JPH06104498A - Superconducting element and manufacture thereof - Google Patents

Superconducting element and manufacture thereof

Info

Publication number
JPH06104498A
JPH06104498A JP4250911A JP25091192A JPH06104498A JP H06104498 A JPH06104498 A JP H06104498A JP 4250911 A JP4250911 A JP 4250911A JP 25091192 A JP25091192 A JP 25091192A JP H06104498 A JPH06104498 A JP H06104498A
Authority
JP
Japan
Prior art keywords
electrode
thin film
superconductor
superconducting
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4250911A
Other languages
Japanese (ja)
Inventor
Hiroshi Ichikawa
洋 市川
Toshifumi Sato
利文 佐藤
Akihiro Odakawa
明弘 小田川
Hideaki Adachi
秀明 足立
Kentaro Setsune
謙太郎 瀬恒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP4250911A priority Critical patent/JPH06104498A/en
Publication of JPH06104498A publication Critical patent/JPH06104498A/en
Pending legal-status Critical Current

Links

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To provide a superconducting element whose performance is stable and reproducible by adopting a superconductor-made A electrode and B electrode whose main component comprises at least copper or alkaline earth-made oxide superconductor and making the components of a junction part identical to that of the above insulator. CONSTITUTION:This invention covers a superconductor element which comprises a superconductor-made A electrode 2 installed on a buffer layer 1 in a substrate 7 and a superconductor-made B electrode 3 which faces the A electrode 2 by way of a junction part 4 in a partial area and a contact electrode 6 formed in partial contact with the B electrode 3 and an electrode separation layer 5 which separates the contact electrode 6 from the A electrode 2. The main component of the buffer layer 1 and the junction part 4 is an oxide insulator thin film which includes at least one element, such as calcium(Ca), strontium(Sr), barium(Ba) and the main components of the A electrode 2 and the B electrode 3 consist of at least copper (Cu) and alkaline earth (11a group).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、超伝導応用技術の超伝
導素子、およびその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a superconducting element of superconducting application technology and a manufacturing method thereof.

【0002】[0002]

【従来の技術】近年発見されたBi-Sr-Ca-Cu-O系の
材料はその超伝導転移温度が100K以上の転移温度を
示す[H.Maeda,Y.Tanaka,M.Fukutomi and T.Asano,ジャ
パニーズ・ジャーナル・オブ・アプライド・フィジック
ス(Japanese Journal of Applied Physics)Vol.27,L209
-210(1988)] から、超伝導体の応用分野を大きく広げる
ことになった。
2. Description of the Related Art Bi-Sr-Ca-Cu-O-based materials discovered in recent years have superconducting transition temperatures of 100 K or more [H.Maeda, Y. Tanaka, M. Fukutomi and T. Asano, Japanese Journal of Applied Physics Vol.27, L209
-210 (1988)], the field of application of superconductors was greatly expanded.

【0003】その実用化の一つである超伝導素子につい
て、酸化物超伝導体をふたつに割り、再びわずかに接触
させてジョセフソン素子、酸化物超伝導体を薄膜にし、
小さなくびれをつけたブリッジ型ジョセフソン素子など
が従来から試作されてきた。
Regarding the superconducting device which is one of the practical applications, the oxide superconductor is divided into two parts, and they are slightly contacted again to make the Josephson device and the oxide superconductor into a thin film.
Bridge-type Josephson devices with small constrictions have been prototyped.

【0004】[0004]

【発明が解決しようとする課題】従来から試作されてい
る素子のうち、ポイントコンタクト型と呼ばれる酸化物
超伝導体どうしを接触させるタイプでは再現性が得られ
ず、また特性が不安定であった。また酸化物超伝導体に
くびれをつけたブリッジ型素子では、わずかな静電的シ
ョックで破損するという課題があった。
Among the elements that have been experimentally manufactured in the past, reproducibility was not obtained and characteristics were unstable in the type called point contact type in which oxide superconductors were in contact with each other. . Further, the bridge-type element having a constriction in the oxide superconductor has a problem of being damaged by a slight electrostatic shock.

【0005】そこで酸化物超伝導体を用いた積層接合型
の構造を持つ超伝導素子が望まれているが、非常に薄い
非超伝導層を一面に均質に介在させる接合は作製が難し
く実現が希であり、また再現性よく製造するのも困難と
考えられている。さらに酸化物超伝導体の成膜は比較的
高温で行なうため、接合部の非超伝導層と超伝導電極層
との相互熱拡散による接合の消失や、非超伝導層にピン
ホールができる等の問題があった。
Therefore, a superconducting element having a laminated junction type structure using an oxide superconductor is desired. However, it is difficult to manufacture a junction in which a very thin non-superconducting layer is uniformly present on one surface, and it is difficult to realize it. It is considered to be rare and difficult to manufacture with good reproducibility. Furthermore, since the oxide superconductor is formed at a relatively high temperature, the non-superconducting layer at the joint and the superconducting electrode layer lose their joint due to mutual thermal diffusion, and pinholes are formed in the non-superconducting layer. There was a problem.

【0006】また、超伝導電極層に用いた材料と非超伝
導層の材料の結晶構造の違いによる格子の不整合性など
によって、上部に位置する超伝導電極の結晶性が悪くな
り、その超伝導性が劣化するなどの問題点も指摘されて
いた。さらに超伝導電極層、非超伝導層の表面・界面の
状態は、前記の材料の結晶構造の違いのほか、基体表面
の状態大きく影響していることもわかってきた。すなわ
ち、基体表面の凹凸を反映して基体上に堆積した薄膜の
表面にも同様に凹凸ができてしまう。膜厚1000nm
の薄膜についても基体表面の影響を受けことから、膜厚
数10nm以下の非超伝導層等を平坦に、二次元的に成
長させることは困難であった。
Also, due to the lattice mismatch due to the difference in crystal structure between the material used for the superconducting electrode layer and the material for the non-superconducting layer, the crystallinity of the superconducting electrode located above deteriorates and It has been pointed out that there are problems such as deterioration of conductivity. Furthermore, it has been found that the surface / interface states of the superconducting electrode layer and the non-superconducting layer have a great influence on the state of the substrate surface, in addition to the difference in the crystal structure of the above materials. That is, the surface of the thin film deposited on the base body is also formed to have the surface roughness reflecting the surface roughness of the base body. Film thickness 1000nm
It was difficult to grow a non-superconducting layer having a film thickness of several tens of nm or less flatly and two-dimensionally because the thin film of (1) was affected by the surface of the substrate.

【0007】本発明は、前記従来技術の課題を解決する
ため、安定で均一な非超伝導層が再現性よく得られる超
伝導素子を提供すること、およびその製造方法を提供す
ることを目的とする。
In order to solve the above-mentioned problems of the prior art, it is an object of the present invention to provide a superconducting device in which a stable and uniform non-superconducting layer can be obtained with good reproducibility, and a method for manufacturing the same. To do.

