JPS63242532A - Super conductor and its manufacture - Google Patents
Super conductor and its manufactureInfo
- Publication number
- JPS63242532A JPS63242532A JP62077197A JP7719787A JPS63242532A JP S63242532 A JPS63242532 A JP S63242532A JP 62077197 A JP62077197 A JP 62077197A JP 7719787 A JP7719787 A JP 7719787A JP S63242532 A JPS63242532 A JP S63242532A
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- oxide
- film
- oxide thin
- thin film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002887 superconductor Substances 0.000 title claims abstract description 12
- 238000004519 manufacturing process Methods 0.000 title claims description 4
- 239000000203 mixture Substances 0.000 claims abstract description 8
- 230000008020 evaporation Effects 0.000 claims abstract description 3
- 238000001704 evaporation Methods 0.000 claims abstract description 3
- 229910052751 metal Inorganic materials 0.000 claims abstract description 3
- 239000010409 thin film Substances 0.000 claims description 22
- 238000000034 method Methods 0.000 claims description 10
- 238000007740 vapor deposition Methods 0.000 claims description 5
- 238000000137 annealing Methods 0.000 claims description 4
- 239000010408 film Substances 0.000 claims description 3
- 229910044991 metal oxide Inorganic materials 0.000 claims 3
- 150000004706 metal oxides Chemical class 0.000 claims 3
- 239000000843 powder Substances 0.000 abstract description 6
- QVQLCTNNEUAWMS-UHFFFAOYSA-N barium oxide Chemical compound [Ba]=O QVQLCTNNEUAWMS-UHFFFAOYSA-N 0.000 abstract description 3
- BERDEBHAJNAUOM-UHFFFAOYSA-N copper(I) oxide Inorganic materials [Cu]O[Cu] BERDEBHAJNAUOM-UHFFFAOYSA-N 0.000 abstract description 3
- KRFJLUBVMFXRPN-UHFFFAOYSA-N cuprous oxide Chemical compound [O-2].[Cu+].[Cu+] KRFJLUBVMFXRPN-UHFFFAOYSA-N 0.000 abstract description 3
- 229940112669 cuprous oxide Drugs 0.000 abstract description 3
- 239000000758 substrate Substances 0.000 abstract description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 abstract description 2
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 abstract description 2
- 239000001301 oxygen Substances 0.000 abstract description 2
- 229910052760 oxygen Inorganic materials 0.000 abstract description 2
- 229910052594 sapphire Inorganic materials 0.000 abstract description 2
- 239000010980 sapphire Substances 0.000 abstract description 2
- 238000005137 deposition process Methods 0.000 abstract 2
- 238000010276 construction Methods 0.000 abstract 1
- 238000010030 laminating Methods 0.000 abstract 1
- 238000001771 vacuum deposition Methods 0.000 abstract 1
- 239000001307 helium Substances 0.000 description 3
- 229910052734 helium Inorganic materials 0.000 description 3
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000001816 cooling Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000001451 molecular beam epitaxy Methods 0.000 description 2
- 229910000750 Niobium-germanium Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000002294 plasma sputter deposition Methods 0.000 description 1
- 238000013139 quantization Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Landscapes
- Superconductor Devices And Manufacturing Methods Thereof (AREA)
- Containers, Films, And Cooling For Superconductive Devices (AREA)
- Superconductors And Manufacturing Methods Therefor (AREA)
- Laminated Bodies (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Physical Vapour Deposition (AREA)
Abstract
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は超電導体およびその製造方法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a superconductor and a method for manufacturing the same.
超電導現象は、物質の示すさまざまな電磁気的性質の中
で最も特異な性質であるといわれており、完全導電性、
完全反磁性、磁束の量子化等、夫々の性質を利用し応用
面での今後の発展が期待されている。Superconductivity is said to be the most unique property among the various electromagnetic properties exhibited by substances, including complete conductivity,
Future developments in applications are expected by utilizing the respective properties such as perfect diamagnetism and quantization of magnetic flux.
