducting thin
- film
- elements
- superconducting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000010409 thin film Substances 0.000 title claims abstract description 82
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 14
- 239000000758 substrate Substances 0.000 claims abstract description 23
- 229910052761 rare earth metal Inorganic materials 0.000 claims abstract description 8
- 229910052797 bismuth Inorganic materials 0.000 claims abstract description 7
- 229910052802 copper Inorganic materials 0.000 claims abstract description 7
- 229910052747 lanthanoid Inorganic materials 0.000 claims abstract description 5
- 150000002602 lanthanoids Chemical class 0.000 claims abstract description 5
- 229910052706 scandium Inorganic materials 0.000 claims abstract description 4
- 229910052727 yttrium Inorganic materials 0.000 claims abstract description 4
- 238000001704 evaporation Methods 0.000 claims description 9
- 230000008020 evaporation Effects 0.000 claims description 7
- 238000000151 deposition Methods 0.000 claims description 5
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 claims description 2
- 150000002910 rare earth metals Chemical class 0.000 claims description 2
- 239000010949 copper Substances 0.000 claims 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims 1
- 229910052773 Promethium Inorganic materials 0.000 claims 1
- VQMWBBYLQSCNPO-UHFFFAOYSA-N promethium atom Chemical compound [Pm] VQMWBBYLQSCNPO-UHFFFAOYSA-N 0.000 claims 1
- SIXSYDAISGFNSX-UHFFFAOYSA-N scandium atom Chemical compound [Sc] SIXSYDAISGFNSX-UHFFFAOYSA-N 0.000 claims 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 claims 1
- 238000004544 sputter deposition Methods 0.000 abstract description 20
- 238000010030 laminating Methods 0.000 abstract description 3
- 238000007740 vapor deposition Methods 0.000 abstract description 2
- 229910015901 Bi-Sr-Ca-Cu-O Inorganic materials 0.000 abstract 4
- 229910002480 Cu-O Inorganic materials 0.000 abstract 3
- 239000010408 film Substances 0.000 description 49
- 230000007704 transition Effects 0.000 description 14
- 238000010438 heat treatment Methods 0.000 description 10
- 230000000737 periodic effect Effects 0.000 description 7
- 239000000463 material Substances 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 239000002887 superconductor Substances 0.000 description 6
- 239000013078 crystal Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 239000012071 phase Substances 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 229910014454 Ca-Cu Inorganic materials 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 229910004247 CaCu Inorganic materials 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- -1 composed of i Substances 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000003475 lamination Methods 0.000 description 2
- 238000001755 magnetron sputter deposition Methods 0.000 description 2
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- 229910000750 Niobium-germanium Inorganic materials 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- CFJRGWXELQQLSA-UHFFFAOYSA-N azanylidyneniobium Chemical compound [Nb]#N CFJRGWXELQQLSA-UHFFFAOYSA-N 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- RTRWPDUMRZBWHZ-UHFFFAOYSA-N germanium niobium Chemical compound [Ge].[Nb] RTRWPDUMRZBWHZ-UHFFFAOYSA-N 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000001659 ion-beam spectroscopy Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 238000005477 sputtering target Methods 0.000 description 1
- 238000001947 vapour-phase growth Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
- Superconductor Devices And Manufacturing Methods Thereof (AREA)
- Containers, Films, And Cooling For Superconductive Devices (AREA)
- Superconductors And Manufacturing Methods Therefor (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は 80に以上の高臨界温度が期待されるビスマ
スを含む超電導薄膜およびその製造方法に関する。DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a superconducting thin film containing bismuth, which is expected to have a high critical temperature of 80 or higher, and a method for producing the same.
従来の技術
高温超電導体として、A15型二元系化合物の窒化ニオ
ブ(NbN)やゲルマニウムニオブ(NbsGe)など
が知られている力丈 これらの材料の超電導転移温度は
たかだか23にである。−人ペロブスカイト系化合物(
よ さらに高い転移温度が期待され Ba−La−Cu
−○系の高温超電導体が提案された[J、G、Bedn
orz and K、AlMuller、ツァイトシヱ
リフト・7ユア・フィシゝ−り(Zetshrift
Fur Physik B)−Condense
d Matter Vol、64,189−193
(1986)Lさらに B1−3r−Ca−Cu−0系
の材料か80に以上の転移温度を示すことも発見された
[H,Maeda、Y、Tanaka、M、Fukut
omi and T、Asano、シ1ヤバニース
゛・シゝヤーナル・オフゞ・アプライじ・フィシ?7ク
スDapaneseJournal of App
lied Physics)Vol、27.L20
9−210(1988)L この種の材料の超電導機
構の詳細は明らかではない力\ 転移温度か室温以上に
高くなる可能性があり、高温超電導体として従来の二2
元系化合物より、より有望な特性が期待される。Conventional technology As high-temperature superconductors, A15 type binary compounds such as niobium nitride (NbN) and germanium niobium (NbsGe) are known. The superconducting transition temperature of these materials is at most 23°C. -Human perovskite compounds (
A higher transition temperature is expected for Ba-La-Cu
−○-based high-temperature superconductors have been proposed [J, G, Bedn
orz and K, Al Muller, Zetshrift 7 Your Fish
Fur Physik B)-Condense
dMatter Vol, 64, 189-193
(1986) It was also discovered that materials of the B1-3r-Ca-Cu-0 series exhibit a transition temperature of 80°C or higher [H, Maeda, Y, Tanaka, M, Fukut
Omi and T, Asano, Shiyabanisu゛・Shiyanal・Off・Apply・Fish? 7kus Dapanese Journal of App
Lied Physics) Vol, 27. L20
9-210 (1988) L The details of the superconducting mechanism of this type of material are not clear.
More promising properties are expected than the original compounds.