【0008】[0008]

【課題を解決するための手段】前記目的を達成するた
め、本発明の超伝導素子は、基体上に、主成分として少
なくともカルシウム( Ca)、ストロンチウム( Sr)、バ
リウム( Ba)の一種以上の元素を含む酸化物絶縁体薄膜
を堆積させ、前記絶縁体薄膜上に超伝導体からなるA電
極と、前記A電極と接合部を介して一部領域で接する超
伝導体からなるB電極と、前記B電極上の一部に接触し
て形成したコンタクト電極と、前記コンタクト電極と前
記A電極の間を隔てる電極間分離層とからなる超伝導素
子において、超伝導体からなる前記A電極および前記B
電極の主成分が少なくとも銅( Cu)、アルカリ土類( II
a族) から成る酸化物超伝導体であり、前記接合部の主
成分が前記絶縁体の主成分と実質的に同一であることを
特徴とする。(ただしアルカリ土類は、IIa 族元素のう
ちの少なくとも一種の元素を示す。) 次に本発明の超伝導素子の製造方法は、基体上に、主成
分として少なくともカルシウム( Ca)、ストロンチウム
( Sr)、バリウム( Ba)の一種以上の元素を含む酸化物
絶縁体薄膜を堆積させ、前記絶縁体薄膜上に超伝導体か
らなるA電極と、前記A電極と接合部を介して一部領域
で接する超伝導体からなるB電極と、前記B電極上の一
部に接触して形成したコンタクト電極と、前記コンタク
ト電極と前記A電極の間を隔てる電極間分離層とからな
る超伝導素子の製造方法において、前記A電極およびB
電極を、Bi を含む酸化物と、銅およびアルカリ土類
(IIa 族)を含む酸化物とを周期的に積層させ形成する
ことを特徴とする。(ただしアルカリ土類は、IIa 族元
素のうちの少なくとも一種の元素を示す。) 前記製造方法においては、基体の温度を300℃から7
00℃にすることが好ましい。
In order to achieve the above object, the superconducting element of the present invention comprises, on a substrate, at least one of calcium (Ca), strontium (Sr) and barium (Ba) as main components. An oxide insulator thin film containing an element is deposited, an A electrode made of a superconductor on the insulator thin film, and a B electrode made of a superconductor in contact with the A electrode in a partial region via a junction, A superconducting device comprising a contact electrode formed in contact with a part of the B electrode, and an electrode separation layer separating the contact electrode and the A electrode, wherein the A electrode made of a superconductor and the B
The main component of the electrode is at least copper (Cu), alkaline earth (II
It is an oxide superconductor made of a group a), wherein the main component of the junction is substantially the same as the main component of the insulator. (However, alkaline earth refers to at least one element of the IIa group elements.) Next, in the method for producing a superconducting device of the present invention, at least calcium (Ca), strontium as a main component is formed on the substrate.
(Sr), an oxide insulator thin film containing one or more elements of barium (Ba) is deposited, and an A electrode made of a superconductor is formed on the insulator thin film, and a part is formed through a junction with the A electrode. A superconducting device including a B electrode made of a superconductor in contact with a region, a contact electrode formed in contact with a part of the B electrode, and an electrode separation layer separating the contact electrode and the A electrode. In the manufacturing method of
The electrode is characterized in that it is formed by periodically stacking an oxide containing Bi and an oxide containing copper and an alkaline earth (group IIa). (However, alkaline earth refers to at least one element of the IIa group elements.) In the above-mentioned manufacturing method, the temperature of the substrate is from 300 ° C to 7 ° C.
It is preferably set to 00 ° C.

【0009】また前記製造方法においては、蒸発をスパ
ッタリングで行なうことが好ましい。また前記製造方法
においては層物質の蒸発を少なくとも二種以上の蒸発源
で行うことが好ましい。
In the above manufacturing method, it is preferable that the evaporation is performed by sputtering. Further, in the above-mentioned manufacturing method, it is preferable that the layer material is evaporated by at least two kinds of evaporation sources.

【0010】[0010]

【作用】前記本発明の構成によれば、超伝導体からなる
前記A電極および前記B電極の主成分が少なくとも銅(
Cu)、アルカリ土類( IIa族) から成る酸化物超伝導体
であり、前記接合部の主成分を前記絶縁体の主成分と実
質的に同一とすることにより、安定で均一な非超伝導層
が再現性よく得られる。すなわち、Ca1-x-y Srx
y Oは格子定数が酸化物超伝導体のa軸、b軸のそれ
に近く、NaCl型の単純立方格子構造の結晶構造を有
する絶縁体であり、融点が2000℃程度と高く、またその
結晶格子定数はxおよびyを変え、連続的に変えること
ができる。またこの種の材料は固相反応しやすく、基体
上に堆積することによって基体の凹凸を埋めるように成
長し、きわめて平坦な表面を提供するので基体上に形成
したCa1-x-y Srx Bay O絶縁体薄膜上には表面平
坦性に優れ、結晶粒界の少ない酸化物超伝導薄膜がエピ
タキシャル界面を容易に得ることができ、結果的に熱的
に安定で構成元素の相互拡散のない超伝導層と非超伝導
層の界面を形成でき、良好な電流電圧特性を示す超伝導
素子が形成できる。
According to the structure of the present invention, the main components of the A and B electrodes made of a superconductor are at least copper (
Cu), an alkaline earth (group IIa) oxide superconductor, and by making the main component of the junction substantially the same as the main component of the insulator, a stable and uniform non-superconductor Layers are obtained with good reproducibility. That is, Ca 1-xy Sr x B
a y O is an insulator having a lattice constant close to that of the a- and b-axes of an oxide superconductor and having a crystal structure of NaCl type simple cubic lattice structure, and has a high melting point of about 2000 ° C. and its crystal The lattice constant can be changed continuously by changing x and y. Further, this kind of material is liable to undergo a solid phase reaction, and when deposited on the substrate, it grows so as to fill the irregularities of the substrate and provides an extremely flat surface, so that Ca 1-xy Sr x Ba y formed on the substrate is formed. An oxide superconducting thin film with excellent surface flatness and few crystal grain boundaries on the O insulator thin film can easily obtain an epitaxial interface, and as a result, it is thermally stable and does not have a mutual diffusion of constituent elements. An interface between the conductive layer and the non-superconducting layer can be formed, and a superconducting element exhibiting excellent current-voltage characteristics can be formed.

【0011】さらに本発明の製造方法の構成によれば、
基体上にCa1-x-y Srx Bay O絶縁体薄膜を形成さ
せ、その上に少なくともBi を含む酸化物と、少なくと
も銅およびアルカリ土類(IIa 族)を含む酸化物とCa
1-x-y Srx Bay O薄膜とを、周期的に積層させて分
子レベルの制御による薄膜の作製を行うことによって、
再現性良くBi 系超伝導薄膜層とCa1-x-ySrxBayO絶
縁薄膜層との積層が得られ、高品質の超伝導素子が得ら
れる。
Further, according to the structure of the manufacturing method of the present invention,
A Ca 1-xy Sr x Bay y O insulator thin film is formed on a substrate, and an oxide containing at least Bi, an oxide containing at least copper and alkaline earth (group IIa), and Ca are formed on the insulator.
By periodically laminating a 1-xy Sr x Bay y O thin film and producing a thin film by controlling the molecular level,
The Bi-based superconducting thin film layer and the Ca1-x-ySrxBayO insulating thin film layer can be laminated with good reproducibility, and a high-quality superconducting device can be obtained.