応用面では、超電導現象を示す臨界温度が高いことが望
ましいが、性能が良好であるとされているのはプラズマ
スパッター法で得られるNb3Geである。この臨界温
度は高々23°にであり、液体ヘリウム温度でしか使用
できないものである。In terms of applications, it is desirable that the critical temperature at which superconductivity occurs is high, but Nb3Ge obtained by plasma sputtering is said to have good performance. This critical temperature is at most 23° and can only be used at liquid helium temperatures.
液体ヘリウムの使用は、液化・冷却付帯設儀の必要性に
伴う冷却コストおよび技術的負担の増大、更には、ヘリ
ウム資源が極めて少ないことなどの理由から、産業およ
び民生分野での超電導体の実用化をはばむ大きな問題と
なっていた。The use of liquid helium has hindered the practical use of superconductors in industrial and consumer fields due to the increased cooling costs and technical burden associated with the need for liquefaction and cooling equipment, and also because helium resources are extremely scarce. This had become a major problem that was hindering the growth of society.
そこで、高臨界温度の超電導体を得るためにさまざまな
試みがなされており、特に、最近の研究にはめざましい
ものがある。Therefore, various attempts have been made to obtain superconductors with high critical temperatures, and recent research in particular has been remarkable.
従来、金属系超電導材料やセラミック系超電導材料につ
いては、粒界が存在するとそこで電子が散乱され、抵抗
が高くなるという1g!論に基づき、組成は均一で結晶
構造が一定である多結晶又は単結晶、となるように、す
なわち粒界をできる限り少なくする方向で研究がなされ
ていた。Conventionally, in metal-based superconducting materials and ceramic-based superconducting materials, when grain boundaries exist, electrons are scattered there and the resistance increases. Based on this theory, research has been conducted to create polycrystals or single crystals with a uniform composition and a constant crystal structure, that is, to reduce grain boundaries as much as possible.
しかしながら、臨界温度の高い超電導材料は得られてい
なかった。However, a superconducting material with a high critical temperature has not been obtained.
本発明は、前記実情に鑑みてなされたもので、臨界温度
が高く、安定な超電導体を提供することを目的とする。The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a stable superconductor with a high critical temperature.
C問題点を解決するための手段〕
そこで本発明では、多層構造の超電導酸化物薄膜によっ
て超電導体を構成している。Means for Solving Problem C] Therefore, in the present invention, a superconductor is constituted by a superconducting oxide thin film having a multilayer structure.
また、本発明の方法では、反応性多元蒸着法により、各
蒸発源の温度を独立的に制御しながら順次、組成の異な
る薄膜を積層し多層構造の超電導酸化物簿膜を形成して
いる。Furthermore, in the method of the present invention, a superconducting oxide film having a multilayer structure is formed by sequentially stacking thin films having different compositions while independently controlling the temperature of each evaporation source using a reactive multi-component deposition method.
本発明では、粒界を少なくしようとする従来の方向とは
逆に粒界を増大せしめ、これを電子の通路として用いよ
うとするもので、多層薄膜構造とすることにより、粒界
が増大する。In the present invention, contrary to the conventional approach of reducing grain boundaries, the number of grain boundaries is increased and these are used as paths for electrons, and by creating a multilayer thin film structure, the number of grain boundaries is increased. .
粒界は、エネルギー活性状態にあり、電子密度が高くな
っている。かかる構造ではこの粒界が多く存在している
ため、クーパーペアを作り易い状態となっており、高い
臨界温度を得ることができるものと考えられる。Grain boundaries are in an energy active state and have a high electron density. In such a structure, since there are many grain boundaries, it is easy to form Cooper pairs, and it is thought that a high critical temperature can be obtained.
また、反応性多元蒸着法によれば、蒸着源の温度等を1
blllIlすることにより、容易に、組成比の異なる
積WJ薄膜を形成することが可能であり、容易に多Ff
a#l造の超電導酸化物薄膜を形成することができる。In addition, according to the reactive multi-component vapor deposition method, the temperature of the vapor deposition source, etc.
By bllIl, it is possible to easily form product WJ thin films with different composition ratios, and it is possible to easily form multi-Ff
A superconducting oxide thin film having an a#l structure can be formed.