さらに超電導体と非超電導体とを交互に積層することに
より、より高い臨界電流密度およびより高い臨界磁場が
従来から期待されていも発明が解決しようとする課題
B i−3r −Ca−Cu−0系の材料は 現在の技
術では主として焼結という過程でしか形成できないた敦
セラミックの粉末あるいはブロックの形状でしか得ら
れなL% −人 この種の材料を実用化する場合、
薄膜状に加工することが強く要望されている力(従来の
技術で(よ 良好な超電導特性を有する薄膜作製は難し
いものであっt島 すなわfx B1−5r−Ca−
Cu−0系には超電導転移温度の異なるいくつかの相が
存在することが知られている力(特に転移温度が100
K以上の相を薄膜の形態で達成するのは非常に困難とさ
れていた
また 従来このBi系において良好な超電導特性を示す
薄膜を形成するためには少なくとも700℃以上の熱処
理あるいは形成時の加熱が必要であり、そのため高い臨
界電流密度、高い臨界磁場が期待される非超電導薄膜と
の周期的な積層構造を得ることは極めて困難と考えられ
またこの構造を利用した集積化デバイスを構成するこ
ともたいへん困難であるとされてい九
さらに 優れた超電導性を有するBi系超電導薄膜と非
超電導薄膜との積層構造膜を製造する暇両者の界面での
原子の拡散等の整合性が大きな課題となってい九
本発明はこのような従来の課題を解決するもので、優れ
た超電導性を有するB1系超電導薄膜とその製造方法の
提供を目的とする。Furthermore, by alternately laminating superconductors and non-superconductors, higher critical current density and higher critical magnetic field have been expected, but the problem that the invention attempts to solve is B i-3r -Ca-Cu-0 With current technology, this type of material can only be formed mainly through the process of sintering.When this kind of material is put into practical use, it can only be obtained in the form of ceramic powder or blocks.
It is difficult to fabricate a thin film with good superconducting properties using conventional techniques.
It is known that the Cu-0 system has several phases with different superconducting transition temperatures (especially those with a transition temperature of 100
It was considered very difficult to achieve a phase of K or higher in the form of a thin film.In addition, conventionally, in order to form a thin film that exhibits good superconducting properties in this Bi system, heat treatment at at least 700°C or higher or heating during formation is required. Therefore, it is considered extremely difficult to obtain a periodic laminated structure with non-superconducting thin films that is expected to have a high critical current density and a high critical magnetic field, and it is difficult to construct an integrated device using this structure. In addition, when producing a laminated structure film of a Bi-based superconducting thin film with excellent superconducting properties and a non-superconducting thin film, the consistency of atomic diffusion at the interface between the two has become a major issue. The present invention is intended to solve these conventional problems, and aims to provide a B1-based superconducting thin film having excellent superconductivity and a method for manufacturing the same.
課題を解決するための手段
上記の目的を達成するために本発明の超電導薄膜i&B
i、Cuおよびアルカリ土類(IIa族)を主成分とす
る層状酸化物超電導薄膜と、Bi、Cuアルカリ土類(
IIa族)および希土類を主成分とする層状酸化物薄膜
が交互に積層された構造とし九
ここでアルカリ土類は IIa族元素のうちの一種以上
の元聚 希土類はPmをのぞくランタノイド元素および
IIIa族のSc、Yのうちの一種以上の元素てあ4
さらに本発明の超電導薄膜の製造方法(表 基板上にB
iとCuおよびアルカリ土類(I I a族)を主成分
とする酸化物を周期的に積層させて形成する層状酸化物
超伝導薄膜と、B1、Cuおよびアルカリ土類(IIa
族)および希土類を主成分とする層状酸化物薄膜を周期
的に積層させて形成する層状酸化物薄膜を、二種以上の
蒸発源を用いて蒸発法で交互に積層させるものであムこ
こでアルカリ土類1よ IIa族元素のうちの一種以上
の元素 希土類はPmをのぞくランタノイド元素および
IIIa族のSc、Yのうちの一種以上の元素である。Means for Solving the Problems In order to achieve the above objects, the superconducting thin film i&B of the present invention
A layered oxide superconducting thin film mainly composed of i, Cu and alkaline earth (group IIa), and a layered oxide superconducting thin film mainly composed of bi, Cu and alkaline earth (group IIa)
It has a structure in which layered oxide thin films mainly composed of group IIa) and rare earth elements are laminated alternately.9 Here, alkaline earths are one or more of the group IIa elements, and rare earths are lanthanoid elements other than Pm and group IIIa elements. 4. Furthermore, the method for producing a superconducting thin film of the present invention (Table 1)
A layered oxide superconducting thin film is formed by periodically stacking oxides mainly composed of B1, Cu, and alkaline earth elements (group IIa);
A layered oxide thin film formed by periodically stacking layered oxide thin films mainly composed of rare earth metals and rare earth elements is alternately stacked by an evaporation method using two or more evaporation sources. Alkaline earth 1 One or more elements of group IIa elements Rare earths are one or more elements of lanthanide elements other than Pm and Sc and Y of group IIIa.
作用
本発明は上記した構成によって、Bi系超電導薄膜とB
i系酸化物薄膜が安定なり1203酸化膜層またはこれ
を主体とした層により覆われた結晶構造となっているた
取 超電導薄膜と非超電導薄膜との間で相互拡散の少な
い積層が可能となる。Effect The present invention has the above-described structure, and the Bi-based superconducting thin film and B
Since the i-based oxide thin film becomes stable and has a crystal structure covered with a 1203 oxide film layer or a layer mainly composed of this, it becomes possible to stack layers with less mutual diffusion between superconducting thin films and non-superconducting thin films. .
さらに本発明においては 上記構造の超伝導薄膜を二種
以上の蒸発源を用いてスパッタリング法で交互に積層さ
せて分子レベルの制御によって薄膜を製造するので、B
i系超電導薄膜とBi系酸化物薄膜との積層薄膜を再現
性良く製造することができも
実施例
以下、本発明の一実施例について説明すもまず、本発明
者らはBi系超電導薄膜と非超電導薄膜との周期的な積
層構造を実現するたへBi系超電導薄膜と種々の非超電
導薄膜との界面での相互作用について検討した
通象 B1系超電導薄膜は500〜700℃に加熱した
基板上に蒸着して得る。蒸着後、そのままでも薄膜は超
電導特性を示す力(その後800〜950℃の熱処理を
施し 超電導特性を向上させもしかしながぺ 基板温度
が高い時に非超電導薄膜をBi系超電導薄膜に続いて積
層したり、非超電導薄膜を形成後熱処理を行った場合、
超電導薄膜と非超電導薄膜との間で、元素の相互拡散が
起こり超電導特性が大きく劣化することが判明した相互
拡散を起こさないために(よ 超電導薄膜 非超電導薄
膜の結晶性が優れていること、超電導薄膜・非超電導薄
膜間で結晶格子の整合性が優れていること、非超電導薄
膜が800〜950℃の熱処理に対して安定であること
が不可欠と考えられる。Furthermore, in the present invention, superconducting thin films having the above structure are alternately laminated by a sputtering method using two or more types of evaporation sources, and the thin films are manufactured by control at the molecular level.