【0012】[0012]

【実施例】以下実施例を用いて本発明をさらに具体的に
説明する。通常、酸化物超伝導薄膜は400 〜700 ℃に加
熱した基体上に蒸着して得る。蒸着後、そのままでも薄
膜は超伝導特性を示すが、その後700 〜950 ℃の熱処理
を施し、超伝導特性を向上させる。
EXAMPLES The present invention will be described in more detail with reference to the following examples. Usually, the oxide superconducting thin film is obtained by vapor deposition on a substrate heated to 400 to 700 ° C. After vapor deposition, the thin film shows superconducting properties as it is, but it is then heat-treated at 700-950 ℃ to improve the superconducting properties.

【0013】しかしながら、通常、膜厚が100 nm以下
の酸化物超伝導薄膜については、バルク焼成体とほぼ等
しい超伝導転移温度を示すが、ゼロ抵抗温度がバルク焼
成体の場合より低い。例えば、Bi-Sr-Ca-Cu-O系の
超伝導体はバルク焼成体ではゼロ抵抗温度が105 K程度
であるのに対し、膜厚数10nmの薄膜では最高80Kであ
った。基体上に酸化物超伝導薄膜を形成した場合、基体
と薄膜との界面で基体の元素が薄膜に拡散し、薄膜の結
晶構造を破壊していることがわかった。Bi-Sr-Ca-C
u-O系超伝導体結晶のa軸( またはb軸) 長にそれが比
較的近いと考えられるLa Ga O3 ( a=0.5482 nm、
b=0.5526 nm、Bi-Sr-Ca-Cu-O系ではa=0.54 n
m) を基体として選んだ場合、界面でGa がBi-Sr-C
a-Cu-O薄膜へ拡散しその距離は約50nmであった。実
験によるとBi-Sr-Ca-Cu-O薄膜の膜厚が約100 nm
以下の薄膜では、一様に超伝導転移温度がバルク焼成体
より低かった。このような現象はどの様な基体を選んで
も起こる。一般に酸化物超伝導薄膜の形成方法は次の3
つに大別される。すなわち、(1) 薄膜を加熱温度400 ℃
以下の基体上に( アモルファス状態で) 堆積させ、後に
結晶化温度以上の雰囲気にて熱処理を施す、(2) 結晶化
温度で基体上に薄膜を堆積する、(3) 結晶化温度以上に
加熱した基体上に薄膜を堆積し、後に熱処理を施す。
However, normally, an oxide superconducting thin film having a film thickness of 100 nm or less has a superconducting transition temperature almost equal to that of the bulk fired body, but the zero resistance temperature is lower than that of the bulk fired body. For example, the Bi-Sr-Ca-Cu-O-based superconductor has a zero resistance temperature of about 105 K in the bulk fired body, whereas it has a maximum resistance of 80 K in a thin film having a thickness of several 10 nm. It was found that when an oxide superconducting thin film was formed on a substrate, the element of the substrate diffused into the thin film at the interface between the substrate and the thin film, destroying the crystal structure of the thin film. Bi-Sr-Ca-C
La Ga O 3 (a = 0.5482 nm, which is considered to be relatively close to the a-axis (or b-axis) length of u-O superconductor crystal,
b = 0.5526 nm, a = 0.54 n in Bi-Sr-Ca-Cu-O system
When m) is selected as the substrate, Ga is Bi-Sr-C at the interface.
It diffused into the a-Cu-O thin film and the distance was about 50 nm. According to the experiment, the film thickness of Bi-Sr-Ca-Cu-O thin film is about 100 nm.
In the following thin films, the superconducting transition temperature was uniformly lower than that of the bulk fired body. Such a phenomenon occurs even if any substrate is selected. Generally, the method for forming an oxide superconducting thin film is as follows.
It is roughly divided into two. That is, (1) heating the thin film to 400 ℃
Deposit on the following substrates (in amorphous state), then heat-treat in an atmosphere above the crystallization temperature, (2) deposit a thin film on the substrate at the crystallization temperature, (3) heat above the crystallization temperature A thin film is deposited on the formed substrate, and heat treatment is performed later.

【0014】しかしながら、前記(1) 、(3) の方法では
薄膜を結晶化温度(500℃) 以上に基体温度を加熱するた
め、基体の凹凸を反映した結晶粒界の多い薄膜が形成さ
れたり、(2) 、(3) の方法では薄膜堆積時の基体温度が
高いために基体・薄膜間で元素の相互拡散が生じること
が、検討実験で明らかになった。このような問題は酸化
物超伝導薄膜の形成・結晶化温度を下げることで回避で
きるが、N2 O、NO 2 、オゾン、酸素ラジカルを基体
に吹き付けながら薄膜を形成するなどして、結晶化温度
を下げても、基板の凹凸、蒸着粒子のエネルギーの高さ
などから結晶性に優れた膜厚数10nmの酸化物超伝導薄
膜は得ることができなかった。そこで、基体上に酸化物
超伝導薄膜を基体・酸化物超伝導薄膜間の界面で元素の
相互拡散の無いエピタキシャル成長を実現するため、基
体上にエピタキシャル成長し、さらにその上に酸化物超
伝導薄膜がエピタキシャル成長するバッファーの絶縁膜
の探索検討を行い本発明に至ったのである。
However, in the above methods (1) and (3),
The thin film was heated to the crystallization temperature (500 ° C) or higher
Therefore, a thin film with many crystal grain boundaries reflecting the irregularities of the substrate is formed.
Or (2) and (3), the substrate temperature during thin film deposition
Mutual diffusion of elements occurs between the substrate and thin film due to its high
However, it became clear in the examination experiment. Such problems are oxidation
It can be avoided by lowering the crystallization temperature of the superconducting thin film
Can, N2O, NO 2Base on ozone, oxygen radicals
Crystallization temperature by forming a thin film while spraying on
Even if the temperature is lowered, the unevenness of the substrate and the high energy of vapor deposition particles
Oxide superconducting thin film with a film thickness of 10 nm and excellent crystallinity
No membrane could be obtained. So oxide on the substrate
If the superconducting thin film is used as a base and the oxide superconducting thin film
In order to achieve epitaxial growth without mutual diffusion,
Epitaxial growth on the body
Insulating film of buffer where conductive thin film grows epitaxially
The present invention has been accomplished by conducting a search and examination.

【0015】まず、Ca O、Sr O、Ba Oの材料が高
融点で、安定であり、( Ca ,Sr,Ba)- Oについて
はCa 、Sr 、Ba の比率を変えることにより結晶の格
子定数を自在に変化させることができることに着目し、
超伝導転移温度が液体窒素温度以上であり、超伝導素子
として実用化に有望であるBi-Sr-Ca-Cu-O超伝導薄
膜用の基体上の絶縁膜としての検討を行なった。
First, CaO, SrO, and BaO materials have a high melting point and are stable. For (Ca, Sr, Ba) -O, the crystal lattice constant is changed by changing the ratio of Ca, Sr, and Ba. Focusing on the ability to change
The superconducting transition temperature was higher than the liquid nitrogen temperature, and it was studied as an insulating film on a substrate for a Bi-Sr-Ca-Cu-O superconducting thin film, which is promising for practical use as a superconducting device.

