JP2748457B2 - Superconducting film manufacturing method - Google Patents

Superconducting film manufacturing method

Info

Publication number
JP2748457B2
JP2748457B2 JP63301637A JP30163788A JP2748457B2 JP 2748457 B2 JP2748457 B2 JP 2748457B2 JP 63301637 A JP63301637 A JP 63301637A JP 30163788 A JP30163788 A JP 30163788A JP 2748457 B2 JP2748457 B2 JP 2748457B2
Authority
JP
Japan
Prior art keywords
layer
composite oxide
superconducting film
temperature
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63301637A
Other languages
Japanese (ja)
Other versions
JPH02149401A (en
Inventor
厚志 田中
伸男 亀原
紘一 丹羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP63301637A priority Critical patent/JP2748457B2/en
Priority to CA002003850A priority patent/CA2003850C/en
Priority to DE68928256T priority patent/DE68928256T2/en
Priority to EP89312400A priority patent/EP0372808B1/en
Priority to KR1019890017434A priority patent/KR930008648B1/en
Publication of JPH02149401A publication Critical patent/JPH02149401A/en
Priority to US07/565,209 priority patent/US5141917A/en
Priority to US08/378,087 priority patent/US5585332A/en
Application granted granted Critical
Publication of JP2748457B2 publication Critical patent/JP2748457B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Physical Vapour Deposition (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Description

【発明の詳細な説明】 〔概要〕 Bi,Pbを含む層状ペロブスカイト型超伝導膜の製造方
法に関し、 Cu−O平面の数が1/2単位胞中に3枚含まれる構造の
超伝導体を含み、臨界温度が高く臨界電流密度も大きな
超伝導膜を短時間の焼成で形成することを目的とし、 基板上に層状ペロブスカイト構造を有するBi系酸化物
超伝導体を構成する元素を含むBi−(Pb)−Sr−Ca−Cu
−O複合酸化物層を形成する複数回の工程と、該Bi系酸
化物超伝導体を構成する第一の元素又はその酸化物,若
しくは,該Bi系酸化物超伝導体形成に促進剤として作用
する第二の元素又はその酸化物であり,蒸気圧が800℃
において10-4Pa以上となる該第一及び/又は該第二の元
素又はその酸化物を高濃度に含有する補償層を該Bi−
(Pb)−Sr−Ca−Cu−O複合酸化物層に隣接して形成す
る少なくとも1回の工程と、該Bi−(Pb)−Sr−Ca−Cu
−O複合酸化物層と該補償層の積層構造が形成された基
板を酸素を含む酸化雰囲気中焼成する工程を有し、超伝
導膜の製造方法(但し、Bi−(Pb)−Sr−Ca−Cu−Oは
Pbを含むか或いは含まない複合酸化物を表す)を構成す
る。
DETAILED DESCRIPTION OF THE INVENTION [Summary] The present invention relates to a method for producing a layered perovskite-type superconducting film containing Bi and Pb, and relates to a superconductor having a structure in which the number of Cu-O planes is three in a 1/2 unit cell. In order to form a superconducting film having a high critical temperature and a high critical current density by firing in a short time, the Bi-containing element containing a Bi-based oxide superconductor having a layered perovskite structure on a substrate is included. (Pb) -Sr-Ca-Cu
A plurality of steps of forming a -O composite oxide layer, and a first element constituting the Bi-based oxide superconductor or an oxide thereof, or an accelerator for forming the Bi-based oxide superconductor A second element or its oxide that acts, with a vapor pressure of 800 ° C
The compensation layer containing a high concentration of the first and / or the second element or the oxide thereof at 10 -4 Pa or more in the Bi-
At least one step of forming adjacent to the (Pb) -Sr-Ca-Cu-O composite oxide layer, and the Bi- (Pb) -Sr-Ca-Cu
A step of baking the substrate on which the laminated structure of the -O composite oxide layer and the compensation layer are formed in an oxidizing atmosphere containing oxygen, wherein a method for producing a superconducting film (however, Bi- (Pb) -Sr-Ca -Cu-O is
Represents a composite oxide containing or not containing Pb).

〔産業上の利用分野〕[Industrial applications]

液体窒素温度で超伝導が達成されうる高温超伝導材料
の研究・開発が急激に進められ、これを用いる実用化技
術の開発も進められつつある。
Research and development of high-temperature superconducting materials capable of achieving superconductivity at the temperature of liquid nitrogen have been rapidly advanced, and practical technologies using the same have been developed.

臨界温度Tcが100Kを超える高温超伝導体は液体窒素温
度の応用に温度マージンが広くとれる、臨界電流密度J
c,臨界磁界Hcが原理的には上がる、薄膜,線材の応用,
より高いTcを持つ高温超伝導材料の可能性等の観点から
研究・開発が進められている。
High-temperature superconductors with a critical temperature Tc exceeding 100 K can have a wide temperature margin for application of liquid nitrogen temperature, critical current density J
c, the critical magnetic field Hc rises in principle, the application of thin films and wires,
Research and development are proceeding from the viewpoint of the possibility of high temperature superconducting materials with higher Tc.

臨界温度Tcが100Kを超える高温超伝導物質として、Bi
−Sr−Ca−Cu−O系超伝導体、Tl−Ba−Ca−Cu−O系超
伝導体が開発されている。
As a high-temperature superconducting material whose critical temperature Tc exceeds 100K, Bi
-Sr-Ca-Cu-O-based superconductors and Tl-Ba-Ca-Cu-O-based superconductors have been developed.

上記Bi系では臨界温度Tcが約80Kの低温相と、約110K
の高温相の複数の超伝導相が混在し、上記Tl系では臨界
温度Tcが約105Kの低温相と、約125Kの高温相の複数の超
伝導相が混在し、高温相の超伝導相を単独で取り出すこ
とが出来ていない。
In the above Bi system, the critical temperature Tc is a low temperature phase of about 80 K, and about 110 K
In the above Tl system, a critical phase Tc of about 105K is mixed with a low-temperature phase of about 105K, and a plurality of superconducting phases of about 125K are mixed. It cannot be taken out alone.

上記Bi系,Tl系は水や酸素の影響を受けにくい、作り
やすい、加工が容易である、希土類元素を含まないので
資源の制約を受けにくい、という特徴を有する。しか
し、低Tc相の作製は容易であるが高Tc相の単相化は困難
である。
The Bi-based and Tl-based systems are characterized by being hardly affected by water or oxygen, easy to produce, easy to process, and hardly restricted by resources because they do not contain rare earth elements. However, it is easy to produce a low Tc phase, but it is difficult to make a high Tc phase a single phase.

Bi−Sr−Cu−O系超伝導体はMichel等(Z.Phys.B68,1
987,421)及び,秋光等(Jpn.J.Appl.Phys.26,1987,L20
80)により発見された。この系のTcは7Kである。
Bi-Sr-Cu-O-based superconductors are described in Michel et al. (Z. Phys. B68, 1
987, 421) and Akimitsu et al. (Jpn. J. Appl. Phys. 26, 1987, L20
80). The Tc of this system is 7K.