A laminated thin film of an i-based superconducting thin film and a Bi-based oxide thin film can be manufactured with good reproducibility.ExampleThe following describes an example of the present invention. To achieve a periodic laminated structure with a non-superconducting thin film, we studied the interaction at the interface between a Bi-based superconducting thin film and various non-superconducting thin films.The B1-based superconducting thin film was prepared on a substrate heated to 500 to 700°C. Obtained by vapor deposition on top. After deposition, the thin film exhibits superconducting properties even as it is (afterwards, heat treatment at 800 to 950°C may improve the superconducting properties). Or, if heat treatment is performed after forming a non-superconducting thin film,
It has been found that mutual diffusion of elements occurs between superconducting thin films and non-superconducting thin films, which significantly deteriorates the superconducting properties. It is considered essential that the crystal lattice matching between the superconducting thin film and the non-superconducting thin film be excellent, and that the non-superconducting thin film be stable against heat treatment at 800 to 950°C.
種々の検討を行った結果 本発明者らホB1−8 r−
Ln−Cu−0薄膜が非超電導薄膜として適しているこ
とを見いだした ここでLnは希土類元素である。この
理由としては主たる構成元素が同じであり、結晶構造が
同類であるためと考えられも このた&Bi系超電導体
との結晶格子の整合性がきわめて優れており2 また高
温の熱処理においても、 Bl系超電導体との界面が非
常に安定であると考えられる。As a result of various studies, the present inventors found that B1-8 r-
We found that Ln-Cu-0 thin films are suitable as non-superconducting thin films, where Ln is a rare earth element. The reason for this is thought to be that the main constituent elements are the same and the crystal structures are similar; however, the crystal lattice matching with the &Bi-based superconductor is extremely excellent.2 Also, even during high-temperature heat treatment, B It is thought that the interface with the system superconductor is very stable.
実施例1 第1図を用いて具体的な実施例について説明する。Example 1 A specific example will be described using FIG.
第1図(よ 本実施例で用いた高周波二元マグネトロン
スパッタ装置内部の構成図であり、 11はB1−3r
−Ca−Cu−0ターゲツ ト、 l 2はB1−3r
−Y−Cu−0ターゲツト、 13はシャッター 14
はアパーチャー、 15は基板、 16は基板加熱用ヒ
ーターを示す。焼結体をプレス成形加工して作製した2
個のターゲット11、12を用し\ 第1図に示すよう
に配置させ通 すなわ% Mg0(100)からなる
基板15に焦点を結ぶように各ターゲットが約30”傾
いて設置されている。ターゲットの前方には回転するシ
ャッター13があり、その中にはアパーチャー14が設
けられている。シャッター13の回転をパルスモータ−
で制御することにより、アパーチャー14をB1−3r
−Ca−Cu−0ターゲツトまたはB1−3r−Y−C
u−0ターゲツト上に停止させることができる。 この
ようにして、B1−3r−Ca−Cu−0−+ B1−
3r−YCu−0−B i −3r−Ca−Cu−0−
* B1−3r−Y−Cu−0−+ B 1−3r−C
aCu−0のサイクルでスパッタ蒸着を行なうことがで
きる。B1−3r−Ca−Cu−Oll B1−3r
−Y−Cu−0膜の積層の様子を概念的に第2図に示す
。第2図において、21はB1−3r−Y−Cu−0層
状酸化物薄罠 22はB1−3r−Ca−Cu−0層状
酸化物超電導薄膜を示す。ターゲラ)11、12への入
力電力 およびそれぞれのターゲットのスパッタ時間を
制御することにより、基板15上に蒸着するB1−8r
−Y−Cu−0膜とB1−3r−CaCu−0膜の膜厚
を変えることができる。基板15をヒーター16で約7
00℃に加熱し アルゴン・酸素(1: 1)混合雰
囲気0.5Paのガス中で各ターゲットのスパッタリン
グを行なっ九 薄膜製造後は酸素雰囲気中において、8
00℃の熱処理を2時間施した 本実施例でζよ 各タ
ーゲットのスパッタ電力を、B1−3r−Ca−Cu−
0: 150 W、 B1−8r−YCu−0: 1
00 Wとし ターゲット11,12のスパッタ時間を
制御した B1−8r−Ca−Cu−0膜の元素の組成
比率がBi:Sr:Ca:Cu=2:2:l:2.
B1−3r−Y−Cu−0膜の元素の組成比率がBi:
Sr:Y:Cu=2:2:1:2になるよう、ターゲッ
ト11、12の元素の組成比率を調整しt、、 B1
−3r−Ca−Cu−0膜をB1−3r−Y−Cu−0
膜と積層せずに基板15上に形成した場合、すなわちB
1−3r−CaCu−0膜そのものの特性+1 80に
で超電導転移を起こL 78にで抵抗がゼロになるも
のてあっ總 またBi25r2YCu20*膜だけを成
膜し電気特性を測定したとこ4 バルクで報告されてい
るのと同様に絶縁体であッ九 ま?、:、 BB1
25r2YCu20膜およびBj2SraCaCu20
v膜を単独で成膜したとき、膜厚がそれぞれ60Å以上
のとき結晶性の薄膜かえられることがわがッな そこ
で、Bi25rpCaCu20v膜において、膜厚と電
気特性との関係を調べ旭 第3図に膜厚を30 人、
100 人、 200 人、 300 人、
1000人としたときの抵抗率の温度依存性を示す、膜
厚が300Å以上で(よ 超電導転移温度(オンセット
温度)(ヨ バルクで報告されているのと同じ80に
であッfQ、 この膜厚でBi25r2YCu20s
を200人積層重ても超電導転移温度はかわらなかっ九
ま1. 第3図より明らかなように 膜厚が減少す
ると超電導性は劣化し膜厚30人では4.2Kまで温度
をさげても超電導転移は見られなかった Bi25r2
YCua Os 層状酸化物薄膜21の膜厚を60人と
してBi25r2YaCu20V層状酸化物超電導薄膜
22の膜厚が60人、120人、240人、繰り返し回
数を20としたときの電気抵抗の温度依存性をそれぞれ
第4図において示す。FIG. 1 is a diagram showing the internal structure of the high-frequency binary magnetron sputtering apparatus used in this example, and 11 is a B1-3r
-Ca-Cu-0 target, l2 is B1-3r
-Y-Cu-0 target, 13 is shutter 14
15 is an aperture, 15 is a substrate, and 16 is a heater for heating the substrate. 2 made by press molding a sintered body
Targets 11 and 12 are arranged as shown in FIG. 1, and each target is set at an angle of about 30'' so that the target is focused on a substrate 15 made of Mg0 (100). In front of the target is a rotating shutter 13, in which an aperture 14 is provided.The rotation of the shutter 13 is controlled by a pulse motor.