【0016】図1に( Ca ,Sr ,Ba)0結晶の構造概
略図を示す。結晶は単純立方格子でNa Cl 構造を持
ち、Sr Oの場合a=0.514nmであり、融点2460℃、熱
膨張係数11×10-6/℃である。主に、格子定数はSr2+
をCa2+またはBa2+で一部置換することによって、変
化させることができる。Ca O、Sr O、Ba Oを単独
に、あるいは固溶体を電子ビーム加熱し、蒸発させMg
O基体上に堆積させ、その結晶性をX線回折法、電子線
回折法にて解析、検討した。その結果、この種の材料は
600 〜800 ℃の形成温度で結晶化することがわかった。
また、Bi 系を初めとする酸化物高温超伝導体結晶のa
軸、b軸長はほぼ0.54nmであることから、この種の材
料を絶縁膜として考えた場合、a軸長がそれぞれ0.514
nm、0.5542nmのSr O、Ba Oを固相反応的に組み
合わせれば、酸化物超伝導薄膜に最適な絶縁膜の形成が
実現できるものと考え、Sr1-x Bax Oのxによる結
晶構造の変化を実験検討した結果、Sr1-x Bax Oは
x=0〜1に対してa軸長が0.514 〜0.554 nmの間で
連続的に変化することがわかった。またこの絶縁材料を
バッファー層として基体上に形成し、さらにその上に超
伝導薄膜を形成した場合、バッファー層を形成しない場
合に比べ超伝導薄膜の表面平坦性がきわめて優れてお
り、結晶粒界が少ないことがわかった。
FIG. 1 shows a schematic diagram of the structure of a (Ca, Sr, Ba) 0 crystal. The crystal has a simple cubic lattice and a NaCl structure, a = 0.514 nm in the case of SrO, a melting point of 2460 ° C, and a thermal expansion coefficient of 11 x 10 -6 / ° C. Mainly, the lattice constant is Sr 2+
Can be changed by partially substituting Ca 2+ or Ba 2+ . CaO, SrO, and BaO are used alone, or the solid solution is heated by electron beam to evaporate Mg.
It was deposited on an O substrate, and its crystallinity was analyzed and examined by an X-ray diffraction method and an electron diffraction method. As a result, this kind of material
It was found to crystallize at a forming temperature of 600-800 ° C.
In addition, a of a high temperature oxide superconductor crystal such as Bi system
Since the axial length and the b-axis length are approximately 0.54 nm, when considering this kind of material as an insulating film, the a-axis length is 0.514 nm.
nm, Sr O of 0.5542Nm, Combine Ba O solid-phase reaction, the thought that the formation of the optimum insulating film to the oxide superconductor thin film can be achieved, crystals by x of Sr 1-x Ba x O As a result of an experimental examination of the change in structure, it was found that Sr 1-x Ba x O continuously changes in the a-axis length of 0.514 to 0.554 nm for x = 0 to 1. In addition, when this insulating material is formed as a buffer layer on a substrate and a superconducting thin film is further formed on it, the surface flatness of the superconducting thin film is extremely superior to the case where no buffer layer is formed. It turns out that there are few.

【0017】以下さらに具体的実施例を説明する。前段
階の実験としては、( Ca ,Sr ,Ba)O薄膜形成を電
子ビーム蒸着法にて行ったが、Bi 系超伝導薄膜を形成
するために、イオンビームスパッタ法を用い実験を行っ
た。
A more specific embodiment will be described below. In the previous experiment, the (Ca, Sr, Ba) O thin film was formed by the electron beam evaporation method, but the ion beam sputtering method was used to form the Bi-based superconducting thin film.

【0018】まず、A電極、およびB電極として用いる
Bi 系超伝導薄膜と接合部との積層構造を実現するた
め、Bi 系超伝導薄膜と種々の絶縁体膜との相互作用に
ついて検討した。
First, in order to realize a laminated structure of the Bi type superconducting thin film used as the A electrode and the B electrode and the junction, the interaction between the Bi type superconducting thin film and various insulating films was examined.

【0019】通常、Bi 系超伝導薄膜は600 〜700 ℃に
加熱した基体上に蒸着して得る。蒸着後、そのままでも
薄膜は超伝導特性を示すが、その後850 〜950 ℃の熱処
理を施し、超伝導特性を向上させる。
Usually, the Bi type superconducting thin film is obtained by vapor deposition on a substrate heated to 600 to 700 ° C. After vapor deposition, the thin film shows superconducting properties as it is, but it is then heat-treated at 850-950 ℃ to improve the superconducting properties.

【0020】しかしながら、基体温度が高い時に絶縁体
膜をBi 系超伝導薄膜に続いて積層したり、絶縁体膜を
形成後熱処理を行った場合、超伝導膜と絶縁体膜との間
で、元素の相互拡散が起こり超伝導特性が大きく劣化す
ることが判明した。相互拡散を起こさないためには、超
伝導膜、絶縁体膜の結晶性が優れていること、超伝導膜
・絶縁体膜間での格子の整合性が優れていること、絶縁
体膜が850 〜950 ℃の熱処理に対して安定であることが
不可欠と考えられる。
However, when an insulator film is successively laminated on the Bi-based superconducting thin film when the substrate temperature is high, or when heat treatment is performed after the insulator film is formed, a heat treatment is performed between the superconducting film and the insulator film. It was found that mutual diffusion of elements occurred and the superconducting properties were significantly deteriorated. In order to prevent mutual diffusion, the crystallinity of the superconducting film and the insulating film is excellent, the lattice matching between the superconducting film and the insulating film is excellent, and the insulating film is 850 It is considered essential to be stable to heat treatment at ~ 950 ° C.

【0021】種々の検討を行った結果、主成分に少なく
ともカルシウム( Ca)、ストロンチウム( Sr)、バリウ
ム( Ba)の一種以上の元素を含む酸化物絶縁体薄膜が絶
縁体膜として適していることを見いだした。この理由と
して、Ca1-x-y Srx Ba y Oは格子定数が酸化物超
伝導体のa軸、b軸のそれに近く、Bi 系超伝導薄膜と
の結晶の格子整合性が良いこと、NaCl型の単純立方
格子構造の結晶構造を有する絶縁体であり、融点が2000
℃程度と高く、熱的にきわめて安定であることが考えら
れる。
As a result of conducting various studies,
Tomo Calcium (Ca), Strontium (Sr), Baliu
The oxide insulator thin film containing one or more elements of Ba
It has been found that it is suitable as a limbal membrane. With this reason
And Ca1-xySrxBa yO has a lattice constant higher than that of oxide
Near the a-axis and b-axis of the conductor, the Bi-based superconducting thin film
Has good lattice matching of crystals, NaCl type simple cubic
An insulator with a lattice-structured crystal structure and a melting point of 2000
It is thought to be as high as ℃ and extremely stable thermally.
Be done.