前田等(Jpn.J.Appl.Phys.27,1988,L209)は新しい、
高Tc相Bi−Sr−Ca−Cu−O系を発見した。この系は、式
Bi2Sr2Can-1CunOxにおいて、n=1に対するTc=7Kの
相、n=2に対するTc=80Kの相、及び、n=3に対す
るTc=105Kの相の、三つの超伝導相を有することが見出
された。nが1から3に増加するにつれて、結晶構造中
におけるCuO層の数が増加し、c軸は24Åから、30Å、3
7Åへと変化する。
Maeda et al. (Jpn.J.Appl.Phys.27,1988, L209)
High Tc phase Bi-Sr-Ca-Cu-O system was discovered. This system has the formula
In Bi 2 Sr 2 C a n-1 C n O x , there are three more phases: a phase of Tc = 7K for n = 1, a phase of Tc = 80K for n = 2, and a phase of Tc = 105K for n = 3. It has been found to have a conducting phase. As n increases from 1 to 3, the number of CuO layers in the crystal structure increases, and the c-axis changes from 24 ° to 30 °, 3 °.
Changes to 7Å.

高野等(Jpn.J.Appl.Phys.27,1988,L1041)がBiをPb
で置換することにより、高Tc相の割合が増加することを
報告した。しかしながら、Pbの役割はまだ明確ではな
い。
Takano et al. (Jpn. J. Appl. Phys. 27, 1988, L1041) Bi to Pb
It has been reported that the substitution with increases the proportion of the high Tc phase. However, the role of Pb is not yet clear.

上記の如く、Bi−(Pb)−Sr−Ca−Cu−O系超伝導
体、もしくは、Tl−Ba−Ca−Cu−O系超伝導体の高Tc相
の単相化のプロセスの確立が要望されている。
As described above, establishment of a process for making the high Tc phase of the Bi- (Pb) -Sr-Ca-Cu-O-based superconductor or the Tl-Ba-Ca-Cu-O-based superconductor into a single phase has been established. Requested.

〔従来技術〕(Prior art)

例えばBi−Sr−Ca−Cu−Oの超伝導膜を製造する方法
としては、SrTiO3,MgO等の基板上にスパッタ法,蒸着法
等により酸化物を堆積させた後、熱処理により、堆積酸
化膜を反応させ、超伝導膜を得る方法が一般的である。
For example, as a method of manufacturing a superconducting film of Bi-Sr-Ca-Cu-O, an oxide is deposited on a substrate such as SrTiO 3 or MgO by a sputtering method, a vapor deposition method or the like, and then deposited and oxidized by a heat treatment. A method of reacting a film to obtain a superconducting film is generally used.

〔本発明が解決しようとする課題〕[Problems to be solved by the present invention]

層状ペロブスカイト型超伝導膜は、それを構成する金
属元素が4以上あり、それぞれの組成比を化学量論組成
に合わせることは、困難であった。さらに、蒸気圧が比
較的高いBi,Pbなどは、膜を堆積中にその一部が蒸発す
るなどにより、膜から欠損しやすく、またその欠損量
は、基板温度,膜の堆積速度などにより変化をうけ、再
現性のある、成膜が困難であった。
The layered perovskite-type superconducting film has four or more metal elements, and it has been difficult to adjust the composition ratio of each to the stoichiometric composition. In addition, Bi and Pb, which have relatively high vapor pressures, are liable to be lost from the film due to evaporation of a part of the film during deposition, and the amount of the loss varies depending on the substrate temperature, the deposition rate of the film, etc. And it was difficult to form a film with reproducibility.

元素,酸化物の蒸気圧(P)は一般に下式で表され
る。log P=AT-1+B log T+C*10-3*T+D (金属データハンドブックp86) T:絶対温度(K)が1073K(800℃)における元素,酸化
物の蒸気圧の一例は下記の通りである。
The vapor pressure (P) of an element or oxide is generally represented by the following equation. log P = AT -1 + B log T + C * 10 -3 * T + D (Metal Data Handbook p86) T: Examples of vapor pressures of elements and oxides at an absolute temperature (K) of 1073K (800 ° C) are as follows: .

第4図は、Bi:Sr:Ca:Cu=2:2:2:3の酸化物の焼成体タ
ーゲット(酸化物混合物を800℃で24時間大気雰囲気中
焼成)を用いてMgO基板上に基板温度400℃、1Paの減圧
下で、RFマグネトロンスパッタリング法により、スパッ
タした膜(膜厚1μ)を875℃で5時間焼成した場合の
X線回折パターン及び膜組成を示す図である。X線回折
パターンに示されるように膜は、Bi2Sr2CuOx及び80K級
の低Tc相Bi2Sr2CaCu2Oxの2つの相からなっている。
FIG. 4 shows a substrate on a MgO substrate using a fired body target of oxide of Bi: Sr: Ca: Cu = 2: 2: 2: 3 (fired oxide mixture at 800 ° C. for 24 hours in air atmosphere). FIG. 4 is a diagram showing an X-ray diffraction pattern and a film composition when a sputtered film (thickness: 1 μm) is baked at 875 ° C. for 5 hours by RF magnetron sputtering at a temperature of 400 ° C. under a reduced pressure of 1 Pa. As shown in the X-ray diffraction pattern, the film was composed of two phases, Bi 2 Sr 2 CuOx and a low Tc phase Bi 2 Sr 2 CaCu 2 Ox of 80K class.

また、電子プローブマイクロアナリシス(EPMA)法に
よる測定結果が示す如く、Bi:Sr:Ca:Cu=0.63:1.00:1.0
7:1.40と、Biがターゲット組成より少なくなり、110K付
近に臨界温度をもついわゆる高温相(Bi2Sr2Ca2Cu3Ox)
の化学量論組成から大きくずれていることがわかる。
Also, as shown by the measurement results by the electron probe microanalysis (EPMA) method, Bi: Sr: Ca: Cu = 0.63: 1.00: 1.0
7: 1.40, so-called high-temperature phase (Bi 2 Sr 2 Ca 2 Cu 3 Ox) with Bi less than the target composition and having a critical temperature near 110K
It can be seen that the stoichiometry greatly deviates from the stoichiometry.

このような化学量論組成からずれた膜にPbを入れた場
合即ち、Bi:Pb:Sr:Ca:Cu=2:0.4:2:2:3のPbドープ酸化
物の焼結体ターゲットを用いて上記と同様に焼成した場
合(大気雰囲気中、850℃12時間焼成)、高温相はあら
われるものの、(第5図)その量は多くない。電気抵抗
の温度変化は第6図に示される如く110K付近にオンセッ
トはみられるものの低温側にすそをひき、電気抵抗がゼ
ロとなるのは75Kと低かった。
When Pb is put into a film having such a stoichiometric deviation, that is, using a sintered target of Pb-doped oxide of Bi: Pb: Sr: Ca: Cu = 2: 0.4: 2: 2: 3 When calcination is carried out in the same manner as above (calcination in air at 850 ° C. for 12 hours), a high-temperature phase appears but the amount is not large (FIG. 5). As shown in FIG. 6, the temperature change of the electric resistance was onset at around 110 K, but it fell below the low temperature side, and the electric resistance became zero, which was as low as 75 K.