By controlling the aperture 14 with B1-3r
-Ca-Cu-0 target or B1-3r-Y-C
It can be stopped on the u-0 target. In this way, B1-3r-Ca-Cu-0-+ B1-
3r-YCu-0-B i -3r-Ca-Cu-0-
*B1-3r-Y-Cu-0-+ B1-3r-C
Sputter deposition can be performed with aCu-0 cycle. B1-3r-Ca-Cu-Oll B1-3r
FIG. 2 conceptually shows how the -Y-Cu-0 films are stacked. In FIG. 2, 21 indicates a B1-3r-Y-Cu-0 layered oxide thin trap, and 22 indicates a B1-3r-Ca-Cu-0 layered oxide superconducting thin film. B1-8r is deposited on the substrate 15 by controlling the input power to the targets 11 and 12 and the sputtering time of each target.
The film thicknesses of the -Y-Cu-0 film and the B1-3r-CaCu-0 film can be changed. Heat the substrate 15 with the heater 16 for about 7
Sputtering was performed on each target in an argon/oxygen (1:1) mixed atmosphere at 0.5 Pa. After thin film production, sputtering was performed in an oxygen atmosphere at 8
In this example, the sputtering power of each target was changed to B1-3r-Ca-Cu-
0: 150 W, B1-8r-YCu-0: 1
00 W and controlled the sputtering time of targets 11 and 12.The elemental composition ratio of the B1-8r-Ca-Cu-0 film was Bi:Sr:Ca:Cu=2:2:l:2.
The elemental composition ratio of the B1-3r-Y-Cu-0 film is Bi:
The composition ratio of the elements of targets 11 and 12 was adjusted so that Sr:Y:Cu=2:2:1:2.
-3r-Ca-Cu-0 film to B1-3r-Y-Cu-0
When formed on the substrate 15 without being laminated with a film, that is, B
1-3 Characteristics of the r-CaCu-0 film itself +1 It seems that superconducting transition occurs at 80 and the resistance becomes zero at L 78. Also, when only Bi25r2YCu20* film was formed and the electrical properties were measured, 4 In bulk Is it an insulator similar to what has been reported? , :, BB1
25r2YCu20 film and Bj2SraCaCu20
It is known that when a V film is formed alone, it changes to a crystalline thin film when the film thickness is 60 Å or more.Therefore, we investigated the relationship between film thickness and electrical properties for Bi25rpCaCu20v films, as shown in Figure 3. The film thickness is 30 people,
100 people, 200 people, 300 people,
This film shows the temperature dependence of resistivity when 1000 people are used, and when the film thickness is 300 Å or more, Thick Bi25r2YCu20s
The superconducting transition temperature does not change even if 200 people are stacked on top of each other.1. As is clear from Figure 3, the superconductivity deteriorates as the film thickness decreases, and when the film thickness was 30, no superconducting transition was observed even when the temperature was lowered to 4.2K.Bi25r2
The temperature dependence of electrical resistance when the thickness of the YCua Os layered oxide thin film 21 is 60, the thickness of the Bi25r2YaCu20V layered oxide superconducting thin film 22 is 60, 120, and 240, and the number of repetitions is 20. This is shown in FIG.
特性41.42においてはゼロ抵抗温度がそれぞれ5に
、25にと低い力\ 特性43において!;L Bi
25ra YCua Os膜との周期的な積層なしに基
板15上につけたときのBiaSr2CaCu20.膜
本来の超電導特性とほとんど同じであっ九 次に 磁場
を印加した状態における電気抵抗の温度依存性を第5図
に示す。In characteristics 41 and 42, the zero resistance temperature is as low as 5 and 25, respectively. In characteristic 43! ;L Bi
BiaSr2CaCu20.25ra when deposited on substrate 15 without periodic stacking with YCuaOs film. Figure 5 shows the temperature dependence of the electrical resistance when a magnetic field is applied.
Bi25r2YCu20epを積層していない膜と比較
すると積層膜においては磁場による超電導転移温度領域
の広がりが小さくなっている。これは上部臨界磁場の向
上を意味していも 上部臨界磁場it Bi25ra
cacu20ν膜本来のものより約20%向上し九 4
.2Kにおいて、 C軸に平行方向に磁場を加えたとき
の値は20テスラ、またC軸に垂直方向では400テス
ラであった また 臨界電流密度はBi25r2Ycu
zoa膜を積層していない膜と比較して約30%向上し
、 77にで320万人/cm2となるのを見いだした
現在 これらの効果の詳細な理由については未だ不明
である力丈 薄いBi25r2YCu20s膜22を介
して複数のB1−3r−Ca−Cu−0膜21を積層す
ることによりBj2Sr2CaCu20y膜22におい
て超電導機構になんらかの変化が引き起こされたことが
考えられる。Compared to a film in which Bi25r2YCu20ep is not laminated, the spread of the superconducting transition temperature region due to the magnetic field is smaller in the laminated film. Even if this means improving the upper critical magnetic field, the upper critical magnetic field it Bi25ra
Approximately 20% improvement over the original cacu20ν film9 4
.. At 2K, the value when applying a magnetic field parallel to the C axis was 20 Tesla, and the value perpendicular to the C axis was 400 Tesla. Also, the critical current density was Bi25r2Ycu
We found that the ZOA film was improved by about 30% compared to a film without lamination, and reached 3.2 million people/cm2 in 77cm.Currently, the detailed reason for these effects is still unknown. It is considered that some change was caused in the superconducting mechanism in the Bj2Sr2CaCu20y film 22 by stacking the plurality of B1-3r-Ca-Cu-0 films 21 via the film 22.
