JPH06196760A - Superconductive lamination thin film - Google Patents

Superconductive lamination thin film

Info

Publication number
JPH06196760A
JPH06196760A JP4357848A JP35784892A JPH06196760A JP H06196760 A JPH06196760 A JP H06196760A JP 4357848 A JP4357848 A JP 4357848A JP 35784892 A JP35784892 A JP 35784892A JP H06196760 A JPH06196760 A JP H06196760A
Authority
JP
Japan
Prior art keywords
thin film
oxide
superconducting
buffer layer
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4357848A
Other languages
Japanese (ja)
Inventor
Tsutomu Yoshitake
務 吉武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP4357848A priority Critical patent/JPH06196760A/en
Publication of JPH06196760A publication Critical patent/JPH06196760A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To provide a superconductive lamination thin film applicable to a microwave element such as a circulator by compounding an oxide superconductor and a magnetic material. CONSTITUTION:This superconductive lamination thin film has the structure in which an oxide superconductor thin film 2 such as Y-Ba-Cu-O and Ti-Ba-Ca- Cu-O is made to perform heteroepitaxial growth on a single crystal substrate 1 of a rare earth iron garnet. Further, SrTiO3, LaAlO3 and MgO are formed between the oxide superconductor thin film 2 and the rare earth iron garnet substrate 1 as a buffer layer.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は高い臨界温度(TC)を
有する酸化物超伝導積層薄膜に関するものである。
FIELD OF THE INVENTION The present invention relates to an oxide superconducting laminated thin film having a high critical temperature (T C ).

【0002】[0002]

【従来の技術】高いTCを持つ酸化物超伝導体の発見以
来、その高いTCをもたらす超伝導機構解明のための基
礎研究や電子素子等への応用研究が活発に行われてい
る。各種の銅を含む酸化物超伝導材料の中でもY系超伝
導体、Tl系超伝導体の酸化物超伝導体は、77Kの沸
点を持つ安価な液体窒素を冷媒として使用でき、また、
その低温保持のための設備も簡単なものを利用できると
いう長所を持っている。このため、従来の低いTCを持
つ超伝導材料では、高価な液体ヘリウムを使用していた
のと比較すると、酸化物高温超伝導体で超伝導磁石やジ
ョセフソン接合、SQUID等を製造することは産業上
大きな貢献となる。酸化物超伝導体の利用技術として
は、Nb系超伝導材料で利用されている前記ジョセフソ
ン接合等のデジタルデバイスの他に、超伝導材料に特有
の表面抵抗が低いこと、および周波数分散が小さいこと
を利用して、マイクロ波デバイスへの応用も考えられ
る。具体的には酸化物超伝導材料を用いた共振器、フィ
ルター、遅延線等への応用が考えられる。このような素
子を酸化物超伝導体を用いて実現した場合、酸化物超伝
導体の表面抵抗が小さいために従来の常伝導材料を用い
ては実現できなかった低損失の高性能マイクロ波受動素
子を製造することができる。また、このようなフィルタ
ー等を他の素子と組み合わせることによってマイクロ波
集積回路を小型化することも可能になる。このような複
合化するための素子の一例としてサーキュレーターがあ
げられる。サーキュレーターは非可逆回路としてマイク
ロ波集積回路では広く利用されているものであるが、従
来の平面型サーキュレーターの特性はストリップ導体の
損失によって限定されてしまうという問題点があった。
そこで、このストリップ導体に酸化物超伝導体を用いる
ことが可能になればサーキュレーターの特性を飛躍的に
向上させることが可能になる。
Since the discovery of the Related Art oxide with a high T C superconductor, basic research and applied to electronic devices such studies for superconducting Mechanism have been actively bring its high T C. Among various oxide superconducting materials containing copper, Y-based superconductors and Tl-based superconductor oxide superconductors can use inexpensive liquid nitrogen having a boiling point of 77K as a refrigerant.
It also has the advantage that simple equipment can be used for keeping the temperature low. Therefore, compared with the conventional superconducting material with low T C , which used expensive liquid helium, it is necessary to manufacture superconducting magnets, Josephson junctions, SQUIDs, etc. with high-temperature oxide superconductors. Will make a major contribution to the industry. As a technology for utilizing the oxide superconductor, in addition to the digital device such as the Josephson junction used in the Nb-based superconducting material, the surface resistance peculiar to the superconducting material is low, and the frequency dispersion is small. Utilizing this, application to microwave devices is also possible. Specifically, it can be applied to resonators, filters, delay lines, etc. using oxide superconducting materials. When such an element is realized by using an oxide superconductor, a low-loss high-performance microwave passive that cannot be realized by using a conventional normal conductive material due to the low surface resistance of the oxide superconductor. The device can be manufactured. Further, the microwave integrated circuit can be downsized by combining such a filter with other elements. A circulator is an example of such an element for forming a composite. The circulator is widely used in microwave integrated circuits as a non-reciprocal circuit, but there is a problem that the characteristics of the conventional planar circulator are limited by the loss of the strip conductor.
Therefore, if it becomes possible to use an oxide superconductor for this strip conductor, it becomes possible to dramatically improve the characteristics of the circulator.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、このよ
うなサーキュレーターを実現するためには酸化物超伝導
体を磁性体と複合化することが必要となる。ところが、
従来技術においては、酸化物超伝導体はペロブスカイト
型構造のSrTiO3、LaAlO3等や、MgOのよう
な非磁性材料の単結晶基板上に形成されるのが一般的で
あり、磁性材料との複合化は行われていなかった。本発
明の目的は、銅を含む酸化物超伝導体薄膜を作製する際
に、サーキュレーター等への応用が可能となる超伝導積
層薄膜を提供することにある。
However, in order to realize such a circulator, it is necessary to combine an oxide superconductor with a magnetic substance. However,
In the prior art, the oxide superconductor is generally formed on a single crystal substrate of a non-magnetic material such as SrTiO 3 , LaAlO 3 or the like having a perovskite structure, and a magnetic material. No compounding was done. An object of the present invention is to provide a superconducting laminated thin film which can be applied to a circulator or the like when producing an oxide superconductor thin film containing copper.