【0022】実施例1 図2は本発明の実施例である超伝導素子の断面図を示
す。また図3はこの超伝導素子の製造方法を示すプロセ
ス図である。図3aにおいて、まず、Mg O基板を基体
7に用い、rfマグネトロンスパッタリング法によって
厚さ10nmのSr0.3 Ba0.7 O薄膜のバッファー層
1を堆積し、さらに厚さ300nmのBi 2 Sr2 Ca
Cu2 8 をA電極2としてrfマグネトロンスパッタ
法で作製した。この膜はc軸配向薄膜で、超伝導転移温
度は80Kであった。A電極2を成膜後、引き続いて接
合部4としてSr0.3 Ba0.7 O薄膜をrfマグネトロ
ンスパッタ法により50nm堆積させ、さらにB電極3
としてA電極2と同様にBi 2 Sr2 CaCu2 8
をrfマグネトロンスパッタリング法により300nm
堆積させた(図3b)。A電極2、およびB電極3の作
製雰囲気は、酸素アルゴンの1: 1混合ガス雰囲気中
で、Bi2.5 Sr2 CaCu2.5 8+x をターゲットと
してスパッタを行い、基体温度650℃で作製した。バ
ッファー1、および接合部4堆積時の基体温度は650
℃でターゲットとしてSr :Ba =3:7のSr-Ba-O
焼成体を用いた。接合部4、およびB電極3はc軸配向
薄膜で、B電極3の超伝導転移温度は80Kであった。
その後、ネガレジストを用いたフォトリソグラフィーお
よびイオンミリングによりにより超伝導素子形状を形成
し(図3c)、ネガレジストを除去し、電極間分離層5
として1ミクロンメータのCaF2 を真空蒸着により堆
積後、スピンオングラス9をスピンコートし表面を平坦
化した(図3d)。さらにA電極表面が現れるまでイオ
ンミリングによって表面を削った(図3e)。最後に、
2 ガスプラズマに曝すことにより露出したB電極表面
のエッチングによるダメージを回復した後、メタルマス
クを用いコンタクト電極として500nmのPt膜6を
rfマグネトロンスパッタリング法により堆積させ超伝
導素子を完成させた(図3f)。図4にこの超伝導素子
の50Kでの電流電圧特性を示す。150マイクロアン
ペアの超伝導トンネル電流が流れ、またヒステリシスを
持つ超伝導トンネル素子として動作した。このことか
ら、ふたつの超伝導電極の接合部には抵抗の高い非超伝
導層ができており、その層のトンネル電流が観測された
ことが確認された。すなわち本発明により、安定で一様
な積層型の接合を容易に実現することができるようにな
った。このことは、およそ次のように考えられる。すな
わち、Sr-Ba-O薄膜のバッファー層1が基体7表面の
凹凸を埋めるようにエピタキシャル成長し、表面平坦性
に優れたA電極2を作製できたために、接合部4、B電
極3も結晶性、表面・界面が安定に作製できたことによ
るものと考えられる。
Example 1 FIG. 2 is a sectional view of a superconducting device which is an example of the present invention.
You Further, FIG. 3 is a process showing a method of manufacturing the superconducting device.
It is a diagram. In FIG. 3a, first, a MgO substrate is used as a substrate.
Used for No. 7, by rf magnetron sputtering method
10 nm thick Sr0.3Ba0.7O thin film buffer layer
1 is deposited, and then Bi having a thickness of 300 nm is deposited. 2Sr2Ca
Cu2O8Rf magnetron sputtering with A electrode 2
It was produced by the method. This film is a c-axis oriented thin film and has a superconducting transition temperature.
The degree was 80K. After the A electrode 2 is formed, contact is continued.
Sr as joint part 40.3Ba0.7O thin film by rf magnetro
50 nm is deposited by the sputtering method, and the B electrode 3
As in the case of the A electrode 2, Bi 2Sr2CaCu2O8film
To 300 nm by rf magnetron sputtering
It was deposited (Fig. 3b). Production of A electrode 2 and B electrode 3
The production atmosphere is a 1: 1 mixed gas atmosphere of oxygen and argon.
And Bi2.5Sr2CaCu2.5O8 + xTarget
Then, sputtering was performed and the substrate was manufactured at a temperature of 650 ° C. Ba
The substrate temperature during the deposition of the buffer 1 and the bonding portion 4 is 650.
Sr: Ba = 3: 7 Sr-Ba-O as a target at ℃
A fired body was used. The junction 4 and the B electrode 3 are c-axis oriented
As a thin film, the B electrode 3 had a superconducting transition temperature of 80K.
After that, photolithography using a negative resist
And shape of superconducting element by ion milling
(FIG. 3c), the negative resist is removed, and the interelectrode separation layer 5 is formed.
As 1 micron CaF2By vacuum evaporation
After loading, spin-on glass 9 is spin-coated to make the surface flat
(Fig. 3d). Further until the A electrode surface appears,
The surface was scraped by milling (Fig. 3e). Finally,
O2B electrode surface exposed by exposure to gas plasma
After recovering the damage caused by the
A 500 nm Pt film 6 as a contact electrode
rf magnetron sputtering method for superconducting
The conducting element was completed (Fig. 3f). Figure 4 shows this superconducting device.
Shows the current-voltage characteristics at 50K. 150 micron
A pair of superconducting tunnel currents flow, and hysteresis
It operated as a superconducting tunnel element. This thing
, A high resistance non-superconducting material at the junction of the two superconducting electrodes.
A conducting layer is formed, and the tunnel current in that layer was observed.
It was confirmed. That is, according to the present invention, it is stable and uniform.
Easy stacking type
It was. This can be considered as follows. sand
That is, the buffer layer 1 of the Sr-Ba-O thin film is formed on the surface of the substrate 7.
Epitaxial growth to fill irregularities, surface flatness
Since the excellent A electrode 2 was produced,
Pole 3 also has crystallinity and stable surface and interface.
It is considered to be one.

【0023】さらに、Bi-Sr-Ca-Cu-O超伝導体がB
2 2 酸化物層がSr-Ca-Cu-Oからなる構造体を挟
み込んだ層状構造であることに着目し、超伝導素子の製
造方法の発明に至った。
Further, the Bi-Sr-Ca-Cu-O superconductor is B
Focusing on the fact that the i 2 O 2 oxide layer has a layered structure in which a structure made of Sr—Ca—Cu—O is sandwiched, the invention of the method for manufacturing a superconducting element has been achieved.

【0024】すなわち、A電極およびB電極をBi の酸
化物と、Sr 、Ca 、Cu の酸化物を異なる蒸発源から
真空中で別々に蒸発させ、Sr-Ba-Oバッファー層上あ
るいはSr-Ba-O接合部上にBi-O→Sr-Cu-O→Ca-
Cu-O→Sr-Cu-O→Bi-Oの順で周期的に積層させた
とき、(実施例1)に示した作製方法より格段に制御性
良く、安定した膜質の、しかも膜表面が極めて平坦なB
i-Sr-Ca-Cu-O薄膜、ならびにSr-Ba-O接合部を有
効に積層形成できることを見いだした。
That is, for the A electrode and the B electrode, the oxide of Bi and the oxides of Sr, Ca, and Cu are separately evaporated in vacuum from different evaporation sources, and then the Sr-Ba-O buffer layer or Sr-Ba is evaporated. Bi-O → Sr-Cu-O → Ca- on the -O junction
When the layers are periodically laminated in the order of Cu-O->Sr-Cu-O-> Bi-O, the controllability is far better than that of the manufacturing method shown in (Example 1), the film quality is stable, and the film surface is Extremely flat B
It was found that the i-Sr-Ca-Cu-O thin film and the Sr-Ba-O junction can be effectively laminated.