な耘 本発明者らはターゲットII、 もしくは12に
鉛(Pb)を添加してスパッタしたとき、基板15の温
度が上記実施例よりも約100℃低くてk 上記実施例
と同等な結果が得られることを見いだした
さらに本発明者らi&Biの酸化物と、Sr、Ca、C
uの酸化物を異なる蒸発源から真空中で別々に蒸発させ
、基板上にB1−0−*5r−Cu−0−+Ca−Cu
O→5r−Cu−0→B1−0の順で周期的に積層させ
た場合、さらにY−Cuターゲットを用い真空中で蒸発
さ、せ、積層させた場合、実施例1に示した積層構造作
製方法より極めて制御性良く、安定した膜質αしかも膜
表面が極めて平坦なり1−3r−Ca−Cu−0超電導
薄膜およびB1−3r−Y−Cu−0薄膜か得られるこ
とを見いだした
実施例2
さらに本発明者らi4 B1−0.5r−Cu−0、
Ca−Cu−0,B1−3r−Y−Cu−0を別々の蒸
発源から蒸発させ、B1−3rCa−Cu−0超電導薄
膜とB1−3r−Y−Cu−0薄膜を周期的に積層した
啄 極めて制御性良< m (Bi−3r−Ca−Cu
−0) −n (Bi−3r−Y−Cu−0)の周期
構造を持つ薄膜を形成できることを見いだし九 ここで
m、nはそれぞれ1以上の正の整数を示す。さらく こ
のm (Bi−3r−Ca−Cu−0) ・n (B
i−3r−Y−Cu−0)薄膜は実施例1に示したB1
−3r−Ca−Cu−0を同時に蒸着して得る超電導薄
膜と、B1−3r−Y−Cu−0を同時に蒸着して得る
酸化物薄膜とを周期的に積層して得た薄膜に比べてはる
かに結晶性が優れ 臨界電流密度および上部臨界磁場の
特性において勝っていることも併せて見いだした さら
に本発明者ら(上 上記の方法で製造したB1−3r−
Ca−Cu−0超電導薄膜とB15r−Y−Cu−0薄
膜はともに薄膜表面が極めて平坦であることを見いだし
總
これらのこと(上 異なる元素を別々に順次積層してい
くことにより、基板表面に対し平行な面内だけで積層さ
れた蒸着元素が動くだけで、基板表面に対し垂直方向へ
の元素の移動がないことによるものと考えられる。When the present inventors performed sputtering by adding lead (Pb) to targets II or 12, the temperature of the substrate 15 was approximately 100°C lower than in the above embodiments, and results equivalent to those in the above embodiments were obtained. Furthermore, the present inventors found that oxides of i & Bi and Sr, Ca, C
The oxides of u were evaporated separately in vacuum from different evaporation sources, and B1-0-*5r-Cu-0-+Ca-Cu
When laminated periodically in the order of O → 5r-Cu-0 → B1-0, and further evaporated and laminated in a vacuum using a Y-Cu target, the laminated structure shown in Example 1 is obtained. An example in which it was found that a 1-3r-Ca-Cu-0 superconducting thin film and a B1-3r-Y-Cu-0 thin film with extremely good controllability, stable film quality α, and extremely flat film surface could be obtained using the manufacturing method. 2 Furthermore, the present inventors i4 B1-0.5r-Cu-0,
Ca-Cu-0 and B1-3r-Y-Cu-0 were evaporated from separate evaporation sources, and the B1-3rCa-Cu-0 superconducting thin film and the B1-3r-Y-Cu-0 thin film were periodically stacked. Very good controllability (Bi-3r-Ca-Cu
-0) -n (Bi-3r-Y-Cu-0) It was discovered that a thin film having a periodic structure can be formed.9 Here, m and n each represent a positive integer of 1 or more. This m (Bi-3r-Ca-Cu-0) ・n (B
i-3r-Y-Cu-0) thin film was B1 shown in Example 1.
Compared to a thin film obtained by periodically laminating a superconducting thin film obtained by simultaneously depositing -3r-Ca-Cu-0 and an oxide thin film obtained by simultaneously depositing B1-3r-Y-Cu-0. Furthermore, the present inventors (above) also found that B1-3r-
We found that both the Ca-Cu-0 superconducting thin film and the B15r-Y-Cu-0 thin film have extremely flat thin film surfaces. On the other hand, this is thought to be due to the fact that the stacked evaporated elements only move in parallel planes and there is no movement of the elements in the direction perpendicular to the substrate surface.
さらに 良好な超電導特性を得るに必要な基板の温度、
熱処理温度舷 従来より低いことを見いだした
B1−0.5r−Cu−0,Ca−Cu−0,B1−3
r−Y−Cu−0を周期的に積層させる方法として(ミ
いくつか考えられる。Furthermore, the temperature of the substrate required to obtain good superconducting properties,
Heat treatment temperature B1-0.5r-Cu-0, Ca-Cu-0, B1-3 found to be lower than conventional
There are several possible ways to periodically stack r-Y-Cu-0.
一般E、MBE装置あるいは多元のEB蒸着装置で蒸発
源の前を開閉シャッターで制御したり、気相成長法で作
製する際にガスの種類を切り替えたりすることにより、
周期的積層を達成することができも しかしこの種の非
常に薄い層の積層には従来スパッタリング蒸着は不向き
とされてい通その理由(i 成膜中のガス圧の高さに
起因する不純物の混入およびエネルギーの高い粒子によ
るダメージと考えられていも しかしなか教 本発明者
ら(よ このBl系酸化物超電導薄膜に対してスパッタ
リングにより異なる薄い層の積層を行なったとこへ 意
外にも良好な積層膜の製造か可能なことを発見した ス
パッタ中の高い酸素ガス圧およびスパッタ放電力<、B
i系の100に以上の臨界温度を持つ相の形恋 および
B1−3r−Y−Cu−0薄膜の形成に都合がよいため
ではなかろうかと考えられも
スパッタ蒸着で異なる物質を積層させる方法としては
組成分布を設けた1ケのスパッタリングターゲットの放
電位置を周期的に制御するという方法がある力交 組成
の異なる複数個のターゲットのスパッタリングという方
法を用いると比較的簡単に達成することができる。この
場合、複数個のターゲットの各々のスパッタ量を周期的
に制御したり、あるいはターゲットの前にシャッターを
設けて周期的に開閉したりして、周期的積層膜を製造す
ることができる。また基板を周期的に運動させて各々タ
ーゲットの上を移動させる方法でも製造が可能である。By controlling the opening/closing shutter in front of the evaporation source in a general E, MBE device or multi-source EB evaporation device, or by switching the type of gas during production using the vapor phase growth method,
Although it is possible to achieve periodic stacking, sputtering deposition has traditionally been considered unsuitable for this type of stacking of very thin layers. However, the inventors of the present invention discovered that by sputtering different thin layers of this Bl-based oxide superconducting thin film, the laminated film was surprisingly good. We have discovered that it is possible to produce B
This may be because it is convenient for forming a thin film of B1-3r-Y-Cu-0 due to the phase shape of the i-based material, which has a critical temperature of 100 or higher.