【0004】[0004]

【課題を解決するための手段】本発明は、ガーネット型
磁性酸化物である一般式がR3Fe512(RはY、S
m、Eu、Gd、Dy、Ho、Er、Tm、Ybおよび
Luから選ばれる1種または2種以上の組み合わせであ
る。)で表される希土類鉄ガーネット上に銅を含む酸化
物超伝導体が形成された構造を持つことを特徴とする超
伝導積層薄膜、およびガーネット型磁性酸化物である上
記一般式で表される希土類鉄ガーネット上にSrTiO
3、LaAlO3またはMgOがバッファー層として形成
され、該バッファー層上に銅を含む酸化物超伝導体が形
成された構造を持つことを特徴とする超伝導積層薄膜で
ある。
According to the present invention, a garnet type magnetic oxide having a general formula of R 3 Fe 5 O 12 (R is Y, S
One or a combination of two or more selected from m, Eu, Gd, Dy, Ho, Er, Tm, Yb and Lu. ) A superconducting laminated thin film having a structure in which an oxide superconductor containing copper is formed on a rare earth iron garnet represented by), and a garnet-type magnetic oxide represented by the above general formula SrTiO on rare earth iron garnet
A superconducting laminated thin film having a structure in which 3 , LaAlO 3 or MgO is formed as a buffer layer, and an oxide superconductor containing copper is formed on the buffer layer.

【0005】[0005]