【0025】それぞれ層状構造を構成する異なる元素を
別々に順次積層していくことにより、基体表面、バッフ
ァー層、あるいは接合部層に対し平行な面内だけで積層
された蒸着元素が動くだけで、基体表面に対し垂直方向
への元素の移動がないことによるものと考えられる。さ
らに、Sr-Ba-Oの結晶のa 軸の長さは、Bi-Sr-Ca-
Cu-Oのそれとほぼ等しく、基体表面の凹凸がSr-Ba-
Oバッファー層で緩和され平坦になっており、続くBi-
Sr-Ca-Cu-O層、Sr-Ba-O接合部層、Bi-Sr-Ca-
Cu-O層がすべて二次元的に連続的にエピタキシャル成
長が可能であることによるものと考えられる。
By sequentially laminating the different elements constituting the layered structure separately, the vapor deposition elements that are laminated only within the plane parallel to the substrate surface, the buffer layer, or the bonding layer move. It is considered that this is because there is no movement of elements in the direction perpendicular to the substrate surface. Furthermore, the length of the a-axis of Sr-Ba-O crystals is Bi-Sr-Ca-
Almost the same as that of Cu-O, and the unevenness of the substrate surface is Sr-Ba-
It is relaxed and flattened in the O buffer layer, followed by Bi-
Sr-Ca-Cu-O layer, Sr-Ba-O junction layer, Bi-Sr-Ca-
It is considered that all of the Cu-O layers can be epitaxially grown two-dimensionally continuously.

【0026】さらに以外にも、良好な超伝導特性を得る
に必要な基体の温度、熱処理温度も、従来より低いこと
を見いだした。Bi-O、Sr-Cu-O、Ca-Cu-O、Sr-
Ba-Oを周期的に積層させる方法としては、いくつか考
えられる。一般に、MBE装置あるいは多元のEB蒸着
装置で蒸発源の前を開閉シャッターで制御したり、気相
成長法で作製する際にガスの種類を切り替えたりするこ
とにより、周期的積層を達成することができる。しかし
この種の非常に薄い層の積層には従来スパッタリング蒸
着は不向きとされていた。この理由は、成膜中のガス圧
の高さに起因する不純物の混入およびエネルギーの高い
粒子によるダメージと考えられている。しかしながら、
このBi 系酸化物超伝導体に対してスパッタリングによ
り異なる薄い層の積層を行なったところ、以外にも良好
な積層膜作製が可能なことを発見した。スパッタ中の高
い酸素ガス圧およびスパッタ放電が、Bi 系の100K
以上の臨界温度を持つ相の形成、およびSr-Ba-O絶縁
体膜の形成に都合がよいためと考えられる。
In addition to the above, it was found that the temperature of the substrate and the heat treatment temperature required for obtaining good superconducting properties are lower than those of the conventional ones. Bi-O, Sr-Cu-O, Ca-Cu-O, Sr-
There are several possible methods for stacking Ba-O periodically. In general, periodic stacking can be achieved by controlling the opening and closing shutters in front of the evaporation source in an MBE apparatus or a multi-source EB vapor deposition apparatus, or by switching the type of gas during the vapor phase growth method. it can. However, sputtering deposition has hitherto been unsuitable for stacking very thin layers of this type. The reason for this is considered to be contamination of impurities due to high gas pressure during film formation and damage by particles having high energy. However,
When different thin layers were laminated on this Bi-based oxide superconductor by sputtering, it was discovered that a favorable laminated film can be produced. High oxygen gas pressure and sputtering discharge during sputtering are 100K of Bi system.
It is considered that it is convenient for the formation of the phase having the above critical temperature and the formation of the Sr-Ba-O insulator film.

【0027】スパッタ蒸着で異なる物質を積層させる方
法としては、組成分布を設けた1ケのスパッタリングタ
ーゲットの放電位置を周期的に制御するという方法があ
るが、組成の異なる複数個のターゲットのスパッタリン
グという方法を用いると比較的簡単に達成することがで
きる。この場合、複数個のターゲットの各々のスパッタ
量を周期的に制御したり、あるいはターゲットの前にシ
ャッターを設けて周期的に開閉したりして、周期的積層
膜を作製することができる。また基板を周期的運動させ
て各々ターゲットの上を移動させる方法でも作製が可能
である。レーザースパッタあるいはイオンビームスパッ
タを用いた場合には、複数個のターゲットを周期運動さ
せてビームの照射するターゲットを周期的に変えれば、
周期的積層膜が実現される。このように複数個のターゲ
ットを用いたスパッタリングにより比較的簡単にBi 系
酸化物の周期的積層が作製可能となる。
As a method of stacking different substances by sputter deposition, there is a method of periodically controlling the discharge position of one sputtering target provided with a composition distribution, which is called sputtering of a plurality of targets having different compositions. This can be achieved relatively easily using the method. In this case, the sputtering amount of each of the plurality of targets can be periodically controlled, or a shutter can be provided in front of the target to periodically open and close the target to form a periodic laminated film. It can also be manufactured by a method in which the substrate is moved cyclically and moved over each target. When laser sputtering or ion beam sputtering is used, if multiple targets are moved periodically and the beam irradiation target is changed periodically,
A periodically laminated film is realized. As described above, the periodic stacking of Bi-based oxides can be relatively easily manufactured by sputtering using a plurality of targets.