以下、本発明の実施例について、図面を参照しつつ詳細
に説明する。Embodiments of the present invention will be described in detail below with reference to the drawings.
まず、第1図に示す如く、10−5torr乃至10−
6 torr程度の真空度に設定された真空蒸着装置の
真空チャンバ1内に配設せしめられた第1゜12、第3
のルツボ2,3.4内に夫々、酸化イツトリウム(Y2
03)粉末、酸化バリウム(Bad)粉末、酸化第1銅
の粉末を入れ、t1=1000℃、t2=600℃、t
3=800℃と各々を独立に温度コントロールしつつ加
熱し、反応性多元蒸着法により酸素を導入しつつ、サフ
ァイア板からなる絶縁性の基板5上に5秒間にわたって
次式(1)で示されるA303型の酸化物薄膜aを成膜
せしめる。First, as shown in Figure 1, 10-5 torr to 10-
The first 12th and third
Yttrium oxide (Y2
03) Add powder, barium oxide (Bad) powder, and cuprous oxide powder, t1=1000℃, t2=600℃, t
3 = 800°C while controlling each temperature independently, and while introducing oxygen by reactive multi-dimensional vapor deposition method, it was applied to the insulating substrate 5 made of a sapphire plate for 5 seconds as shown by the following formula (1). An A303 type oxide thin film a is formed.
(Y Ba )CuO3(1)0.6 0.
4
次いで、各ルツボのシャッター6.7.8を数秒間全て
閉じ、その間に第3のルツボの温度をやや低めに設定す
る。(Y Ba )CuO3(1)0.6 0.
4. Next, all the shutters 6.7.8 of each crucible are closed for a few seconds, and during that time the temperature of the third crucible is set to a slightly lower temperature.
この状態で再びシャッターを開き、5秒間にわたって次
式(2)で示されるA2BO4型の酸化物薄WAbを形
成する。In this state, the shutter is opened again and a thin oxide WAb of A2BO4 type expressed by the following formula (2) is formed for 5 seconds.
(Y Ba ) CuO(2)0.6 0
.4 2 4
この動作を約30回にわたって繰り返し、ABO3およ
びA2BO4型の酸化物薄膜が交互に積層せしめられた
多層薄膜を形成する(第2図参照)。(YBa)CuO(2)0.6 0
.. 4 2 4 This operation is repeated about 30 times to form a multilayer thin film in which ABO3 and A2BO4 type oxide thin films are alternately laminated (see FIG. 2).
各層のIII厚は約30八とする。The III thickness of each layer is approximately 30 mm.
また、成wA時には、nfRの導入により、真空ヂャン
バー内の真空度は約1Q torr程度となっている
。Furthermore, at the time of formation wA, the degree of vacuum in the vacuum chamber is approximately 1 Q torr due to the introduction of nfR.
このようにして得られた多層薄膜を1に〜101(ba
rの圧力下で800℃20時間アニールし、積層型の超
電導酸化物薄膜を得ることができる。The multilayer thin film thus obtained was 1 to 101 (ba.
By annealing at 800° C. for 20 hours under a pressure of r, a laminated superconducting oxide thin film can be obtained.
この超電導酸化物薄膜は、粒界が極めて多く形成されて
おり臨界温度が120°にとなっており、極めて安定で
信頼性の高いものとなっている。This superconducting oxide thin film has an extremely large number of grain boundaries and a critical temperature of 120°, making it extremely stable and highly reliable.
なお、実施例では、第3のルツボの温度を制御すること
により、膜の組成比をABO3型とA2BO4型に交互
に変化させるようにしたが、酸素分圧を例えば10
torrと5 x 10−6torrとに交互に変化せ
しめるようにしてもよい。In the example, the composition ratio of the film was alternately changed to ABO3 type and A2BO4 type by controlling the temperature of the third crucible.
Torr and 5 x 10-6 torr may be alternately changed.
また、各層の組成については実施例に限定されることな
く適宜変更可能である。Furthermore, the composition of each layer is not limited to the examples and can be changed as appropriate.
更に、実施例では多層構造の超電導酸化物薄膜を形成す
るに際し、反応性多元蒸着法を用いたが、これに限定さ
れることなく、分子線エピタキシー(MBE法)、MS
D法、スパッター法等を用いてもよい。Furthermore, in the examples, a reactive multi-component deposition method was used to form a superconducting oxide thin film with a multilayer structure, but the present invention is not limited to this, and molecular beam epitaxy (MBE method), MS
D method, sputtering method, etc. may be used.
加えて、実施例では、多層薄膜を積層後、加圧下でアニ
ールしたが、複数回にわたる加圧アニール工程を実施す
るようにしてもよい。また、アニール工程を省略しても
よい。In addition, in the embodiment, the multilayer thin film was laminated and then annealed under pressure, but the pressure annealing process may be performed multiple times. Further, the annealing step may be omitted.
以上説明してきたように、本発明によれば、隣接する各
層の組成が互いに異なるように形成された積層型の超電
導酸化物薄膜から偶成されているため、臨界温度が高く
、安定な超電導体を提供することが可能となる。As explained above, according to the present invention, since the stacked superconducting oxide thin films are formed in such a way that the compositions of adjacent layers are different from each other, a stable superconductor with a high critical temperature can be obtained. It becomes possible to provide
第1図は、本発明実施例の超電導酸化物薄膜の形成に用
いられる多元蒸着装置を示す図、第2図は、同装置によ
って形成された超電導酸化物薄膜を示す図である。
a・・・ABOa型酸化物薄膜、
b・・・A2BO4型、
1・・・真空チャンバー、2・・・第1のルツボ、3・
・・第2のルツボ、4・・・第3のルツボ、5・・・基
板、6゜7.8・・・シャッタ。FIG. 1 is a diagram showing a multi-component vapor deposition apparatus used for forming a superconducting oxide thin film according to an embodiment of the present invention, and FIG. 2 is a diagram showing a superconducting oxide thin film formed by the same apparatus. a... ABOa type oxide thin film, b... A2BO4 type, 1... Vacuum chamber, 2... First crucible, 3...
...Second crucible, 4...Third crucible, 5...Substrate, 6°7.8...Shutter.
Claims (4)
特徴とする超電導体。(1) A superconductor characterized by being composed of a multilayered superconducting oxide thin film.
化物薄膜とA_2BO_4型の金属酸化物薄膜(A、B
は金属元素)とが交互に積層せしめられたものであるこ
とを特徴とする特許請求の範囲第(1)項記載の超電導
体。(2) The superconducting oxide thin film is an ABO_3 type metal oxide thin film and an A_2BO_4 type metal oxide thin film (A, B
The superconductor according to claim (1), characterized in that metal elements) are alternately layered.
的に制御しながら順次組成の異なる超電導金属酸化物薄
膜を積層をしめる成膜工程を含むようにしたことを特徴
とする超電導体の製造方法。(3) A superconductor characterized by including a film-forming process in which superconducting metal oxide thin films with different compositions are sequentially laminated while controlling the temperature of each evaporation source independently using a reactive multi-component vapor deposition method. manufacturing method.
むことを特徴とする特許請求の範囲第(3)項記載の超
電導体の製造方法。(4) The method for manufacturing a superconductor according to claim (3), wherein the film forming step includes a step of annealing under pressure.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62077197A JPS63242532A (en) | 1987-03-30 | 1987-03-30 | Super conductor and its manufacture |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62077197A JPS63242532A (en) | 1987-03-30 | 1987-03-30 | Super conductor and its manufacture |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63242532A true JPS63242532A (en) | 1988-10-07 |
Family
ID=13627096
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62077197A Pending JPS63242532A (en) | 1987-03-30 | 1987-03-30 | Super conductor and its manufacture |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63242532A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63245821A (en) * | 1987-03-31 | 1988-10-12 | Sumitomo Electric Ind Ltd | Superconductive wire |
JPS63252311A (en) * | 1987-04-08 | 1988-10-19 | Matsushita Electric Ind Co Ltd | Compositional modulation type conductive material |
JPS6450310A (en) * | 1987-08-19 | 1989-02-27 | Semiconductor Energy Lab | Superconductive material |
JPS6450312A (en) * | 1987-08-19 | 1989-02-27 | Semiconductor Energy Lab | Superconductive material |
JPS6450315A (en) * | 1987-08-19 | 1989-02-27 | Semiconductor Energy Lab | Superconductor material |
JPH01133997A (en) * | 1987-11-18 | 1989-05-26 | Matsushita Electric Ind Co Ltd | Oxide superconductor |
JPH02118063A (en) * | 1988-10-27 | 1990-05-02 | Fujikura Ltd | Production of oxide superconductor |
JPH02118061A (en) * | 1988-10-27 | 1990-05-02 | Fujikura Ltd | Production of oxide superconductor |
JPH0375300A (en) * | 1989-08-11 | 1991-03-29 | Hitachi Ltd | Oxide superlattice material, its production and apparatus therefor |
-
1987
- 1987-03-30 JP JP62077197A patent/JPS63242532A/en active Pending
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63245821A (en) * | 1987-03-31 | 1988-10-12 | Sumitomo Electric Ind Ltd | Superconductive wire |
JPS63252311A (en) * | 1987-04-08 | 1988-10-19 | Matsushita Electric Ind Co Ltd | Compositional modulation type conductive material |
JPS6450310A (en) * | 1987-08-19 | 1989-02-27 | Semiconductor Energy Lab | Superconductive material |
JPS6450312A (en) * | 1987-08-19 | 1989-02-27 | Semiconductor Energy Lab | Superconductive material |
JPS6450315A (en) * | 1987-08-19 | 1989-02-27 | Semiconductor Energy Lab | Superconductor material |
JPH01133997A (en) * | 1987-11-18 | 1989-05-26 | Matsushita Electric Ind Co Ltd | Oxide superconductor |
JPH02118063A (en) * | 1988-10-27 | 1990-05-02 | Fujikura Ltd | Production of oxide superconductor |
JPH02118061A (en) * | 1988-10-27 | 1990-05-02 | Fujikura Ltd | Production of oxide superconductor |
JPH0788568B2 (en) * | 1988-10-27 | 1995-09-27 | 株式会社フジクラ | Method for manufacturing oxide superconductor |
JPH0375300A (en) * | 1989-08-11 | 1991-03-29 | Hitachi Ltd | Oxide superlattice material, its production and apparatus therefor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0406126B2 (en) | Substrate having a superconductor layer | |
JPS63242532A (en) | Super conductor and its manufacture | |
US5428005A (en) | Superconducting thin film of compound oxide and a process of preparing the same | |
JP2970676B2 (en) | Growth method of oxide crystal thin film | |
US5236894A (en) | Process for producing a superconducting thin film at relatively low temperature | |
JP2741277B2 (en) | Thin film superconductor and method of manufacturing the same | |
JP2979422B2 (en) | Method of manufacturing insulator and insulating thin film, and method of manufacturing superconducting thin film and superconducting thin film | |
US5296455A (en) | Process for preparing superconductor of compound oxide of Bi-Sr-Ca-Cu system | |
EP0624910A1 (en) | Superconductor and method of fabricating superconductor | |
JPH02175613A (en) | Production of oxide superconducting thin film | |
JP3025891B2 (en) | Thin film superconductor and method of manufacturing the same | |
JPH06196760A (en) | Superconductive lamination thin film | |
JPH02311396A (en) | Thin-film superconductor and its production | |
JP3251093B2 (en) | Superconductor and method of manufacturing the same | |
JP2961852B2 (en) | Manufacturing method of thin film superconductor | |
JP2555477B2 (en) | Superconducting thin film and manufacturing method thereof | |
JPH05170448A (en) | Production of thin ceramic film | |
JP3021764B2 (en) | Oxide superconductor thin film | |
JP2781331B2 (en) | Manufacturing method of thin film superconductor | |
JPH06132573A (en) | Oxide suprconducting thin film and tunnel junction josephson element | |
JPH06267343A (en) | Superconductor and manufacture thereof | |
JPH05171414A (en) | Superconducting thin film and its production | |
JPH04300272A (en) | Thin oxide superconducting film and its production | |
JPH0316919A (en) | Superconductive thin film and its production | |
JPH0294676A (en) | Superconducting device |