【作用】本発明において、Y−Ba−Cu−O系やTl
−Ba−Ca−Cu−O系等の銅を含む酸化物超伝導体
を磁性材料の基板上に成長させたのは、サーキュレータ
ー等への応用を考慮すると酸化物超伝導体と磁性材料と
の複合化が要求されるからである。また、磁性材料とし
て酸化物を用いたのは、超伝導材料が酸化物であるため
金属系磁性材料を用いると薄膜作製中に磁性材料が酸化
して磁気特性が劣化してしまうのに対して、酸化物磁性
材料は酸化物超伝導体との複合化においてこのような問
題は起こらず、両者の整合性が優れているためである。
また、酸化物磁性材料としてR3Fe512で示される希
土類鉄ガーネットを用いたのは、この材料の単結晶基板
が容易に得られるため、この単結晶基板上に酸化物超伝
導体の単結晶薄膜を合成することが可能なためである。
In the present invention, the Y-Ba-Cu-O system and Tl are used.
The reason why an oxide superconductor containing copper such as —Ba—Ca—Cu—O system was grown on a substrate of a magnetic material is that the oxide superconductor and the magnetic material are different from each other in consideration of application to a circulator or the like. This is because compounding is required. Further, the oxide is used as the magnetic material because the superconducting material is an oxide, whereas the use of the metal-based magnetic material causes the magnetic material to be oxidized during the thin film production to deteriorate the magnetic characteristics. This is because the oxide magnetic material does not cause such a problem in the compounding with the oxide superconductor and has excellent compatibility with both.
Further, the rare earth iron garnet represented by R 3 Fe 5 O 12 was used as the oxide magnetic material because a single crystal substrate of this material can be easily obtained. This is because it is possible to synthesize a single crystal thin film.

【0006】次に、バッファー層としてペロブスカイト
構造のSrTiO3やLaAlO3、及びNaCl型構造
のMgOを用いると、これらの材料の格子定数が前記希
土類鉄ガーネットの場合よりも銅を含む酸化物超伝導体
の格子定数と近いため、両者の格子のミスフィットが緩
和され、これによって酸化物超伝導体のエピタキシャル
性が向上して、結晶の不完全さが低減するので、得られ
る酸化物超伝導体の超伝導特性がより向上する。
Next, when SrTiO 3 or LaAlO 3 having a perovskite structure and MgO having a NaCl type structure are used for the buffer layer, oxide superconductivity in which these materials have a lattice constant containing copper more than that of the rare earth iron garnet. Since it is close to the lattice constant of the body, the misfit between the lattices of the two is relaxed, which improves the epitaxial property of the oxide superconductor and reduces the crystal imperfections. The superconducting property of is further improved.

【0007】[0007]

【実施例】次に、本発明の実施例について説明する。本
実施例においては、Y−Ba−Cu−O系やTl−Ba
−Ca−Cu−O系の酸化物超伝導材料や、SrTiO
3、LaAlO3またはMgOのバッファー層の薄膜を製
造するために多元のエキシマレーザー蒸着装置を用い
た。この装置ではエキシマレーザーの有する高いエネル
ギー密度によってターゲットの成分が瞬間的に飛ばされ
るので薄膜の組成がターゲットの組成とほとんどずれる
ことがなく、非常に再現性よく目的とする性能の薄膜を
製造できるという特徴がある。薄膜製造においては、蒸
着チャンバー中にY−Ba−Cu−O系またはTl−B
a−Ca−Cu−O系のターゲット、並びにバッファー
層形成用のSrTiO3、LaAlO3またはMgOのタ
ーゲットを設け、それぞれのターゲットをレーザーによ
って加熱蒸発させることによって行った。
EXAMPLES Next, examples of the present invention will be described. In this embodiment, Y-Ba-Cu-O system and Tl-Ba are used.
-Ca-Cu-O-based oxide superconducting material and SrTiO
A multi-source excimer laser deposition apparatus was used to produce a thin film of a buffer layer of 3 , LaAlO 3 or MgO. In this equipment, the target energy is instantaneously blown by the high energy density of the excimer laser, so the composition of the thin film does not deviate from the composition of the target, and it is possible to produce a thin film with the desired performance with extremely good reproducibility. There are features. In the thin film production, Y-Ba-Cu-O system or Tl-B is used in the deposition chamber.
a-Ca-Cu-O based target, as well as SrTiO 3, LaAlO 3, or MgO target for the buffer layer formation provided was carried out by heating the evaporation of each of the target by the laser.