一般にバルクではBi−Sr−Ca−Cu−OにPbを適量添加
した場合、比較的多量の高温相が得られることがKoyama
et al.から報告されている(JJAPL.VoL27,pp−L1861−
L1863)が、Pbは、成膜中に蒸発しやすいことからスパ
ッタや蒸着法では、十分な量のPbを添加できなかった。
Generally, in the bulk, when a proper amount of Pb is added to Bi-Sr-Ca-Cu-O, a relatively large amount of a high-temperature phase can be obtained.
et al. (JJAPL.VoL27, pp-L1861-
L1863) However, Pb was easily evaporated during film formation, so that a sufficient amount of Pb could not be added by sputtering or vapor deposition.

本発明は、かかる従来の問題点に鑑みなされたもの
で、層状ペロブスカイト構造を構成する元素のうち、蒸
気圧が高く堆積しにくい元素の酸化物、例えばBi2O3,Pb
Oについて、それらを高濃度に含有する層を堆積膜中に
設け、膜全体の組成比を化学量論組成に近づけ、Cu−O
平面の数が1/2単位胞中に3枚含まれる構造の超伝導体
を含み、臨界温度が高く臨界電流密度も大きな超伝導膜
を短時間の焼成で形成する製造方法を提供することを目
的とする。
The present invention has been made in view of such conventional problems, and among the elements constituting the layered perovskite structure, oxides of elements having a high vapor pressure and difficult to deposit, for example, Bi 2 O 3 , Pb
For O, a layer containing them at a high concentration is provided in the deposited film, and the composition ratio of the entire film approaches the stoichiometric composition, and Cu-O
It is an object of the present invention to provide a method for forming a superconducting film including a superconductor having a structure in which three planes are contained in a half unit cell and having a high critical temperature and a high critical current density by firing in a short time. Aim.

〔課題を解決するための手段〕[Means for solving the problem]

本発明は基板上に層状ペロブスカイト構造を有するBi
系酸化物超伝導体を構成する元素を含むBi−(Pb)−Sr
−Ca−Cu−O複合酸化物層を形成する複数回の工程と、
該Bi系酸化物超伝導体を構成する第一の元素又はその酸
化物,若しくは,該Bi系酸化物超伝導体形成に促進剤と
して作用する第二の元素又はその酸化物であり,蒸気圧
が800℃において10-4Pa以上となる該第一及び/又は該
第二の元素又はその酸化物を高濃度に含有する補償層を
該Bi−(Pb)−Sr−Ca−Cu−O複合酸化物層に隣接して
形成する少なくとも1回の工程と、該Bi−(Pb)−Sr−
Ca−Cu−O複合酸化物層と該補償層の積層構造が形成さ
れた基板を酸素を含む酸化雰囲気中焼成する工程を有す
ることを特徴とする。(但し、Bi−(Pb)−Sr−Ca−Cu
−OはPbを含むか或いは含まない複合酸化物を表す) 上記熱処理を750℃〜890℃の温度で行うのは750℃よ
り低温では高Tc相超伝導体は形成されない、また、890
℃より高温では超伝導体が溶融分解する。
The present invention relates to a Bi having a layered perovskite structure on a substrate.
Bi- (Pb) -Sr containing the elements that make up the system oxide superconductor
A plurality of steps of forming a -Ca-Cu-O composite oxide layer,
A first element or an oxide thereof constituting the Bi-based oxide superconductor, or a second element or an oxide thereof acting as an accelerator in the formation of the Bi-based oxide superconductor, and having a vapor pressure said first and / or said second element or compensating layer containing the oxide in a high concentration the Bi- (Pb) -Sr-Ca- Cu-O composite but to be 10 -4 Pa or more at 800 ° C. At least one step of forming adjacent to the oxide layer; and forming the Bi- (Pb) -Sr-
A step of firing the substrate on which the stacked structure of the Ca—Cu—O composite oxide layer and the compensation layer is formed in an oxidizing atmosphere containing oxygen. (However, Bi- (Pb) -Sr-Ca-Cu
(-O represents a complex oxide containing or not containing Pb) When the above heat treatment is performed at a temperature of 750 ° C to 890 ° C, a high Tc phase superconductor is not formed at a temperature lower than 750 ° C.
At temperatures higher than ℃, the superconductor melts and decomposes.

上記蒸気圧が800℃において10-4Pa以上となる酸化物
と規定したのは、上記熱処理温度では、ペロブスカイト
型超伝導体を構成する、或いは、超伝導体形成に促進剤
として作用する、該酸化物の元素もしくは酸化物の蒸発
が顕著であり、組成変動,或いは,成分の変化が著し
く、蒸発成分の補償・添加が化学量論組成の高Tc相超伝
導体形成に必要とされるからである。
The oxide having a vapor pressure of 10 −4 Pa or more at 800 ° C. is defined as an oxide that forms a perovskite superconductor at the heat treatment temperature or acts as a promoter in superconductor formation. Evaporation of oxide elements or oxides is remarkable, and compositional fluctuations or compositional changes are remarkable. Compensation and addition of evaporated components are required to form a stoichiometric high-Tc superconductor. It is.

前記ペロブスカイト型超伝導物質は、一般式Bi2(Sr
1-xCaxmCunOz をもって表される超伝導物質である。
The perovskite-type superconducting material has the general formula Bi 2 (Sr
1-x Ca x ) m Cu n Oz Is a superconducting material represented by

(なお、低Tc相はm=3,n=2;高Tc相はm=4,n=3に近
い組成を持つといわれる) もしくは、前記ペロブスカイト型超伝導物質は、上記
超伝導物質の一部をPbでおきかえたもの及びPbを添加し
た超伝導物質である。
(The low Tc phase is said to have a composition close to m = 3, n = 2; the high Tc phase is said to have a composition close to m = 4, n = 3.) Alternatively, the perovskite-type superconducting material is one of the above superconducting materials. The superconducting substance was obtained by replacing parts by Pb and by adding Pb.

又、前記酸化物は、Bi2O3,PbOである。The oxide is Bi 2 O 3 or PbO.

その工程の一例としては、基板上に層状ペロブスカイ
ト構造を有する超伝導体を構成する元素を含む酸化物堆
積層を、スパッタ法、蒸着法、分子線エピタキシャル成
長法等により、第1の温度(T1)で堆積する工程と、し
かる後、該酸化物堆積層を酸素を含む酸化雰囲気中該第
1の温度(T1)より高温の第2の温度(T2)で熱処理し
て層状ペロブスカイト構造の超伝導体層とする工程を有
する超伝導体膜の製造方法に於て、 上記酸化物堆積層を積層構造とするとともに、上記超
伝導体を構成する元素のうち、該(第1の温度もしく
は)第2の温度で蒸気圧が高い酸化物については、該酸
化物の高濃度に含有する補償層を少くとも1層設け、上
記第2の温度(T2)で熱処理構成後、膜全体の組成比が
上記層状ペロブスカイト構造を有する酸化物超伝導体の
化学量論組成となるように組成制御することを特徴とす
る。
As an example of the step, an oxide deposition layer containing an element constituting a superconductor having a layered perovskite structure is formed on a substrate by sputtering, vapor deposition, molecular beam epitaxial growth, or the like at a first temperature (T 1 ) And then heat treating the oxide deposited layer in a oxidizing atmosphere containing oxygen at a second temperature (T 2 ) higher than the first temperature (T 1 ) to form a layered perovskite structure In a method for manufacturing a superconductor film having a step of forming a superconductor layer, the oxide deposited layer has a laminated structure, and the (first temperature or For an oxide having a high vapor pressure at the second temperature, at least one compensation layer containing a high concentration of the oxide is provided, and after the heat treatment at the second temperature (T 2 ), the entire film is formed. Acid having a composition ratio of the above-mentioned layered perovskite structure Characterized by composition control such that the stoichiometric composition of the object superconductors.