This can be achieved relatively easily by using a method of periodically controlling the discharge position of one sputtering target with a composition distribution, or by using a method of sputtering multiple targets with different compositions. In this case, a periodic laminated film can be manufactured by periodically controlling the amount of sputtering for each of a plurality of targets, or by providing a shutter in front of the target and periodically opening and closing it. It is also possible to manufacture the substrate by periodically moving the substrate over each target.
レーザースパッタあるいはイオンビームスパッタを用い
た場合に(よ 複数個のターゲットを周期運動させてビ
ームの照射するタゲットを周期的に変えれ(L 周期的
積層膜か実現されも このように複数個のターゲットを
用いたスパッタリングにより比較的簡単にBl系酸化物
の周期的積層が製造可能となる。When laser sputtering or ion beam sputtering is used, the targets irradiated by the beam can be changed periodically by moving multiple targets periodically. By using the sputtering method used, a periodic stack of Bl-based oxides can be produced relatively easily.
実施例3 次に第6図を用いて他の実施例について説明すム 同図は四元マグネトロンスパッタ装置の構成図を示す。Example 3 Next, another example will be explained using FIG. This figure shows a configuration diagram of a quaternary magnetron sputtering apparatus.
同図において、 61はB1ターゲット、62はS r
Cu合金ターゲット、63はCaCu合金ターゲット、
64はY−Cuターゲット、 65はシャッター 6
6はアパーチャー 67はMg0(100)は基板、
68は基板加熱用ヒーターを示す。計4個のターゲット
61、62、63.64は第1図に示すのと同様に配置
させた 即顎MgO(l o o)基板67に焦点を結
ぶように各ターゲットが約30°傾いて設置されている
。ターゲットの前方には回転するシャッター65があり
、パルスモータで駆動することによりその中に設けられ
たアパーチャー66の回転が制御され各ターゲットのサ
イクルおよびスパッタ時間を設定することができる。M
g0(100)基板67をヒーター68で約600℃に
加熱し アルゴン・酸素(5: 1)混合雰囲気3P
aのガス中で各ターゲットのスパッタリングを行なっ九
各ターゲットのスパッタ電流を、Bi:30 mA、
5rCu:80 mA、 CaCu:300 mA、
YCu: 300 mAにして成膜を行ッf−。In the same figure, 61 is the B1 target, 62 is S r
Cu alloy target, 63 is CaCu alloy target,
64 is Y-Cu target, 65 is shutter 6
6 is the aperture, 67 is Mg0 (100) is the substrate,
68 indicates a heater for heating the substrate. A total of four targets 61, 62, 63, and 64 were arranged in the same manner as shown in Fig. 1. Each target was set at an angle of about 30° so that the focus was on the instant jaw MgO (l o o) substrate 67. has been done. In front of the targets is a rotating shutter 65, which is driven by a pulse motor to control the rotation of an aperture 66 provided therein, thereby making it possible to set the cycle and sputtering time for each target. M
The g0 (100) substrate 67 is heated to approximately 600°C with a heater 68, and the argon/oxygen (5:1) mixed atmosphere 3P
Sputtering was performed on each target in the gas of 9. The sputtering current for each target was Bi: 30 mA, Bi: 30 mA,
5rCu: 80 mA, CaCu: 300 mA,
YCu: Film formation was performed at 300 mA.
Bi−+ 5rCu−+ CaCu−+ 5rCu−+
Biのサイクルでスパッタ1、、 B1−3r−C
a−Cu−0膜の元素の組成比率がBi:Sr:Ca:
Cu−2:2:1:2となるように各ターゲットのスパ
ッタ時間を調整し 上記サイクルを20周期行った結R
lloK以上の臨界温度を持つ相を製造することができ
九 このままの状態でもこのB1−3rCa−Cu−0
薄膜は80に以上の超電導転移を示した力丈さらに酸素
中で600t、 1時間の熱処理を行なうと非常に再
現性よくなり、超電導転移温度は82K、抵抗がゼロに
なる温度は79Kになっt島超電導転移温度が100
Kを超す相は金属元素がBISr−Cu−Ca−Cu−
Ca−Cu−3r−Biの順序で並んだ酸化物の層から
成り立っているきも言われており、本発明の製造方法が
この構造を作るのに非常に役たっているのではないかと
考えられる。Bi-+ 5rCu-+ CaCu-+ 5rCu-+
Sputtering 1, B1-3r-C with Bi cycle
The composition ratio of the elements of the a-Cu-0 film is Bi:Sr:Ca:
The sputtering time of each target was adjusted so that Cu-2:2:1:2, and the above cycle was repeated 20 times.
It is possible to produce a phase with a critical temperature of lloK or higher.9 Even in this state, this B1-3rCa-Cu-0
The thin film showed a superconducting transition of 80°C or higher.Furthermore, heat treatment in oxygen for 600t for 1 hour resulted in very good reproducibility; the superconducting transition temperature was 82K, and the temperature at which resistance became zero was 79K. Island superconducting transition temperature is 100
In the phase exceeding K, the metal element is BISr-Cu-Ca-Cu-
It is also said that the structure consists of layers of oxides arranged in the order Ca-Cu-3r-Bi, and it is thought that the manufacturing method of the present invention is very useful in creating this structure.