【0008】図1は本発明の一実施例による超伝導積層
薄膜の構造を示す図である。基板1には希土類鉄ガーネ
ットR3Fe512(RはY、Sm、Eu、Gd、Dy、
Ho、Er、Tm、Yb、Luのなかの1種類、または
これらのうちの複数の組み合わせ)の単結晶を用いた。
特に本実施例においてはRがYであるY3Fe512をお
もに用いて検討した。薄膜2は本実施例の場合、Y系超
伝導体としてYBa2Cu3X、Tl系超伝導体として
Tl2Ba2CaCu2Xを選択した。また、図2は本発
明の別の実施例の構造を示す図で、希土類鉄ガーネット
基板1と酸化物超伝導体薄膜2との間にバッファー層3
が形成されている。バッファー層3としては、SrTi
3、LaAlO3、MgOを100オングストローム程
度の厚さにして用いたが、このバッファー層の厚さは5
0オングストローム以上あればさしつかえない。
FIG. 1 is a diagram showing the structure of a superconducting laminated thin film according to an embodiment of the present invention. Rare earth iron garnet R 3 Fe 5 O 12 (R is Y, Sm, Eu, Gd, Dy,
A single crystal of one of Ho, Er, Tm, Yb, and Lu, or a combination of a plurality of these) was used.
In particular, in this example, Y 3 Fe 5 O 12 in which R is Y was mainly used for the study. In the present embodiment, the thin film 2 was selected from YBa 2 Cu 3 O x as the Y-based superconductor and Tl 2 Ba 2 CaCu 2 O x as the Tl-based superconductor. 2 is a diagram showing the structure of another embodiment of the present invention, in which the buffer layer 3 is provided between the rare earth iron garnet substrate 1 and the oxide superconductor thin film 2.
Are formed. As the buffer layer 3, SrTi
O 3 , LaAlO 3 , and MgO were used with a thickness of about 100 Å, and the thickness of this buffer layer was 5
If it is 0 angstrom or more, it is okay.

【0009】次にまずY系超伝導体の場合について実施
例を詳細に説明する。この場合にはターゲットにYBa
2Cu3Xの化学量論組成に近い焼結ターゲットを用い
た。Y3Fe512単結晶ガーネット基板を基板ホルダー
に設置して、基板温度を600〜700℃程度まで加熱
した。基板の大きさは30mm角で、厚さは0.5mm
とした。成膜前に基板シャッターを閉じた状態で30分
程度のプレスパッタした後、シャッターを開いて、基板
上に薄膜を堆積させた。成膜時の蒸着チャンバー中の酸
素分圧は200mTorrとし、エキシマレーザーの周
波数を3Hzとすることにより、2.5オングストロー
ム/sec程度の蒸着速度でY系超伝導体薄膜を形成す
ることができた。最終的にY系超伝導体薄膜の膜厚は5
000オングストロームとした。
First, examples of the Y-based superconductor will be described in detail. In this case, the target is YBa
A sintering target close to the stoichiometric composition of 2 Cu 3 O x was used. The Y 3 Fe 5 O 12 single crystal garnet substrate was placed on the substrate holder and heated to a substrate temperature of about 600 to 700 ° C. The size of the substrate is 30mm square and the thickness is 0.5mm.
And Before film formation, after performing pre-sputtering for about 30 minutes with the substrate shutter closed, the shutter was opened and a thin film was deposited on the substrate. By setting the oxygen partial pressure in the deposition chamber during film formation to 200 mTorr and the frequency of the excimer laser to 3 Hz, the Y-based superconductor thin film could be formed at a deposition rate of about 2.5 angstrom / sec. . Finally, the thickness of the Y-based superconductor thin film is 5
000 angstrom.