又具体的には、基板上に上記層状ペロブスカイト構造
を有する超伝導体を構成する元素を含む複合酸化物より
なる第1の層を形成する工程と、該第1の層に隣接し
て、蒸気圧が800℃において10-4Pa以上となる酸化物を
高濃度に含有する第2の層を形成する工程と、上記積層
構造を有する基板を酸素を含む酸化雰囲気中焼成する工
程を有して構成する。
More specifically, a step of forming a first layer of a composite oxide containing an element constituting the superconductor having the layered perovskite structure on a substrate, A step of forming a second layer containing a high concentration of an oxide having a pressure of 10 −4 Pa or more at 800 ° C. and a step of firing the substrate having the stacked structure in an oxidizing atmosphere containing oxygen. Configure.

なお、酸化物堆積層の積層構造体としては、組成がス
テップ状に変化する積層構造であっても、構成元素の特
定元素に対して傾斜状(グレーディッド)に変化する積
層構造であってもよい。
Note that the stacked structure of the oxide deposition layer may be a stacked structure in which the composition changes stepwise or a stacked structure in which the composition changes in a graded manner with respect to a specific constituent element. Good.

また、酸化物堆積層の堆積法としては、スパッタリン
グ,蒸着,MBE,等の物理気相堆積法の他、プラズマ法,
化学気相堆積法等を用いてもよい。
In addition, as a method of depositing an oxide deposited layer, there are a plasma method, a physical vapor deposition method such as sputtering, evaporation, MBE, etc.
A chemical vapor deposition method or the like may be used.

また、酸化物堆積層の積層構造体の積層順序として
は、基板(MgO等)の直上は、膜と基板の密着性を確保
するためBi−Sr−Ca−Cu−O複合酸化物層を形成するの
が望ましく、又、積層構造体の最上層は、蒸気圧が高い
酸化物の蒸発を防ぐため、Bi−Sr−Ca−Cu−O複合酸化
物層であるのが望ましい。
The stacking order of the stacked structure of the oxide deposited layer is such that a Bi—Sr—Ca—Cu—O composite oxide layer is formed immediately above a substrate (MgO or the like) in order to ensure adhesion between the film and the substrate. It is preferable that the uppermost layer of the laminated structure is a Bi-Sr-Ca-Cu-O composite oxide layer in order to prevent evaporation of the oxide having a high vapor pressure.

また酸化物堆積層の積層構造体は、超伝導体を構成す
る元素の酸化物又は超伝導体形成に促進剤として作用す
る元素を含む酸化物のうち蒸気圧が高い酸化物を高濃度
に含有する層をBi−Sr−Ca−Cu−O系の複合酸化物(も
しくは各々の酸化物の混合物)の層でサンドイッチする
構成を1回以上、複数回くり返し堆積した構造体としう
る。
In addition, the stacked structure of the oxide deposition layer contains a high concentration of an oxide having a high vapor pressure among oxides of elements constituting a superconductor or oxides containing an element acting as a promoter in superconductor formation. A structure in which a layer to be sandwiched is sandwiched between layers of a Bi—Sr—Ca—Cu—O-based composite oxide (or a mixture of the respective oxides) may be a structure that is repeatedly deposited one or more times and a plurality of times.

〔作用〕[Action]

本発明では、層状プロブスカイト構造を構成する元素
のうち、蒸気圧が高く堆積しにくい元素の酸化物のみ
を、集中的に膜中に堆積させるため、これらの層の堆積
時間を短くすることができ、堆積中の蒸発等による組成
の変化が無視できる。また、その上に直ちに、蒸発しに
くい酸化物を堆積させることにより、膜全体の堆積中の
蒸発も極めて少量におさえることができる。
In the present invention, of the elements constituting the layered provskite structure, only oxides of elements having a high vapor pressure and which are difficult to deposit are concentratedly deposited in the film, so that the deposition time of these layers can be reduced. The change in composition due to evaporation during deposition can be neglected. In addition, by depositing an oxide which hardly evaporates immediately thereon, evaporation during the deposition of the entire film can be suppressed to a very small amount.

これにより、膜組成は、極めて厳密に制御できるた
め、組成の最適化により、高Tc化、高Jc化を達成でき
る。
As a result, the film composition can be very strictly controlled, and thus, by optimizing the composition, high Tc and high Jc can be achieved.

〔実施例〕〔Example〕

第1図に本発明にしたがって堆積した薄膜の層構造を
示す。これは、PbをドープしたBi−Sr−Ca−Cu−O系の
例である。
FIG. 1 shows the layer structure of a thin film deposited according to the invention. This is an example of the Bi-Sr-Ca-Cu-O system doped with Pb.

堆積後850℃で1時間焼成した膜の組成分析の結果
は、Bi:Pb:Sr:Ca:Cu=0.87:0.34:1.00:1.27:1.88であ
り、Biは適量が補正され、Pbも十分膜中にドープされた
ことがわかる。
The result of the composition analysis of the film baked at 850 ° C. for 1 hour after the deposition is Bi: Pb: Sr: Ca: Cu = 0.87: 0.34: 1.00: 1.27: 1.88. It turns out that it was doped inside.

焼成後の膜の電気抵抗の温度変化を第2図に示す。Tc
e=106.5Kと十分高い臨界温度を示した。
FIG. 2 shows the temperature change of the electric resistance of the film after firing. Tc
It showed a sufficiently high critical temperature of e = 106.5K.

また、電流密度を変えて、電気抵抗の温度変化をみた
場合の特性を第3図に示す。液体窒素温度において、2.
4×103A/cm2と十分な特性が得られた。
FIG. 3 shows the characteristics when the temperature change of the electric resistance is observed while changing the current density. At liquid nitrogen temperature, 2.
Sufficient characteristics of 4 × 10 3 A / cm 2 were obtained.

即ち、第1図は本発明の一実施例により堆積した薄膜
の積層構造体を示す。
That is, FIG. 1 shows a laminated structure of thin films deposited according to an embodiment of the present invention.

薄膜積層構造はRFマグネトロンスパッタリングによ
り、MgO単結晶(100)基板上に、下記条件でBi−Sr−Ca
−Cu−O層(以下BSCCO層とする)を堆積した。
The thin film laminated structure is formed on a MgO single crystal (100) substrate by RF magnetron sputtering under the following conditions with Bi-Sr-Ca
A -Cu-O layer (hereinafter referred to as a BSCCO layer) was deposited.

MgO基板は約400℃に加熱 Ar:O2=1:1,1Pa, RFパワーは100W(約1.3W/cm2) ターゲットは (1) Bi2Sr2Ca2Cu3Oz組成の焼結体ターゲットI(80
0℃24h焼結) (2) PbをBiの約20%ドープしたBi2Pb0.4Sr2Ca2Cu3O
z組成の焼結体ターゲットII(800℃24h焼結) (3) Bi補償の為のBi2O3 ターゲットIII (4) Pb添加の為のPbO ターゲットIV を用いた。
The MgO substrate is heated to about 400 ° C. Ar: O 2 = 1: 1,1Pa, RF power is 100W (about 1.3W / cm 2 ) Target is (1) Sintered body of Bi 2 Sr 2 Ca 2 Cu 3 Oz composition Target I (80
(2 hours) Bi 2 Pb 0.4 Sr 2 Ca 2 Cu 3 O doped with about 20% of Bi
Sintered body target II of z composition (sintering at 800 ° C for 24 hours) (3) Bi 2 O 3 target III for Bi compensation (4) PbO target IV for Pb addition was used.