また 本発明者らはB1−8r−Y−Cu−0を単独で
成膜したとき膜厚が少なくとも30Å以上で結晶構造を
とることを見いたしtミ
本発明者らはBi→5rCu→CaCu −5rCuの
積層を1周期としてn周期積層しその上にB1−3r−
Y−Cu−0を膜厚d(入)になるよう各ターゲットを
スパッタしn (Bi−3r−Ca−Cu−0) ・
d (Bi−3r−Y−Cu−0)薄膜をMgO(1
00)基板67上に製造し九 ここでnは1以上の正の
整数を示す。本発明者らはn10のとき、B1−3r−
Y−Cu−0薄膜の膜厚dを変化させて積層して得た膜
の超電導特性を調べへ このときB1−3r−Ca−C
u−0薄膜/ B1−3r−Y−Cu−0薄膜の積層繰
り返し回数は10とし1. 第7図にd=60人、
120人、 240人のときに得た多層膜の抵抗の温度
変化をそれぞれ特性71.72、73に示す。第7図に
おいて、 d=60人のとき、最も高い超電導転移温度
およびゼロ抵抗温度が得られ九 超電導転移温度、ゼロ
抵抗温度はB1−3r−Ca−Cu−0膜本来のそれら
の値と同等であっ九 臨界電流密度は77Kにおいて、
360万A / cm2となり、B i2s r2Y
cu20g膜を積層していない薄膜の値より45%高く
なった また 上部臨界磁場はB1−8r−Ca−Cu
−0膜本来のものより約30%向上した 4.2Kにお
いて、 C軸に平行方向に磁場を加えたときの値は23
テスラ、またC#Iに垂直方向では440テスラであっ
た この効果の詳細な理由については未だ不明である力
丈 本実施例に示した方法でB1−3r−Ca−Cu−
0膜とB1−8r−Y−Cu−0膜とを周期的に積層す
ることによって、B1−3r−Ca−Cu−OpとB1
−3r−Y−Cu−0膜がエピタキシャル成長している
ことにより積層界面での元素の相互拡散の影響がなく、
かつ結晶性に優れた薄いB1−3r−Y−Cu−0膜を
介して同じく結晶性に優れたB1−3r−Ca−Cu−
0膜を積層することによりB1−3r−Ca−Cu−0
膜において超電導機構になんらかの変化が引き起こされ
たことが考えられも
さらに 本発明者らはターゲット61、もしくは64に
鉛(Pb)を添加してスパッタしたとき、MgO(10
0)基板67の温度が上記実施例よりも約100℃低く
てL 上記実施例と同等な結果が得られることを見いだ
した
な耘 蒸発法として実施例ではスパッタリング法で説明
したバ 他にMBEn EB法を用いても同等な効果
が得られる。In addition, the present inventors found that when B1-8r-Y-Cu-0 was formed alone, it had a crystal structure when the film thickness was at least 30 Å or more. 5rCu is laminated for n periods as one period, and then B1-3r-
Each target was sputtered with Y-Cu-0 to a film thickness of d (included) n (Bi-3r-Ca-Cu-0).
d (Bi-3r-Y-Cu-0) thin film with MgO(1
00) Manufactured on the substrate 67 9 Here, n represents a positive integer of 1 or more. The present inventors found that when n10, B1-3r-
Investigate the superconducting properties of the films obtained by stacking Y-Cu-0 thin films with varying thicknesses d. At this time, B1-3r-Ca-C
The number of repetitions of stacking the u-0 thin film/B1-3r-Y-Cu-0 thin film was 10.1. In Figure 7, d = 60 people,
The temperature changes in the resistance of the multilayer film obtained when 120 and 240 people were tested are shown in characteristics 71, 72, and 73, respectively. In Figure 7, when d=60, the highest superconducting transition temperature and zero resistance temperature are obtained.9 The superconducting transition temperature and zero resistance temperature are equivalent to those values of the original B1-3r-Ca-Cu-0 film At 9, the critical current density is at 77K.
3.6 million A/cm2, B i2s r2Y
The value was 45% higher than that of the thin film without stacking Cu20g film. Also, the upper critical magnetic field is B1-8r-Ca-Cu
At 4.2K, which is about 30% better than the original -0 film, the value when a magnetic field is applied in a direction parallel to the C axis is 23
tesla, and in the direction perpendicular to C#I, it was 440 tesla.The detailed reason for this effect is still unknown.B1-3r-Ca-Cu-
By periodically stacking the 0 film and the B1-8r-Y-Cu-0 film, B1-3r-Ca-Cu-Op and B1
-3r-Y-Cu-0 film is grown epitaxially, so there is no influence of interdiffusion of elements at the lamination interface,
And B1-3r-Ca-Cu- which also has excellent crystallinity is passed through a thin B1-3r-Y-Cu-0 film which also has excellent crystallinity.
By stacking 0 films, B1-3r-Ca-Cu-0
It is conceivable that some change was caused in the superconducting mechanism in the film.
0) It was found that the temperature of the substrate 67 was about 100°C lower than in the above example, and results equivalent to those in the above example could be obtained. The same effect can be obtained by using the method.