【0010】このようにして作製した薄膜の組成を電子
線プローブマイクロアナライザー(EPMA)によって
調べると、化学量論組成にほぼ近いYBa2Cu3X
なっており、ターゲット組成からのズレはほとんどない
ことがわかった。また、X線回折法によって薄膜の構造
を調べると、c軸配向したY系超伝導体の構造になって
おり、異相は全く観察されなかった。また、c軸の格子
定数が11.69オングストロームとバルクの値に近い
ことから、熱処理しなくても超伝導構造が得られている
ことがわかった。さらに、この薄膜を2次イオン質量分
析装置(SIMS)で分析すると、Y系超伝導体薄膜と
3Fe512基板との界面は急峻で、相互の反応は起こ
っていなかった。薄膜の表面を走査型電子顕微鏡(SE
M)で観察すると、薄膜の表面は平坦で明瞭な結晶粒等
はみられず、ほぼ単結晶の薄膜になっていることが確認
された。この薄膜について電気抵抗測定によって評価す
ると、表1に示すごとくTc〜89Kであり、また、7
7Kでの臨界電流密度Jcは2×106A/cm2と非常
に優れた超伝導特性を示すことがわかった。また、Nb
キャビティーを用いた表面抵抗(Rs)の評価による
と、77K、10GHzで300μΩであり、常伝導体
のCuよりも十分小さく低損失のマイクロ波素子への応
用が十分可能であることがわかった。また、基板として
3Fe512以外の希土類鉄ガーネットを用いてもほぼ
同様の超伝導特性を得ることができた。
When the composition of the thin film thus produced was examined by an electron probe microanalyzer (EPMA), it was found to be YBa 2 Cu 3 O X , which is almost close to the stoichiometric composition, and there is almost no deviation from the target composition. I knew it wasn't. Further, when the structure of the thin film was examined by the X-ray diffraction method, it was found to be the structure of a Y-based superconductor with c-axis orientation, and no heterogeneous phase was observed. Further, since the c-axis lattice constant is 11.69 angstroms, which is close to the bulk value, it was found that a superconducting structure was obtained without heat treatment. Furthermore, when this thin film was analyzed by a secondary ion mass spectrometer (SIMS), the interface between the Y-based superconductor thin film and the Y 3 Fe 5 O 12 substrate was steep, and no mutual reaction occurred. Scanning electron microscope (SE
When observed under M), it was confirmed that the surface of the thin film was flat and no clear crystal grains were observed, and the film was almost a single crystal thin film. When this thin film was evaluated by electric resistance measurement, it was T c ˜89 K as shown in Table 1, and 7
It was found that the critical current density J c at 7 K was 2 × 10 6 A / cm 2, which was a very excellent superconducting property. Also, Nb
An evaluation of the surface resistance (Rs) using a cavity showed that it was 300 μΩ at 77 K and 10 GHz, which was sufficiently smaller than that of the normal conductor Cu and was sufficiently applicable to a microwave element with low loss. . Further, even if a rare earth iron garnet other than Y 3 Fe 5 O 12 was used as the substrate, almost the same superconducting characteristics could be obtained.

【0011】次に、Y系超伝導体を成膜する前に、Y3
Fe512単結晶基板上にSrTiO3、LaAlO3
たはMgOをバッファー層として形成した。具体的に
は、これらのうちのいずれかをターゲットとして選択
し、基板温度をY系超伝導体薄膜を作製する温度よりも
低い温度の400〜500℃にし、そのほかの条件は前
記Y系超伝導体薄膜製造の場合と同じ条件にして、10
0オングストローム程度成膜する。バッファー層の成膜
終了後、ターゲットを前記のY系超伝導体のターゲット
に交換して、このバッファー層上に600〜700℃の
基板温度で5000オングストローム程度のY系超伝導
体薄膜を形成した。
Next, before depositing the Y-based superconductor, Y 3
SrTiO 3 , LaAlO 3 or MgO was formed as a buffer layer on the Fe 5 O 12 single crystal substrate. Specifically, one of these is selected as a target, the substrate temperature is set to 400 to 500 ° C., which is lower than the temperature for producing the Y-based superconductor thin film, and the other conditions are the above-mentioned Y-based superconductivity. 10 under the same conditions as for body thin film production
A film of about 0 angstrom is formed. After the film formation of the buffer layer was completed, the target was replaced with the target of the above Y-based superconductor, and a Y-based superconductor thin film of about 5000 angstrom was formed on the buffer layer at a substrate temperature of 600 to 700 ° C. .