〔比較例1〕 最初、どのくらいBiを補償すべきかを決定するため
に、薄膜を単一のBSCCO焼結体ターゲットI(Bi:Sr:Ca:
Cu=2:2:2:3のターゲット組成)を用い、400℃に加熱さ
れたMgO基板上に単層法で約1μmの膜厚に堆積し、し
かる後、大気中875℃5時間熱処理した。
[Comparative Example 1] First, in order to determine how much Bi should be compensated, a thin film was formed into a single BSCCO sintered target I (Bi: Sr: Ca:
(Cu = 2: 2: 2: 3 target composition), deposited on a MgO substrate heated to 400 ° C. to a thickness of about 1 μm by a single layer method, and then heat-treated at 875 ° C. for 5 hours in air. .

熱処理した試料のX線回折パターンを第4図に示す。
第4図に示される如く、875℃5時間焼成後、Tceが10K
級のBi2Sr2CuOx及びTceが80K級のBi2Sr2CaCu2Oxの低Tc
相が形成される。
The X-ray diffraction pattern of the heat-treated sample is shown in FIG.
As shown in FIG. 4, after baking at 875 ° C. for 5 hours, Tce is 10K.
Low Tc of Bi 2 Sr 2 CuOx and Bi 2 Sr 2 CaCu 2 Ox of 80K class
A phase is formed.

EPMA法により決定された、薄膜組成は、第4図に示さ
れる如く、ターゲットの組成(Bi:Sr:Ca:Cu=2:2:2:3)
に比較し、薄膜の組成(Bi:Sr:Ca:Cu=0.63:1.00:1.07:
1.40)の如くBi分の減少が著しい。
The thin film composition determined by the EPMA method is, as shown in FIG. 4, the composition of the target (Bi: Sr: Ca: Cu = 2: 2: 2: 3)
The composition of the thin film (Bi: Sr: Ca: Cu = 0.63: 1.00: 1.07:
As shown in 1.40), the decrease of Bi is remarkable.

〔比較例2〕 単一のPbドープBSCCO焼結体ターゲットII(Bi:Pb:Sr:
Ca:Cu=2:0.4:2:2:3のターゲット組成)を用い400℃に
加熱されたMgO基板上に単層法で約1μm膜厚に堆積
し、しかる後大気中850℃12時間熱処理して超伝導体膜
を形成した。
Comparative Example 2 Single Pb-doped BSCCO sintered target II (Bi: Pb: Sr:
(Ca: Cu = 2: 0.4: 2: 2: 3 target composition), deposited on a MgO substrate heated to 400 ° C to a thickness of about 1 μm by a single layer method, and then heat-treated at 850 ° C for 12 hours in air Thus, a superconductor film was formed.

第5図はそのX線回折パターンを示す。第5図のX線
回折パターンに示される如く、850℃12時間焼成後にお
いても、薄膜の高Tc相の割合は低Tc相の割合に比べ小量
である。
FIG. 5 shows the X-ray diffraction pattern. As shown in the X-ray diffraction pattern of FIG. 5, the ratio of the high Tc phase of the thin film is smaller than that of the low Tc phase even after firing at 850 ° C. for 12 hours.

第6図はその電気抵抗の温度依存性を示す。オンセッ
ト温度は100K以上であるが、Tceは75Kである。
FIG. 6 shows the temperature dependence of the electric resistance. The onset temperature is over 100K, but Tce is 75K.

EPMA法により薄膜組成を決定した。薄膜はBiが不足
し、そして非化学量論組成である。又少量のPbが薄膜中
にドープされるのみであり、高Tc相形成の為には不十分
であることが判った。
The thin film composition was determined by the EPMA method. The films are Bi-deficient and non-stoichiometric. Also, it was found that only a small amount of Pb was doped in the thin film, which was insufficient for forming a high Tc phase.

〔実施例1〕 BSCCO(Bi2Sr2Ca2Cu3Oz)組成の焼結体ターゲットI
及びBi2O3ターゲットIIIの2つのターゲットを用い、40
0℃に加熱されたMgO基板上に、多層法で、Bi−Sr−Ca−
Cu−O層及びBi2O3層をマグネトロンスパッタリング法
により堆積した。
Example 1 BSCCO (Bi 2 Sr 2 Ca 2 Cu 3 Oz) sintered target I composition
And Bi 2 O 3 target III, 40
On a MgO substrate heated to 0 ° C, Bi-Sr-Ca-
Deposited by Cu-O layers and Bi 2 O 3 layer a magnetron sputtering method.

BiSrCaCuO層:層厚2000Å,層数4層 Bi2O3層:層厚150Å,層数3層 の積層構造を堆積し、全体の膜厚として約1μmとなる
ように堆積した。
BiSrCaCuO layer: 2000 mm thick, 4 layers Bi 2 O 3 layer: 150 mm thick, 3 layers stacked structure, deposited to a total thickness of about 1 μm.

しかる後大気中875℃5時間アニールした。このよう
にして形成された薄膜はEPMAによる組成分析の結果、Bi
は適切に補償されることができ、組成は非常に高Tc相の
化学量論組成に近いことが判った。
Thereafter, annealing was performed in air at 875 ° C. for 5 hours. The thin film thus formed was analyzed for composition by EPMA,
Can be adequately compensated and the composition is found to be very close to the stoichiometric composition of the high Tc phase.

しかしながら、薄膜のX線回折パターンによれば、高
Tc相はかろうじて検出されうる程度しか生成していない
ことが判った。
However, according to the X-ray diffraction pattern of the thin film,
The Tc phase was found to be barely detectable.

〔実施例2〕 BSCCO組成(Bi2Sr2Ca2Cu3Oz)の焼結体ターゲット
I、Bi2O3ターゲットIII及びPbOターゲットIVの3つの
ターゲットを用い、RFマグネトロンスパッタリング法に
より、400℃に加熱されたMgO基板上に多層法でBi−Sr−
Ca−Cu−O層、Bi2O3層及びPbO層を順次堆積する工程を
くり返して、第1図に示される酸化物堆積積層構造体を
形成した。
Example 2 400 ° C. by RF magnetron sputtering using three targets of a sintered body target I having a BSCCO composition (Bi 2 Sr 2 Ca 2 Cu 3 Oz), a Bi 2 O 3 target III and a PbO target IV. Bi-Sr- on a MgO substrate heated by
The steps of sequentially depositing a Ca—Cu—O layer, a Bi 2 O 3 layer, and a PbO layer were repeated to form an oxide deposited multilayer structure shown in FIG.