発明の効果
以上のように本発明の超電導薄膜は 従来のBi系超電
導薄膜より臨界電流密度、臨界Fa場などの超電導性の
優れたものであり、その製造方法は従来より低温で製造
でき、デバイス等の製造にも応用できるので、本発明の
工業的価値は犬きl、%Effects of the Invention As described above, the superconducting thin film of the present invention has superior superconductivity such as critical current density and critical Fa field compared to conventional Bi-based superconducting thin films, and its manufacturing method allows it to be manufactured at lower temperatures than conventional ones, and it is suitable for devices. Since the present invention can be applied to the production of products such as
第1図は本発明の実施例における超電導薄膜の製造方法
を実施するための装置の概略構成久 第2図は本発明の
超電導薄膜の構造概念は 第3皿第4図は第1図の装置
により製造した超電導薄膜の抵抗の温度特性匁 第5図
は第1図の装置により製造した超電導薄膜の外部磁場下
における抵抗の温度特性云 第6図は本発明の他の実施
例における超電導薄膜の製造方法を実施するための装置
の概略構成医 第7図は第6図の装置により製造した超
電導薄膜の抵抗の温度特性図である。
11 ・・・・・B i−3r−Ca−Cu−0ターゲ
ツト、 12・・・・・B i−3r−Y−Cu−0タ
ーゲツト、 1 5 −−・−・基板、 2
1 ・・ ・・・ B i−8r −Y −
Cu−0層状酸化物薄yIL 22・・・・・B1−5
r−Ca−Cu−0層状酸化物超電導薄風
代理人の氏名 弁理士 粟野重孝はか1名@l@
r
f3i−5r−Ca−Cu−0ターケソト第
図
基
伝
R/R
(,700に)
圀
電気A詰2
R/R(3oor、)
R/R(300に)
号
第
図
R/
(300に)FIG. 1 shows the schematic structure of an apparatus for carrying out the method for producing a superconducting thin film in an embodiment of the present invention. FIG. 2 shows the structural concept of a superconducting thin film of the present invention. Figure 5 shows the temperature characteristics of the resistance of the superconducting thin film produced by the apparatus shown in Figure 1 under an external magnetic field. 7 is a temperature characteristic diagram of the resistance of the superconducting thin film manufactured by the apparatus shown in FIG. 6. 11...Bi-3r-Ca-Cu-0 target, 12...Bi-3r-Y-Cu-0 target, 15--...substrate, 2
1 ... B i-8r -Y -
Cu-0 layered oxide thin yIL 22...B1-5
Name of r-Ca-Cu-0 layered oxide superconducting thin wind agent Patent attorney Shigetaka Awano @l@r f3i-5r-Ca-Cu-0 Terke Soto Diagram Kiden R/R ) Kunidenki A-zume 2 R/R (3oor,) R/R (to 300) No. R/ (to 300)
Claims (2)
類(IIa族)を主成分とする層状酸化物超電導薄膜と
、Bi、Cu、アルカリ土類(IIa族)および希土類
を主成分とする層状酸化物薄膜が交互に積層された超電
導薄膜。 ここでアルカリ土類はIIa族元素のうちの一種以上の
元素、希土類はプロメチウム(Pm)をのぞくランタノ
イド元素およびIIIa族のスカンジウム(Sc)、イ
ットリウム(Y)のうちの一種以上の元素である。(1) A layered oxide superconducting thin film whose main components are bismuth (Bi), copper (Cu), and alkaline earth (group IIa), and a layered oxide superconducting thin film whose main components are Bi, Cu, alkaline earth (group IIa), and rare earth. A superconducting thin film consisting of alternating layered oxide thin films. Here, the alkaline earths are one or more elements of group IIa elements, and the rare earths are one or more elements of lanthanide elements except promethium (Pm) and scandium (Sc) and yttrium (Y) of group IIIa.
a族)を主成分とする酸化物を周期的に積させて形成す
る層状酸化物超電導薄膜と、Bi、Cu、アルカリ土類
(IIa族)および希土類を主成分とする層状酸化物薄
膜を周期的に積層させて形成する層状酸化物薄膜を、二
種以上の蒸発源を用いて蒸発法で交互に積層させる超電
導薄膜の製造方法 ここでアルカリ土類は、IIa族元素のうちの一種以上
の元素、希土類はPmをのぞくランタノイド元素および
IIIa族のSc、Yのうちの一種以上の元素である。(2) Bi, Cu and alkaline earth (II) on the substrate.
A layered oxide superconducting thin film formed by periodically depositing oxides whose main components are Bi, Cu, alkaline earths (group IIa), and rare earths. A method for producing a superconducting thin film in which layered oxide thin films formed by stacking layers are alternately stacked by an evaporation method using two or more evaporation sources. Here, the alkaline earth is one or more of the group IIa elements. The rare earth element is one or more of the lanthanide elements except Pm and Sc and Y of Group IIIa.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2173488A JPH0465320A (en) | 1990-06-29 | 1990-06-29 | Superconducting thin film and its production |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2173488A JPH0465320A (en) | 1990-06-29 | 1990-06-29 | Superconducting thin film and its production |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0465320A true JPH0465320A (en) | 1992-03-02 |
Family
ID=15961439
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2173488A Pending JPH0465320A (en) | 1990-06-29 | 1990-06-29 | Superconducting thin film and its production |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0465320A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04170322A (en) * | 1990-11-05 | 1992-06-18 | Matsushita Electric Ind Co Ltd | Superconducting thin film and its production |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0350122A (en) * | 1988-04-08 | 1991-03-04 | Toshiba Corp | Insulating composition |
JPH046108A (en) * | 1990-04-21 | 1992-01-10 | Matsushita Electric Ind Co Ltd | Insulator, production of insulating thin film, superconducting thin film and production thereof |
-
1990
- 1990-06-29 JP JP2173488A patent/JPH0465320A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0350122A (en) * | 1988-04-08 | 1991-03-04 | Toshiba Corp | Insulating composition |
JPH046108A (en) * | 1990-04-21 | 1992-01-10 | Matsushita Electric Ind Co Ltd | Insulator, production of insulating thin film, superconducting thin film and production thereof |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04170322A (en) * | 1990-11-05 | 1992-06-18 | Matsushita Electric Ind Co Ltd | Superconducting thin film and its production |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH02145761A (en) | Manufacture of thin superconductor film | |
JP2741277B2 (en) | Thin film superconductor and method of manufacturing the same | |
JPH0465320A (en) | Superconducting thin film and its production | |
JP3037514B2 (en) | Thin film superconductor and method of manufacturing the same | |
JP2733368B2 (en) | Superconducting thin film and method for producing the same | |
JP2669052B2 (en) | Oxide superconducting thin film and method for producing the same | |
JP3025891B2 (en) | Thin film superconductor and method of manufacturing the same | |
JPH0316920A (en) | Oxide superconductive thin film and its production | |
JP3478543B2 (en) | Oxide superconducting thin film and method for producing the same | |
JP2979422B2 (en) | Method of manufacturing insulator and insulating thin film, and method of manufacturing superconducting thin film and superconducting thin film | |
JP2558880B2 (en) | Method for producing copper oxide thin film | |
JPH05170448A (en) | Production of thin ceramic film | |
JP2502744B2 (en) | Method of manufacturing thin film super-electric body | |
EP0643400B1 (en) | Method for making a superconductor thin film | |
JPH0822740B2 (en) | Oxide superconducting thin film and method for producing the same | |
JPH0437609A (en) | Oxide superconducting thin film and its production | |
JPH02122065A (en) | Production of thin film type superconductor | |
JPH0316919A (en) | Superconductive thin film and its production | |
JPH03170333A (en) | Thin filmy super conductor and its preparation | |
JPH0822742B2 (en) | Thin film superconductor and method of manufacturing the same | |
JP2502743B2 (en) | Method of manufacturing thin film superconductor | |
JPH042617A (en) | Oxide superconducting thin film and production thereof | |
JP2866476B2 (en) | Laminated superconductor and manufacturing method thereof | |
JPH0714817B2 (en) | Oxide superconducting thin film and method for producing the same | |
JPH02167827A (en) | Thin-film superconductor |