【0012】このようにして得られた積層薄膜の構造を
SIMSによって観察すると、バッファー層とガーネッ
ト基板、Y系超伝導体薄膜とバッファー層との界面両方
とも急峻で、反応等が起こっていないことが確認され
た。また、X線回折法、SEM等による評価で、薄膜の
結晶性はバッファー層を採用することでより向上してい
ることがわかった。また、超伝導特性も表1にみられる
ごとく、バッファー層の使用によって向上しているのが
わかる。さらに、バッファー層をつけた場合において
も、基板としてY3Fe512以外の希土類鉄ガーネット
を用いてもほぼ同様の超伝導特性を得ることができた。
When the structure of the laminated thin film thus obtained is observed by SIMS, both the interface between the buffer layer and the garnet substrate and the interface between the Y-based superconductor thin film and the buffer layer are sharp and no reaction or the like has occurred. Was confirmed. In addition, evaluation by X-ray diffractometry, SEM, etc. revealed that the crystallinity of the thin film was further improved by employing the buffer layer. Further, as shown in Table 1, it can be seen that the superconducting property is also improved by using the buffer layer. Furthermore, even when a buffer layer was provided, almost the same superconducting characteristics could be obtained even if a rare earth iron garnet other than Y 3 Fe 5 O 12 was used as the substrate.

【0013】Tl系超伝導体の場合には、Y系超伝導体
の場合とは異なって、熱処理無しで超伝導体薄膜を作製
することは困難になる。これはTl系の場合、Tlの蒸
気圧が高いため、エキシマレーザー蒸着法によって高温
基板上に化学量論組成を有する薄膜を形成することが困
難になるからである。そこで本実施例においては、成膜
後に熱処理を行うことによってTl系超伝導体薄膜を作
製した。以下にそのプロセスを簡単に記述する。最初
に、室温に保持したY3Fe512基板上にTl2Ba2
aCu2Xターゲットをエキシマレーザーによって加熱
蒸着し、5000オングストローム程度の薄膜を形成す
る。この場合にも薄膜の組成はターゲット組成とほぼ同
じであった。このとき、薄膜の構造はアモルファスであ
り、電気的には絶縁体的な特性を示す。この薄膜を酸素
1気圧中でバルクのTl2Ba2CaCu2Xとともに8
00〜850℃で1時間熱処理した。バルクのTl2
2CaCu2Xは熱処理中のTlの蒸気圧を調整する
ために用いられる。この熱処理によって、薄膜はc軸配
向したTl系超伝導体薄膜に変化する。SrTiO3
LaAlO3またはMgOのバッファー層を用いる場合
には、最初に、400〜500℃の基板温度でY3Fe5
12基板上にこれらの薄膜を作製し、その上に前記の場
合と同様に室温でアモルファスのTl2Ba2CaCu2
X薄膜を形成し、次に800〜850℃で1時間熱処
理を行うことによって前記の超伝導薄膜を作製した。
In the case of the Tl-based superconductor, unlike the case of the Y-based superconductor, it becomes difficult to produce a superconductor thin film without heat treatment. This is because in the case of Tl system, since the vapor pressure of Tl is high, it becomes difficult to form a thin film having a stoichiometric composition on a high temperature substrate by the excimer laser deposition method. Therefore, in this example, a Tl-based superconductor thin film was produced by performing heat treatment after film formation. The process is briefly described below. First, Tl 2 Ba 2 C was deposited on a Y 3 Fe 5 O 12 substrate kept at room temperature.
An aCu 2 O x target is heated and vapor-deposited by an excimer laser to form a thin film of about 5000 angstrom. Also in this case, the composition of the thin film was almost the same as the target composition. At this time, the structure of the thin film is amorphous, and electrically exhibits insulator-like characteristics. This thin film was mixed with bulk Tl 2 Ba 2 CaCu 2 O x at 1 atm of oxygen for 8 hours.
It heat-processed at 00-850 degreeC for 1 hour. Bulk Tl 2 B
a 2 CaCu 2 O X is used to adjust the vapor pressure of Tl during the heat treatment. By this heat treatment, the thin film is changed to a c-axis oriented Tl-based superconductor thin film. SrTiO 3 ,
When using a buffer layer of LaAlO 3 or MgO, first, Y 3 Fe 5 is used at a substrate temperature of 400 to 500 ° C.
These thin films were formed on an O 12 substrate, and an amorphous Tl 2 Ba 2 CaCu 2 film was formed thereon at room temperature in the same manner as in the above case.
O X film was formed, to prepare a superconducting thin film of the by then for 1 hour heat treatment at 800 to 850 ° C..