BiSrCaCuO層の各層厚は3000Å、Bi2O3層の各層厚は20
0Å、PbO層の各層厚は100Åとなるように堆積させ、積
層構造体全体の膜厚が約1μmとなるようにした。(な
お、Bi−Sr−Ca−Cu−O層、Bi2O3層、PbO層の層厚、積
層回数、積層構造は、熱処理温度、熱処理時間、目的と
する薄膜組成を勘案し、適宜選択・制御する。)しかる
後、大気中850℃所定時間(10分〜15時間)焼成した。
Each layer thickness of the BiSrCaCuO layer 3000Å, Bi 2 O 3 layers each layer thickness of 20
The PbO layer was deposited so as to have a thickness of 0 ° and a thickness of 100 °, and the thickness of the entire laminated structure was about 1 μm. (Note, Bi-Sr-Ca-Cu -O layers, Bi 2 O 3 layer, the thickness of the PbO layer, the number of stacked, layered structure, the heat treatment temperature, heat treatment time, taking into account the film composition of interest, appropriately selected・ Controlled.) Thereafter, firing was performed at 850 ° C. for a predetermined time (10 minutes to 15 hours) in the atmosphere.

本発明の多層法積層堆積法では薄膜が熱処理焼成され
つづけるにつれて、より多くのPbが蒸発し、そして、85
0℃3時間後、薄膜中には少量のPbしか残らないことが
判った。850℃10分間の焼成の間に、堆積後は非晶質で
あった酸化膜は反応した、そして、薄膜の1/3が高Tc相
であった。1時間焼成後、1/2以上が高Tc相であった。1
5時間焼成後、Pbは少量しか残っていないが、薄膜のほ
とんどは高Tc相であった。これはPbは高Tc相生成を促進
するが、高Tc相はPbを常には必要としないと云うことを
示唆する。
In the multilayer deposition method of the present invention, as the thin film continues to be heat-treated and baked, more Pb evaporates and 85
After 3 hours at 0 ° C., it was found that only a small amount of Pb remained in the thin film. During the calcination at 850 ° C. for 10 minutes, the oxide film, which was amorphous after deposition, reacted, and one third of the film was in the high Tc phase. After firing for 1 hour, more than 1/2 had a high Tc phase. 1
After calcination for 5 hours, only a small amount of Pb remained, but most of the thin film had a high Tc phase. This suggests that Pb promotes high Tc phase formation, but high Tc phase does not always require Pb.

本発明方法によりBiSrCaCuO層に隣接して、Bi2O3,PbO
の熱処理中における蒸発を補償するBi2O3層,PbO層を積
層するとともに、これらをくり返して積層堆積する方法
により得られた薄膜の電気抵抗の温度依存性は、第2図
に示す通りである。電気抵抗は温度とともに直線的に減
少し、110K近傍で急速に低下する。10分間焼成後のTce
値は94.5Kであり、1時間焼成後のTce値は106.5Kであ
る。15時間焼成に対し、オンセット温度はわずかにこれ
より高くなる。しかしTce値はほとんど同じであること
が判った。
According to the method of the present invention, Bi 2 O 3 , PbO
The temperature dependence of the electrical resistance of the thin film obtained by stacking a Bi 2 O 3 layer and a PbO layer for compensating for evaporation during the heat treatment and repeatedly stacking these layers is as shown in FIG. is there. The electric resistance decreases linearly with temperature, and decreases rapidly near 110K. Tce after firing for 10 minutes
The value was 94.5K, and the Tce value after firing for 1 hour was 106.5K. For a 15 hour bake, the onset temperature will be slightly higher. However, the Tce values turned out to be almost the same.

以上のように、従来の単一焼成ターゲット(ターゲッ
ト組成Bi2Sr2Ca2Cu3Oz)を用い、RFマグネトロンスパッ
タリング法で薄膜をMgO等の基板上に堆積し、しかる
後、所定温度で酸素雰囲気中熱処理した場合、形成され
る薄膜はBiが不足して非化学量論組成となる。又、高Tc
相生成を促進すると云われるPbをドーピングした、単一
焼結ターゲット(ターゲット組成Bi2Pb0.4Sr2Ca2Cu3O
z)を用い同様な工程で形成される薄膜はBi分が不足し
て非化学量論組成となる。又高Tc相生成に十分な量のPb
は堆積されえない。その結果上記従来の、単一ターゲッ
トを用いる単層法で形成される薄膜は多相となり高Tc相
超伝導体の単相化は達成されない。又高Tc相は生成した
としても小量である。
As described above, using a conventional single-fired target (target composition Bi 2 Sr 2 Ca 2 Cu 3 Oz), a thin film is deposited on a substrate such as MgO by RF magnetron sputtering, and then oxygen When heat treatment is performed in an atmosphere, the formed thin film lacks Bi and has a non-stoichiometric composition. Also high Tc
Single sintered target (target composition Bi 2 Pb 0.4 Sr 2 Ca 2 Cu 3 O) doped with Pb, which is said to promote phase formation
The thin film formed in the same process using z) has a short stoichiometric composition due to a shortage of Bi. In addition, sufficient Pb for high Tc phase formation
Cannot be deposited. As a result, the conventional thin film formed by the single-layer method using a single target has a multi-phase, and the single-phase of the high Tc phase superconductor cannot be achieved. The high Tc phase is small even if it is formed.

これに対し、本発明の、層状ペロブスカイト構造を有
する超伝導体を構成する元素を含む複合酸化物層を堆積
させる為に用いる焼結ターゲット(ターゲット組成Bi2S
r2Ca2Cu3Oz,Bi2Pb0.4Sr2Ca2Cu3Oz等)、超伝導体を構成
する元素の中で、Bi2O3のように、層堆積温度、あるい
は堆積層アニール温度条件で蒸気圧が高く、このような
処理工程で、蒸発してしまい、超伝導体組成から不足す
る成分を補償する、補償層を堆積させる為に用いる補償
成分用ターゲット(Bi2O3等)、及び超伝導体の高Tc相
成分としては必須成分ではないが、高Tc相生成を促進す
る作用を有するが、層堆積工程あるいは堆積層熱処理工
程の温度条件で蒸発しやすいPbOのような高Tc相生成促
進成分を十分に供給する層を堆積させる為に用いいる高
Tc相生成促進成分用ターゲット(PbO等)等、複数のタ
ーゲットを用い、基板上に多層に堆積させた後、熱処理
アニールする本発明の多層法により Bi成分を適切に補償することができ、形成される超
伝導体膜の組成を化学量論組成にすることができる。
On the other hand, the sintered target (target composition Bi 2 S) used for depositing the composite oxide layer containing the element constituting the superconductor having the layered perovskite structure of the present invention is used.
r 2 Ca 2 Cu 3 Oz, Bi 2 Pb 0.4 Sr 2 Ca 2 Cu 3 Oz), among the elements that make up the superconductor, such as Bi 2 O 3 , the layer deposition temperature or the deposited layer annealing temperature Vapor pressure is high under the conditions, and in such a processing step, a compensating component target (such as Bi 2 O 3 ) used for depositing a compensating layer that compensates for a component that evaporates and becomes insufficient from the superconductor composition. Although it is not an essential component as a high Tc phase component of the superconductor, it has an action to promote the generation of a high Tc phase, but has a high Tc phase content such as PbO which is easily evaporated at the temperature conditions of the layer deposition step or the heat treatment step of the deposited layer. The high level used to deposit layers that provide a sufficient supply of Tc phase formation promoting components
Bi-component can be appropriately compensated by the multilayer method of the present invention in which multiple targets such as a target for Tc phase generation promoting component (such as PbO) are deposited on a substrate in multiple layers and then heat-treated and annealed. The composition of the superconductor film to be formed can be a stoichiometric composition.