【0028】実施例2 図5に本実施例で用いた3元マグネトロンスパッタ装置
の概略図を示す。図5において、10はBi-O焼成ター
ゲット、11はSr-Ca-Cu-O焼成ターゲット、12は
Sr-Ba-O焼成ターゲット、13、14、15はシャッ
ター、16はMg O基体、17は基体加熱用ヒーターを
示す。計3個のターゲット10、11、12は図5に示
すように配置させた。即ち、Mg O(100)基体16
に焦点を結ぶように各ターゲットが約30°傾いて設置
されている。シャッター13、14、15を開閉するこ
とによりスパッタ時間を自在に設定することができる。
基体16をヒーター17で約600℃に加熱し、アルゴ
ン・酸素(5:1)混合雰囲気3Pa のガス中で各ター
ゲットのスパッタリングを行なった。また酸素ガスにお
いてはオゾンガスを導入し、その比率を変えた。各ター
ゲットへの注入高周波電力を、Bi-O: 30W、Sr-C
a-Cu-O:50W、Sr-Ba-O:50Wにして実験を行
った。Bi-O→Sr-Ca-Cu-O→Bi-Oのサイクルでス
パッタし、Bi-Sr-Ca-Cu-O膜の元素の組成比率がB
i:Sr:Ca:Cu=2:2:2:3 となるようにターゲットの組成
を調整し、上記サイクルを20周期行った結果、100
K以上の臨界温度を持つ相を作製することができた。ま
た、Sr-Ba-O薄膜中の組成比はSr :Ba =3:7に
なるようにターゲットの組成を変えて調整した。さらに
バッファー層→A電極→接合部→B電極を上記の方法で
Sr-Ba-O→Bi-Sr-Ca-Cu-O→Sr-Ba-O→Bi-S
r-Ca-Cu-Oを連続的に積層することができた。さらに
バッファー層・A電極・接合部・B電極積層後、超伝導
素子を(実施例1)に従って作成したところ、図4とほ
ぼ同様な電流電圧特性が80Kで得られた。これは製造
方法が有効に寄与していることを考えられる。すなわ
ち、バッファー層を基体上に形成し、Bi-Sr-Ca-Cu-
O薄膜を二次元的な層状に形成することにより、さらに
バッファー層上に形成したA電極と接合部あるいは接合
部とB電極の界面が極めて安定であり、また平坦性に優
れていることがおり、Bi-Sr-Ca-Cu-O薄膜( A電
極) 上にSr-Ba-O( 接合部) 、あるいはSr-Ba-O薄
膜( 接合部) 上にBi-Sr-Ca-Cu-O薄膜( B電極) が
連続的にエピタキシャル成長しており、電極・接合部間
での元素の相互拡散がなく、Bi-Sr-Ca-Cu-O超伝導
体の超伝導性を損なっていないことによるものと考えら
れる。
Embodiment 2 FIG. 5 shows a schematic view of the ternary magnetron sputtering apparatus used in this embodiment. In FIG. 5, 10 is a Bi-O firing target, 11 is a Sr-Ca-Cu-O firing target, 12 is a Sr-Ba-O firing target, 13, 14 and 15 are shutters, 16 is a MgO substrate, and 17 is A heater for heating a substrate is shown. A total of three targets 10, 11 and 12 were arranged as shown in FIG. That is, MgO (100) substrate 16
Each target is installed so as to be tilted by about 30 ° so as to focus on. The sputtering time can be set freely by opening and closing the shutters 13, 14, and 15.
The substrate 16 was heated to about 600 ° C. by the heater 17 and each target was sputtered in a gas of argon / oxygen (5: 1) mixed atmosphere 3 Pa. Oxygen gas was introduced as the oxygen gas, and the ratio was changed. High frequency power injected to each target is Bi-O: 30W, Sr-C
The experiment was conducted with a-Cu-O: 50W and Sr-Ba-O: 50W. Bi-O → Sr-Ca-Cu-O → Bi-O is sputtered in a cycle and the composition ratio of elements of the Bi-Sr-Ca-Cu-O film is B.
The composition of the target was adjusted so that i: Sr: Ca: Cu = 2: 2: 2: 3, and the above cycle was repeated 20 times.
A phase with a critical temperature above K could be produced. The composition ratio in the Sr-Ba-O thin film was adjusted by changing the composition of the target so that Sr: Ba = 3: 7. Further, the buffer layer → A electrode → junction → B electrode is formed by Sr-Ba-O → Bi-Sr-Ca-Cu-O → Sr-Ba-O → Bi-S by the above method.
It was possible to continuously stack r-Ca-Cu-O. Further, after stacking the buffer layer, the A electrode, the bonding portion, and the B electrode, a superconducting device was prepared according to (Example 1). As a result, current-voltage characteristics similar to those in FIG. 4 were obtained at 80K. It is considered that this is because the manufacturing method effectively contributes. That is, a buffer layer is formed on the substrate, and Bi-Sr-Ca-Cu-
By forming the O thin film in a two-dimensional layered form, the interface between the A electrode and the junction or the interface between the junction and the B electrode formed on the buffer layer may be extremely stable and may have excellent flatness. , Sr-Ba-O (junction) on Bi-Sr-Ca-Cu-O thin film (A electrode), or Bi-Sr-Ca-Cu-O thin film on Sr-Ba-O thin film (junction) This is because (B electrode) is continuously epitaxially grown, there is no mutual diffusion of elements between the electrode and the junction, and the superconductivity of the Bi-Sr-Ca-Cu-O superconductor is not impaired. it is conceivable that.

【0029】なお、バッファー層、接合部のSr-Ba-O
薄膜を作成する際の基体温度は300℃から700℃が
良好な結晶性を得るのに最適であることをあわせて見い
だした。
In addition, Sr-Ba-O of the buffer layer and the joint portion
It was also found that the substrate temperature at the time of forming a thin film is 300 ° C. to 700 ° C., which is optimum for obtaining good crystallinity.

【0030】[0030]

【発明の効果】以上説明したように、本発明の超伝導素
子は、Bi 系超伝導体からなるA電極及びB電極と格定
数の等しく、熱的に安定で下地の凹凸を埋めるようにエ
ピタキシャル成長する(Ca,Sr,Ba )Oを基体上に堆
積させた後、A電極以降を堆積形成し、また接合部とし
て用いることにより、界面の平坦性とAおよびB電極の
結晶性をあわせた優れた超伝導素子を製造できる効果が
ある。
As described above, the superconducting device of the present invention has the same constant as the A and B electrodes made of a Bi type superconductor, is thermally stable, and is epitaxially grown so as to fill the irregularities of the base. After depositing (Ca, Sr, Ba) O on the substrate, the A electrode and the subsequent layers are deposited and formed, and it is also used as a bonding portion, which is excellent in flatness of the interface and crystallinity of the A and B electrodes. There is an effect that a superconducting device can be manufactured.

【0031】さらに、本発明の製造方法は、前記超伝導
素子を効率よく、安定的に提供できる製造方法であり、
このことは現在超伝導応用のひとつとしてジョセフソン
素子を構成要素とする超伝導量子干渉計が実用化されて
いるが、本発明の超伝導素子はジョセフソン素子として
動作しており、この素子を用いると超伝導量子干渉計を
構成できる効果がある。
Further, the manufacturing method of the present invention is a manufacturing method capable of efficiently and stably providing the superconducting device,
This means that a superconducting quantum interferometer having a Josephson element as a constituent element is currently put into practical use as one of superconducting applications, but the superconducting element of the present invention operates as a Josephson element. When used, there is an effect that a superconducting quantum interferometer can be constructed.

【0032】さらに本発明の超伝導素子は、低消費電力
のスイッチング素子や、非線形性、あるいは超伝導体に
特有の量子効果を利用した高感度の高周波のミキサーと
しても利用できる。
Further, the superconducting element of the present invention can be used as a switching element having low power consumption, a high-sensitivity high-frequency mixer using nonlinearity, or a quantum effect peculiar to a superconductor.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の( Ca ,Sr ,Ba)O結晶
の構造概略図である。
FIG. 1 is a structural schematic diagram of a (Ca, Sr, Ba) O crystal according to an embodiment of the present invention.

【図2】本発明の一実施例の超伝導素子の断面図であ
る。
FIG. 2 is a cross-sectional view of a superconducting device according to an embodiment of the present invention.

【図3】本発明の一実施例の製造方法のプロセス図であ
る。
FIG. 3 is a process diagram of a manufacturing method according to an embodiment of the present invention.

【図4】同、電流電圧特性図である。FIG. 4 is a current-voltage characteristic diagram of the same.

【図5】本発明の実施例にもちいた実験装置概略図であ
る。
FIG. 5 is a schematic view of an experimental apparatus used in an example of the present invention.