【0014】このようにして得られた薄膜について、S
IMSによって分析するとTl系薄膜と基板及びバッフ
ァー層の間には相互拡散はみられず、良質な薄膜が得ら
れていることが確認された。また、X線回折法やSEM
による評価からも結晶性に優れ、また表面状態の比較的
良好なTl系超伝導薄膜が得られていることがわかっ
た。これらの薄膜の超伝導特性についても、表1に示さ
れているように、100Kを超えるTcや、77Kで1
6A/cm2を超えるJc等が得られており、非常に優
れていることがわかった。さらに、77K、10GHz
における表面抵抗も250μΩ程度の比較的低い値を示
しており、Y系超伝導体の場合と同様にマイクロ波素子
への応用が十分可能であることがわかった。また、基板
としてY3Fe512以外の希土類鉄ガーネットを用いて
もほぼ同様の超伝導特性を得ることができた。次に、上
記実施例で作製した超伝導薄膜について、その詳細を表
1に示す。
Regarding the thin film thus obtained, S
When analyzed by IMS, no mutual diffusion was observed between the Tl-based thin film and the substrate or buffer layer, confirming that a good quality thin film was obtained. In addition, X-ray diffraction method and SEM
It was also found from the evaluation by 1. that a Tl-based superconducting thin film having excellent crystallinity and a relatively good surface condition was obtained. Regarding the superconducting properties of these thin films, as shown in Table 1, T c exceeding 100K and 1 at 77K were obtained.
Jc and the like exceeding 0 6 A / cm 2 were obtained, which proved to be extremely excellent. Furthermore, 77K, 10GHz
The surface resistance in Example 2 also showed a comparatively low value of about 250 μΩ, and it was found that it can be sufficiently applied to a microwave element as in the case of the Y-based superconductor. Further, even if a rare earth iron garnet other than Y 3 Fe 5 O 12 was used as the substrate, almost the same superconducting characteristics could be obtained. Next, Table 1 shows the details of the superconducting thin films produced in the above examples.

【0015】[0015]

【表1】 [Table 1]

【0016】[0016]

【発明の効果】以上、説明したように、本発明は酸化物
磁性体基板上の高品質酸化物超伝導積層薄膜を提供する
ものであり、酸化物超伝導体をマイクロ波デバイスに応
用する上でその効果は大きい。
As described above, the present invention provides a high-quality oxide superconducting laminated thin film on an oxide magnetic substrate, and is useful for applying an oxide superconductor to a microwave device. And the effect is great.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による超伝導積層薄膜の積層構造の一例
を示す図である。
FIG. 1 is a diagram showing an example of a laminated structure of a superconducting laminated thin film according to the present invention.

【図2】本発明による超伝導積層薄膜の積層構造の別の
一例を示す図である。
FIG. 2 is a diagram showing another example of the laminated structure of the superconducting laminated thin film according to the present invention.

【符号の説明】[Explanation of symbols]

1 希土類鉄ガーネット 2 酸化物超伝導体薄膜 3 バッファー層 1 Rare earth iron garnet 2 Oxide superconductor thin film 3 Buffer layer

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ガーネット型磁性酸化物である一般式が
3Fe512(RはY、Sm、Eu、Gd、Dy、H
o、Er、Tm、YbおよびLuから選ばれる1種また
は2種以上の組み合わせである。)で表される希土類鉄
ガーネット上に銅を含む酸化物超伝導体が形成された構
造を持つことを特徴とする超伝導積層薄膜。
1. A garnet type magnetic oxide having a general formula of R 3 Fe 5 O 12 (R is Y, Sm, Eu, Gd, Dy, H).
One or a combination of two or more selected from o, Er, Tm, Yb and Lu. ) A superconducting laminated thin film having a structure in which an oxide superconductor containing copper is formed on a rare earth iron garnet represented by.
【請求項2】 ガーネット型磁性酸化物である一般式が
3Fe512(RはY、Sm、Eu、Gd、Dy、H
o、Er、Tm、YbおよびLuから選ばれる1種また
は2種以上の組み合わせである。)で表される希土類鉄
ガーネット上にSrTiO3、LaAlO3またはMgO
がバッファー層として形成され、該バッファー層上に銅
を含む酸化物超伝導体が形成された構造を持つことを特
徴とする超伝導積層薄膜。
2. A garnet type magnetic oxide having a general formula of R 3 Fe 5 O 12 (R is Y, Sm, Eu, Gd, Dy, H).
One or a combination of two or more selected from o, Er, Tm, Yb and Lu. ) SrTiO 3 , LaAlO 3 or MgO on the rare earth iron garnet
Is formed as a buffer layer, and a superconducting laminated thin film having a structure in which an oxide superconductor containing copper is formed on the buffer layer.
JP4357848A 1992-12-25 1992-12-25 Superconductive lamination thin film Pending JPH06196760A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4357848A JPH06196760A (en) 1992-12-25 1992-12-25 Superconductive lamination thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4357848A JPH06196760A (en) 1992-12-25 1992-12-25 Superconductive lamination thin film

Publications (1)

Publication Number Publication Date
JPH06196760A true JPH06196760A (en) 1994-07-15

Family

ID=18456239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4357848A Pending JPH06196760A (en) 1992-12-25 1992-12-25 Superconductive lamination thin film

Country Status (1)

Country Link
JP (1) JPH06196760A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6074990A (en) * 1994-12-23 2000-06-13 Neocera, Inc. Superconducting garnet thin film system
KR100721901B1 (en) * 2004-08-27 2007-05-28 한국전기연구원 Superconducting article and its manufacturing method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01152770A (en) * 1987-12-10 1989-06-15 Shimadzu Corp Substrate with superconducting thin-film
JPH04202094A (en) * 1990-11-30 1992-07-22 Sumitomo Electric Ind Ltd Production of superconducting thin film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01152770A (en) * 1987-12-10 1989-06-15 Shimadzu Corp Substrate with superconducting thin-film
JPH04202094A (en) * 1990-11-30 1992-07-22 Sumitomo Electric Ind Ltd Production of superconducting thin film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6074990A (en) * 1994-12-23 2000-06-13 Neocera, Inc. Superconducting garnet thin film system
KR100721901B1 (en) * 2004-08-27 2007-05-28 한국전기연구원 Superconducting article and its manufacturing method

Similar Documents

Publication Publication Date Title
JPH07106883B2 (en) Superconductor structure
Ramesh et al. Ferroelectric bismuth titanate/superconductor (Y‐Ba‐Cu‐O) thin‐film heterostructures on silicon
EP0406126B2 (en) Substrate having a superconductor layer
US5132282A (en) High temperature superconductor-strontium titanate sapphire structures
Ramesh et al. Ferrimagnetic rare‐earth orthoferrites: A new, magnetic substrate for the growth of epitaxial Y‐Ba‐Cu‐O thin films
US6605569B2 (en) Mg-doped high-temperature superconductor having low superconducting anisotropy and method for producing the superconductor
EP0769210A1 (en) Epitaxial thallium high temperature superconducting films formed via a nucleation layer
US7871663B1 (en) Minute doping for YBCO flux pinning
JPS63242532A (en) Super conductor and its manufacture
KR930008648B1 (en) Perovskite super conductor readiness process
JPH06196760A (en) Superconductive lamination thin film
JPH10236821A (en) Low-anisotropy high-temperature superconductor based on uncertainty principle and its production
JP3037514B2 (en) Thin film superconductor and method of manufacturing the same
JP2501035B2 (en) Superconducting thin film
JP2979422B2 (en) Method of manufacturing insulator and insulating thin film, and method of manufacturing superconducting thin film and superconducting thin film
JP3242252B2 (en) Metal oxide material and superconducting device using the same
JPH02175613A (en) Production of oxide superconducting thin film
JP2720665B2 (en) Superconducting laminated thin film and manufacturing method thereof
JP2544761B2 (en) Preparation method of superconducting thin film
JPH03275504A (en) Oxide superconductor thin film and its production
JP2544760B2 (en) Preparation method of superconducting thin film
JP2577056B2 (en) Preparation method of composite oxide superconducting thin film
JPH09260733A (en) Oxide superconducting thin film laminated body and manufacture thereof
JP3025891B2 (en) Thin film superconductor and method of manufacturing the same
JP3001273B2 (en) Superconducting laminated thin film