超伝導体の高Tc相生成を促進するのに十分な量のPb
をドーピングすることができる。
Sufficient Pb to promote high Tc phase formation in superconductors
Can be doped.

上記により、形成される薄膜の組成を超伝導体の高
Tc相の化学量論組成に近ずけることが出来、高Tc相生成
に促進剤として作用するPbを十分ドープすることが出来
るので、極めて短時間の熱処理で、高品質な高Tc相を呈
する超伝導体膜を形成することが出来る。
As described above, the composition of the formed thin film is
It can approach the stoichiometric composition of the Tc phase and can be sufficiently doped with Pb, which acts as an accelerator for the generation of a high Tc phase, so that it can exhibit a high-quality high Tc phase in a very short heat treatment. A superconductor film can be formed.

〔本発明の効果〕(Effect of the present invention)

以上説明したように本発明によれば、膜堆積中に膜か
ら蒸発し、欠損し、あるいは十分な添加ができないBi,P
b等の元素を厳密に組成制御し、高温相が生成するため
の組成に正確に合わせることが可能となり、短時間の焼
成でも、十分臨界温度が高く、十分大きな臨界電流密度
を有する層状ペロブスカイト型超伝導膜が形成できる。
As described above, according to the present invention, Bi, P which evaporates from the film during film deposition, is defective, or cannot be sufficiently added.
The layered perovskite type, which has a sufficiently high critical temperature and a sufficiently high critical current density, even if it is fired for a short time, can be strictly controlled in the composition of elements such as b, and precisely adjusted to the composition for generating a high-temperature phase. A superconducting film can be formed.

【図面の簡単な説明】 第1図は本発明の1実施例における酸化物堆積層の積層
構造を示す断面図、 第2図は本発明により作製した超伝導体膜の電気抵抗の
温度依存性を示す図、 第3図は本発明により作製した超伝導体膜の電流密度を
変化させた時の電気抵抗の温度依存性を示す図、 第4図は、従来法による単一BSCCO焼結体ターゲットI
を用いて作製した膜のX線回折パターンを示す図、 第5図は従来法による単一PbドープBSCCO焼結体ターゲ
ットIIを用いて作製した膜のX線回折パターンを示す
図、 第6図は従来法による単一PbドープBSCCO焼結体ターゲ
ットIIを用いて作製した膜の電気抵抗の温度依存性を示
す図である。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a cross-sectional view showing a laminated structure of an oxide deposition layer in one embodiment of the present invention, and FIG. 2 is a temperature dependence of electric resistance of a superconductor film manufactured according to the present invention. FIG. 3 is a diagram showing the temperature dependence of the electric resistance when the current density of the superconductor film manufactured according to the present invention is changed. FIG. 4 is a single BSCCO sintered body according to the conventional method. Target I
FIG. 5 is a view showing an X-ray diffraction pattern of a film manufactured by using the method. FIG. 5 is a view showing an X-ray diffraction pattern of a film manufactured by using a single Pb-doped BSCCO sintered body target II according to a conventional method. FIG. 4 is a diagram showing the temperature dependence of the electrical resistance of a film manufactured using a single Pb-doped BSCCO sintered target II according to a conventional method.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平2−44029(JP,A) 特開 平2−97427(JP,A) ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-2-44029 (JP, A) JP-A-2-97427 (JP, A)