【符号の説明】[Explanation of symbols]

1 A電極 2 バッファー層 3 B電極 4 接合部 5 電極間分離層 6 コンタクト電極 7 基体 8 ネガレジスト 9 スピンオングラス 10,11,12 スパッタ用ターゲット 13,14,15 シャッター 16 Mg O基体 17 基体加熱用ヒーター 1 A electrode 2 Buffer layer 3 B electrode 4 Bonding part 5 Electrode separation layer 6 Contact electrode 7 Base material 8 Negative resist 9 Spin-on-glass 10, 11, 12 Sputtering target 13, 14, 15 Shutter 16 Mg O base material 17 Base material heating heater

───────────────────────────────────────────────────── フロントページの続き (72)発明者 足立 秀明 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 瀬恒 謙太郎 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Hideaki Adachi, Inventor Hideaki Adachi 1006, Kadoma, Kadoma, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (72) Kentaro Se Tsune, Kentaro, Kadoma, Osaka Prefecture

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 基体上に、主成分として少なくともカル
シウム( Ca)、ストロンチウム( Sr)、バリウム( Ba)
の一種以上の元素を含む酸化物絶縁体薄膜を堆積させ、
前記絶縁体薄膜上に超伝導体からなるA電極と、前記A
電極と接合部を介して一部領域で接する超伝導体からな
るB電極と、前記B電極上の一部に接触して形成したコ
ンタクト電極と、前記コンタクト電極と前記A電極の間
を隔てる電極間分離層とからなる超伝導素子において、
超伝導体からなる前記A電極および前記B電極の主成分
が少なくとも銅( Cu)、アルカリ土類( IIa族) から成
る酸化物超伝導体であり、前記接合部の主成分が前記絶
縁体の主成分と実質的に同一であることを特徴とする超
伝導素子。(ただしアルカリ土類は、IIa 族元素のうち
の少なくとも一種の元素を示す。)
1. A substrate containing at least calcium (Ca), strontium (Sr), and barium (Ba) as main components.
Depositing an oxide insulator thin film containing one or more elements of
An A electrode made of a superconductor on the insulator thin film;
A B electrode made of a superconductor that is in contact with the electrode in a partial area via a junction, a contact electrode formed by contacting a part of the B electrode, and an electrode separating the contact electrode and the A electrode. In a superconducting device consisting of an inter-layer separation layer,
The main component of the A electrode and the B electrode made of a superconductor is an oxide superconductor made of at least copper (Cu) and alkaline earth (Group IIa), and the main component of the junction is the insulator. A superconducting device, which is substantially the same as the main component. (However, alkaline earth refers to at least one element of the IIa group elements.)
【請求項2】 基体上に、主成分として少なくともカル
シウム( Ca)、ストロンチウム( Sr)、バリウム( Ba)
の一種以上の元素を含む酸化物絶縁体薄膜を堆積させ、
前記絶縁体薄膜上に超伝導体からなるA電極と、前記A
電極と接合部を介して一部領域で接する超伝導体からな
るB電極と、前記B電極上の一部に接触して形成したコ
ンタクト電極と、前記コンタクト電極と前記A電極の間
を隔てる電極間分離層とからなる超伝導素子の製造方法
において、前記A電極およびB電極を、Bi を含む酸化
物と、銅およびアルカリ土類(IIa 族)を含む酸化物と
を周期的に積層させ形成することを特徴とする超伝導素
子の製造方法。(ただしアルカリ土類は、IIa 族元素の
うちの少なくとも一種の元素を示す。)
2. A main component of at least calcium (Ca), strontium (Sr), barium (Ba) on the substrate.
Depositing an oxide insulator thin film containing one or more elements of
An A electrode made of a superconductor on the insulator thin film;
A B electrode made of a superconductor that is in contact with the electrode in a partial area via a junction, a contact electrode formed by contacting a part of the B electrode, and an electrode separating the contact electrode and the A electrode. In the method for manufacturing a superconducting device including an interlayer separation layer, the A electrode and the B electrode are formed by periodically stacking an oxide containing Bi and an oxide containing copper and alkaline earth (group IIa). A method for manufacturing a superconducting device, comprising: (However, alkaline earth refers to at least one element of the IIa group elements.)
【請求項3】 基体の温度を300℃から700℃にす
る請求項2に記載の超伝導素子の製造方法。
3. The method for producing a superconducting device according to claim 2, wherein the temperature of the base is set to 300 ° C. to 700 ° C.
【請求項4】 蒸発をスパッタリングで行なう請求項2
に記載の超伝導素子の製造方法。
4. The evaporation is performed by sputtering.
A method for manufacturing the superconducting device according to.
【請求項5】 積層物質の蒸発を少なくとも二種以上の
蒸発源で行う請求項2に記載の超伝導素子の製造方法。
5. The method for manufacturing a superconducting device according to claim 2, wherein the evaporation of the laminated material is performed by at least two kinds of evaporation sources.
JP4250911A 1992-09-21 1992-09-21 Superconducting element and manufacture thereof Pending JPH06104498A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4250911A JPH06104498A (en) 1992-09-21 1992-09-21 Superconducting element and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4250911A JPH06104498A (en) 1992-09-21 1992-09-21 Superconducting element and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH06104498A true JPH06104498A (en) 1994-04-15

Family

ID=17214861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4250911A Pending JPH06104498A (en) 1992-09-21 1992-09-21 Superconducting element and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH06104498A (en)

Similar Documents

Publication Publication Date Title
JP2000150974A (en) High-temperature superconducting josephson junction and manufacture thereof
JPH0284782A (en) Manufacture of josephson element
JPS63242532A (en) Super conductor and its manufacture
JP3037514B2 (en) Thin film superconductor and method of manufacturing the same
JPH06104498A (en) Superconducting element and manufacture thereof
JPH04275470A (en) Product composed of superconductor/insulator structure and manufacture of said product
EP0637087B1 (en) Layered structure comprising insulator thin film and oxide superconductor thin film
JP2979422B2 (en) Method of manufacturing insulator and insulating thin film, and method of manufacturing superconducting thin film and superconducting thin film
JP2741277B2 (en) Thin film superconductor and method of manufacturing the same
JP2669052B2 (en) Oxide superconducting thin film and method for producing the same
JPH0278282A (en) Josephson element
JP3478543B2 (en) Oxide superconducting thin film and method for producing the same
JPH05170448A (en) Production of thin ceramic film
JPH04285012A (en) Formation of oxide superconductor thin film
JP2555477B2 (en) Superconducting thin film and manufacturing method thereof
JP2976427B2 (en) Method of manufacturing Josephson device
JPH05226709A (en) Superconductive element and its manufacture
JP3025891B2 (en) Thin film superconductor and method of manufacturing the same
JPH02311396A (en) Thin-film superconductor and its production
JP2594271B2 (en) Superconductor thin film manufacturing apparatus and superconductor thin film manufacturing method
JPH05171414A (en) Superconducting thin film and its production
JP3315737B2 (en) Ferroelectric thin film and method of manufacturing the same
JPH04340775A (en) Superconducting element and its manufacture
JPH0722662A (en) Insulation material and its manufacture, and superconductor thin film and its manufacture
JPH05335640A (en) Superconductive element