Claims (11)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】基板上に層状ペロブスカイト構造を有する
Bi系酸化物超伝導体を構成する元素を含むBi−(Pb)−
Sr−Ca−Cu−O複合酸化物層を形成する複数回の工程
と、該Bi系酸化物超伝導体を構成する第一の元素又はそ
の酸化物,若しくは,該Bi系酸化物超伝導体形成に促進
剤として作用する第二の元素又はその酸化物であり,蒸
気圧が800℃において10-4Pa以上となる該第一及び/又
は該第二の元素又はその酸化物を高濃度に含有する補償
層を該Bi−(Pb)−Sr−Ca−Cu−O複合酸化物層に隣接
して形成する少なくとも1回の工程と、該Bi−(Pb)−
Sr−Ca−Cu−O複合酸化物層と該補償層の積層構造が形
成された基板を酸素を含む酸化雰囲気中焼成する工程を
有することを特徴とする超伝導膜の製造方法。(但し、
Bi−(Pb)−Sr−Ca−Cu−OはPbを含むか或いは含まな
い複合酸化物を表す)
1. A substrate having a layered perovskite structure on a substrate
Bi- (Pb)-containing elements that make up Bi-based oxide superconductors
A plurality of steps of forming an Sr—Ca—Cu—O composite oxide layer, a first element constituting the Bi-based oxide superconductor or an oxide thereof, or the Bi-based oxide superconductor A second element or an oxide thereof that acts as a promoter in the formation of the first and / or the second element or an oxide thereof having a vapor pressure of 10 -4 Pa or more at 800 ° C. At least one step of forming a compensating layer containing the Bi- (Pb) -Sr-Ca-Cu-O composite oxide layer adjacent to the Bi- (Pb) -Sr-Ca-Cu-O composite oxide layer;
A method for producing a superconducting film, comprising a step of firing a substrate on which a laminated structure of an Sr-Ca-Cu-O composite oxide layer and a compensation layer is formed in an oxidizing atmosphere containing oxygen. (However,
Bi- (Pb) -Sr-Ca-Cu-O represents a composite oxide containing or not containing Pb.)
【請求項2】上記Bi−(Pb)−Sr−Ca−Cu−O複合酸化
物層又は上記補償層をスパッタリング,蒸着,MBEの物理
気相堆積法、プラズマ法、化学気相堆積法により形成す
ることを特徴とする特許請求の範囲第1項記載の超伝導
膜の製造方法。
2. The Bi- (Pb) -Sr-Ca-Cu-O composite oxide layer or the compensation layer is formed by sputtering, vapor deposition, physical vapor deposition of MBE, plasma, or chemical vapor deposition. The method for producing a superconducting film according to claim 1, wherein
【請求項3】上記焼成を大気中又は酸素分圧が1気圧以
下の雰囲気中750℃〜890℃の温度で成すことを特徴とす
る特許請求の範囲第1項記載の超伝導膜の製造方法。
3. A method for producing a superconducting film according to claim 1, wherein said calcination is carried out at a temperature of 750 ° C. to 890 ° C. in the atmosphere or in an atmosphere having an oxygen partial pressure of 1 atm or less. .
【請求項4】上記Bi−(Pb)−Sr−Ca−Cu−O複合酸化
物層をBi2Sr2Ca2Cu3Oz組成の焼結体ターゲット、又は、
Bi2Pb0.4Sr2Ca2Cu3Oz組成の焼結体ターゲットを用いRF
マグネトロンスパッタリングにより形成することを特徴
とする特許請求の範囲第1項記載の超伝導膜の製造方
法。
4. A sintered body target of a Bi 2 Sr 2 Ca 2 Cu 3 O z composition, wherein the Bi— (Pb) —Sr—Ca—Cu—O composite oxide layer is
RF using sintered target of Bi 2 Pb 0.4 Sr 2 Ca 2 Cu 3 O z composition
2. The method for producing a superconducting film according to claim 1, wherein the superconducting film is formed by magnetron sputtering.
【請求項5】上記補償層がPbO,Pb,Bi2O3,Biであること
を特徴とする特許請求の範囲第1項記載の超伝導膜の製
造方法。
5. The method according to claim 1, wherein said compensation layer is made of PbO, Pb, Bi 2 O 3 , Bi.
【請求項6】上記補償層がBi2O3層でありBi2O3ターゲッ
トを用いRFマグネトロンスパッタリングにより形成する
ことを特徴とする特許請求の範囲第1項記載の超伝導膜
の製造方法。
6. The method according to claim 1, wherein said compensation layer is a Bi 2 O 3 layer and is formed by RF magnetron sputtering using a Bi 2 O 3 target.
【請求項7】上記補償層がPbO層でありPbOターゲットを
用いRFマグネトロンスパッタリングにより形成すること
を特徴とする特許請求の範囲第1項記載の超伝導膜の製
造方法。
7. The method according to claim 1, wherein the compensation layer is a PbO layer and is formed by RF magnetron sputtering using a PbO target.
【請求項8】上記基板の直上と上記積層構造の最上層に
上記Bi−(Pb)−Sr−Ca−Cu−O複合酸化物層を形成す
ることを特徴とする特許請求の範囲第1項記載の超伝導
膜の製造方法。
8. The composite oxide layer according to claim 1, wherein the Bi- (Pb) -Sr-Ca-Cu-O composite oxide layer is formed immediately above the substrate and on the uppermost layer of the laminated structure. The method for producing a superconducting film according to the above.
【請求項9】上記Bi−(Pb)−Sr−Ca−Cu−O複合酸化
物層及び/又は上記補償層を上記焼成温度より低い温度
に加熱された基板上に形成することを特徴とする特許請
求の範囲第1−8項記載の超伝導膜の製造方法。
9. The method according to claim 1, wherein the Bi- (Pb) -Sr-Ca-Cu-O composite oxide layer and / or the compensation layer are formed on a substrate heated to a temperature lower than the firing temperature. 9. The method for manufacturing a superconducting film according to claim 1-8.
【請求項10】上記Bi−(Pb)−Sr−Ca−Cu−O複合酸
化物層及び/又は上記補償層を400℃に加熱されたMgO単
結晶基板上に形成することを特徴とする特許請求の範囲
第9項記載の超伝導膜の製造方法。
10. A patent wherein the Bi- (Pb) -Sr-Ca-Cu-O composite oxide layer and / or the compensation layer is formed on a MgO single crystal substrate heated to 400 ° C. A method for manufacturing a superconducting film according to claim 9.
【請求項11】上記Bi系酸化物超伝導体が一般式Bi2(S
r1-xCaxmCunOz[但し,0<x<1,(m=3,n=2)又は
(m=4,n=3),0<z]で表される超伝導物質である
ことを特徴とする特許請求の範囲第1−10項記載の超伝
導膜の製造方法。
11. The Bi-based oxide superconductor of the general formula Bi 2 (S
r 1-x Ca x ) m Cu n O z [where 0 <x <1, (m = 3, n = 2) or (m = 4, n = 3), 0 <z] The method for producing a superconducting film according to claim 1, wherein the method is a conductive material.
JP63301637A 1988-11-29 1988-11-29 Superconducting film manufacturing method Expired - Fee Related JP2748457B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP63301637A JP2748457B2 (en) 1988-11-29 1988-11-29 Superconducting film manufacturing method
CA002003850A CA2003850C (en) 1988-11-29 1989-11-24 Process for preparing a perovskite type superconductor film
EP89312400A EP0372808B1 (en) 1988-11-29 1989-11-29 Process for preparing a perovskite type superconductor film
KR1019890017434A KR930008648B1 (en) 1988-11-29 1989-11-29 Perovskite super conductor readiness process
DE68928256T DE68928256T2 (en) 1988-11-29 1989-11-29 Process for producing a superconducting thin film of the perovskite type
US07/565,209 US5141917A (en) 1988-11-29 1990-08-09 Multilayer deposition method for forming Pb-doped Bi-Sr-Ca-Cu-O Superconducting films
US08/378,087 US5585332A (en) 1988-11-29 1995-01-25 Process for preparing a perovskite Bi-containing superconductor film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63301637A JP2748457B2 (en) 1988-11-29 1988-11-29 Superconducting film manufacturing method

Publications (2)

Publication Number Publication Date
JPH02149401A JPH02149401A (en) 1990-06-08
JP2748457B2 true JP2748457B2 (en) 1998-05-06

Family

ID=17899339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63301637A Expired - Fee Related JP2748457B2 (en) 1988-11-29 1988-11-29 Superconducting film manufacturing method

Country Status (1)

Country Link
JP (1) JP2748457B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0244029A (en) * 1988-07-29 1990-02-14 Nec Corp Production of thin oxide superconducting film
JPH0244024A (en) * 1988-07-29 1990-02-14 Nec Corp Production of thin oxide superconducting film
JPH0269320A (en) * 1988-09-01 1990-03-08 Fujikura Ltd Production of thallium type superconductor
JPH0297427A (en) * 1988-09-30 1990-04-10 Nec Corp Production of oxide superconducting thin film
JPH0297419A (en) * 1988-10-03 1990-04-10 Matsushita Electric Ind Co Ltd Production of thin film superconductor

Also Published As

Publication number Publication date
JPH02149401A (en) 1990-06-08

Similar Documents

Publication Publication Date Title
EP0430737A2 (en) A superconducting thin film
JP2933225B2 (en) Metal oxide material
US4983575A (en) Superconducting thin films made of stacked composite oxide layers
KR930008648B1 (en) Perovskite super conductor readiness process
EP0427640A1 (en) Tunnel junction device using compound oxide superconductor material
JP2748457B2 (en) Superconducting film manufacturing method
JPS63242532A (en) Super conductor and its manufacture
EP0358545B1 (en) Improvement in a process for producing thallium type superconducting thin film
EP0357500B1 (en) Process for preparing a bismuth-type superconducting thin film
EP0344406B1 (en) Tl-based copper oxide superconductor
EP0590560A2 (en) Thin-film superconductor and method of fabricating the same
US5296455A (en) Process for preparing superconductor of compound oxide of Bi-Sr-Ca-Cu system
JP3251093B2 (en) Superconductor and method of manufacturing the same
JP2741277B2 (en) Thin film superconductor and method of manufacturing the same
JP3058515B2 (en) Superconducting Josephson device and its manufacturing method
JP2669052B2 (en) Oxide superconducting thin film and method for producing the same
JPH01219023A (en) Production of thin superconductor film
JPH03105807A (en) Laminate membrane of oxide superconductor and oxide magnetic substance
JP2616986B2 (en) Manufacturing method of Tl based superconductor laminated film
EP0510201B1 (en) Method of making superconductive film
JP2920496B2 (en) Method of forming oxide dispersed particles
JP2594271B2 (en) Superconductor thin film manufacturing apparatus and superconductor thin film manufacturing method
JPH07100609B2 (en) Method of manufacturing thin film superconductor
JP2555477B2 (en) Superconducting thin film and manufacturing method thereof
JPH02258629A (en) Preparation of bi-pb-sr-ca-cu-o superconductor thin film

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees