JPH0244029A - Production of thin oxide superconducting film - Google Patents

Production of thin oxide superconducting film

Info

Publication number
JPH0244029A
JPH0244029A JP19149988A JP19149988A JPH0244029A JP H0244029 A JPH0244029 A JP H0244029A JP 19149988 A JP19149988 A JP 19149988A JP 19149988 A JP19149988 A JP 19149988A JP H0244029 A JPH0244029 A JP H0244029A
Authority
JP
Japan
Prior art keywords
film
superconducting
substrate
oxide
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19149988A
Other languages
Japanese (ja)
Inventor
Junichi Fujita
淳一 藤田
Tsutomu Yoshitake
務 吉武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP19149988A priority Critical patent/JPH0244029A/en
Publication of JPH0244029A publication Critical patent/JPH0244029A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To easily produce a superconducting film having a single phase by forming an amorphous Bi2O3-Sr2Ca2Cu3Ox film having a multilayered periodic structure on a substrate and by heat-treating this film. CONSTITUTION:A Bi2O3 target 3 and a Sr-Ca-Cu-O (2:2:3 ratio of Sr:Ca:Cu) target 4 are arranged in a vacuum chamber 12 provided with Kaufmann type ion sources 1, 2. The scattering range of sputtered particles 3', 4' is limited with a top plate 5 and an amorphous Bi2O3-Sr2Ca2Cu3Ox film having a multilayered periodic structure is formed on a substrate by alternately opening shutters 6, 7. The film is then heat-treated at a prescribed temp. in an oxygen atmosphere to obtain a thin superconducting film having a high superconduction transition temp. of the 110K order. This superconducting film having a single phase is easily produced.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、酸化物超伝導薄膜に関するものである。[Detailed description of the invention] (Industrial application field) The present invention relates to oxide superconducting thin films.

(従来技術) 超伝導性薄膜はジョセフソン接合を形成する事でジョセ
フソン素子や量子磁気干渉計を製造するためには欠かせ
ない物で従来、様々な種類の薄膜が作られた。当初鉛な
どを用いたジョセフソン素子では単純なスパッタリング
、もしくは真空蒸着法により製造された。鉛系薄膜は冷
却剤として液体ヘリウムを用いるがこの沸点、4.2K
に対し、薄膜の臨界温度が7.2にと温度マージンが小
さい事、接合のばらつきが多く安定な動作が得られない
などの欠点があった。このため鉛よりも高い超伝導臨界
温度を持つニオブ(Nb)系薄膜か用いられるようにな
った。ニオブ薄膜もしくは窒化ニオブ薄膜はそれぞれ9
.23に、 15.7にの超伝導臨界温度を持つ。この
ニオブ又は窒化ニオブ薄膜は超高真空蒸着又はニオブタ
ーゲットに対するアルゴンと窒素ガスによる反応性スパ
ッタリングなどによって良質膜が得られた。以上はすべ
て冷却剤として液体Heを用いなければならない超伝導
薄膜であったが1987年2月米国ヒユーストン大学の
ボール・チュウ等により発見されたY−Ba−Cu系の
酸化物超伝導体は超伝導転移温度93Kを持ち、液体窒
素を冷却剤として超伝導が実現された物質として大いに
注目された。
(Prior art) Superconducting thin films are indispensable for manufacturing Josephson devices and quantum magnetic interferometers by forming Josephson junctions, and various types of thin films have been made in the past. Initially, Josephson elements using materials such as lead were manufactured by simple sputtering or vacuum evaporation. Lead-based thin films use liquid helium as a coolant, but its boiling point is 4.2K.
On the other hand, there are drawbacks such as the critical temperature of the thin film being 7.2, which is a small temperature margin, and the large number of variations in bonding, making it difficult to obtain stable operation. For this reason, niobium (Nb)-based thin films, which have a higher superconducting critical temperature than lead, have come to be used. Niobium thin film or niobium nitride thin film are each 9
.. 23, and has a superconducting critical temperature of 15.7. This niobium or niobium nitride thin film was obtained by ultra-high vacuum evaporation or reactive sputtering using argon and nitrogen gas against a niobium target. All of the above were superconducting thin films that required the use of liquid He as a coolant, but the Y-Ba-Cu based oxide superconductor discovered in February 1987 by Ball Chu et al. It attracted a lot of attention as a material with a conduction transition temperature of 93K, which achieved superconductivity using liquid nitrogen as a coolant.

さらに1988年1月通産省金属材料技術研究所前田等
により発見されたB1−8r−Cu−Cu系酸化物超伝
導体は110Kを示す超伝導相を含み、薄膜デバイス等
への応用がさらに現実的なものとなってきた。
Furthermore, the B1-8r-Cu-Cu-based oxide superconductor discovered by Maeda et al. at the Institute of Metal Materials Research, Ministry of International Trade and Industry in January 1988, contains a superconducting phase exhibiting 110K, making its application to thin film devices even more realistic. It has become a thing.

しかし、バルクの焼結体を高温の熱平衡で作製する方法
では、単一の110に超伝導相を得る事がきわめて困難
であり、等2の80に超伝導相の混入がさ′けられなか
った。このBi系酸化物超伝導体は、Y系酸化物超伝導
体に比べ、酸素欠損による構造変化がない事、また水分
等などの雰囲気に対して安定であるなどの特性を持ちデ
バイス応用上極めて有望である。このBi系超伝導薄膜
の製造例としては、ジャパニーズ・ジャーナル・オプ・
アプライド・フィジックス(JJAP 27 No、 
4(1988) L643〜645)に高周波マグネト
ロンスパッタを用いた方法が述べられている。
However, in the method of producing a bulk sintered body in high-temperature thermal equilibrium, it is extremely difficult to obtain a superconducting phase in a single 110, and the superconducting phase cannot be avoided in the 80 of 2. Ta. Compared to Y-based oxide superconductors, this Bi-based oxide superconductor has characteristics such as no structural change due to oxygen vacancies and is stable against atmospheres such as moisture, making it extremely suitable for device applications. It's promising. An example of manufacturing this Bi-based superconducting thin film is given in Japanese Journal Op.
Applied Physics (JJAP 27 No.
4 (1988) L643-645) describes a method using high-frequency magnetron sputtering.

この装置は第2図に示すように単一のB1−8r−Ca
−Cu−0の化合物セラミックスターゲット16を用い
、これをスパッタし、基板温度200〜600°C程度
の酸化マグネシウム基板に成膜する方法である。8は基
板ホルダー、10はゲートバルブ、11はポンプ、12
は真空チャンバーである。基板温度200°C程度の低
温基板を用いた場合、成膜直後の膜はアモルファス状で
あり半導体的電気特性の膜である。この膜を890°C
程度の高温酸素雰囲気中でアニールする事に・より、8
0に程度の超伝導特性を示す薄膜が得られるが110に
の超伝導転移温度を示す結晶構造は得られない。また6
00°C程度の高温基板を用いた場合には、成膜直後で
も80に程度で超伝導を示す膜が得られ、さらにこれを
890°C程度の高温酸素雰囲気中でアニールする事で
、部分的に110に超伝導相が得られるものの最終的な
零抵抗はやはり80に程度になってしまう。これはBi
、 Sr、 Ca、 Cu、 Oの各原子が規則的に層
状構造を形成している110にの超伝導結晶構造へ5種
類の原子がアモルファス状に混じった状態から熱平衡的
に移行する事が非常に困難である事を示している。また
、たとえ、110に超伝導相が出現しても、80に超伝
導相との混存した薄膜となってしまい、その膜の超伝導
臨界電流が上がらない。
This device consists of a single B1-8r-Ca as shown in Figure 2.
This method uses a -Cu-0 compound ceramic target 16 and sputters it to form a film on a magnesium oxide substrate at a substrate temperature of about 200 to 600°C. 8 is a substrate holder, 10 is a gate valve, 11 is a pump, 12
is a vacuum chamber. When a low-temperature substrate with a substrate temperature of about 200° C. is used, the film immediately after deposition is amorphous and has semiconductor-like electrical characteristics. This film was heated to 890°C.
By annealing in a high temperature oxygen atmosphere of about 8.
Although a thin film exhibiting superconductivity on the order of 0 is obtained, a crystal structure exhibiting a superconducting transition temperature of 110 is not obtained. Also 6
When using a high-temperature substrate at about 00°C, a film exhibiting superconductivity at about 80°C can be obtained even immediately after film formation, and by annealing it in a high-temperature oxygen atmosphere at about 890°C, In general, although a superconducting phase can be obtained at 110, the final zero resistance is still around 80. This is Bi
, Sr, Ca, Cu, and O atoms form a regular layered structure to form a superconducting crystal structure of 110. It is extremely difficult to transition from an amorphous mixture of five types of atoms in thermal equilibrium. This shows that it is difficult to Furthermore, even if a superconducting phase appears at 110, the film becomes a thin film containing a superconducting phase at 80, and the superconducting critical current of the film does not increase.

また膜中の各グレインで超伝導特性が異なるために膜に
微細加工を施しジョセフソンジャンクション等の超伝導
デバイスを形成した際に、デバイス特性の不均質を生じ
るなどの問題がある。さらに、熱処理温度が900°C
程度と非常に高く工業生産プロセス上大きな障害となる
Furthermore, since each grain in the film has different superconducting properties, there are problems such as non-uniformity in device properties when the film is microfabricated to form a superconducting device such as a Josephson junction. Furthermore, the heat treatment temperature is 900°C.
The degree of occurrence is very high and it becomes a major hindrance in the industrial production process.

(発明が解決しようとする問題点) 単一ターゲットのスパッタもしくは、共蒸着等のにより
、アモルファス又は、不完全結晶相を高温アニールする
事により、Bi系超伝導性膜を得る方法では、必然的に
110に相と80に相の混合相が形成される。またこの
熱処理温度は880〜900°C程度の高温処理が必要
で、デバイス作製プロセス上好ましくない。さらに、熱
処理後の膜はおおむねC軸配向膜となるが、その面内方
位はランダムである。
(Problems to be Solved by the Invention) In the method of obtaining a Bi-based superconducting film by annealing an amorphous or incompletely crystalline phase at high temperature by single-target sputtering or co-evaporation, A mixed phase of a phase at 110 and a phase at 80 is formed. Further, this heat treatment temperature requires high temperature treatment of about 880 to 900°C, which is not preferable in terms of the device manufacturing process. Furthermore, the film after heat treatment becomes a C-axis oriented film, but its in-plane orientation is random.

本発明の目的は、110に単一相かつC軸配向でエピタ
キシャル成長した、B1−8r−Ca−Cu−0系酸化
物超伝導膜を従来法よりも低温でかつ容易に製造する方
法を提供することにある。
An object of the present invention is to provide a method for manufacturing a B1-8r-Ca-Cu-0 based oxide superconducting film epitaxially grown in a single phase and C-axis orientation at a lower temperature and easier than conventional methods. There is a particular thing.

(問題を解決するための手段) 本発明は、酸化ビスマス(Bi203)とストロンチウ
ム・カルシウム・銅酸化物(Sr−Ca−Cu−Ox)
を蒸着源として、酸化マグネシウム基板上にBi203
(たとえば4人)、とSr−Ca−Cu−Ox(14人
)のアモルファスの多層周期構造を作製し、後にこの膜
をアニールする事により、超伝導転移温度110にの単
一相酸化物超伝導薄膜を得る酸化物超伝導薄膜の製造方
法であり、さらに酸化マグネシウム基板上に第一層とし
て岩塩型結晶構造の酸化ビスマスエピタキシャル層を形
成し、この後前記周期構造を形成し、最終熱処理後にa
、 b、 c軸のそろったエピタキシャル酸化物超伝導
薄膜を製造する方法である。従来単一ターゲットのスパ
ッタリングもししくは共蒸着で行なわれてきたB1−8
r−Ca−Cu−0酸化物超伝導膜では、その超伝導相
が18人の周期構造を持ち、融点が約900°C111
0に超伝導相が約890°Cで形成され、80に超伝導
相は840°C程度で形成される。このため通常のセラ
ミックス焼成時には80に超伝導相が先に形成され、融
点ぎりぎりの温度で110に超伝導相とが競合して成長
する。本発明においては、薄膜の成長を単原子層のオー
ダーで制御し、最初から110に超伝導相と同じ周期の
アキルファス周期構造を膜に持たせる事により、熱処理
過程における80に相と110に相の競合をさけ、単一
相の110に相超伝導薄膜を得、また同時に結晶構造形
成に要する原子移動距離を少なくする事で、その必要熱
処理温度を下げている。
(Means for solving the problem) The present invention is based on bismuth oxide (Bi203) and strontium-calcium-copper oxide (Sr-Ca-Cu-Ox).
Bi203 was deposited on a magnesium oxide substrate using
(for example, 4 people) and Sr-Ca-Cu-Ox (14 people), and by later annealing this film, a single-phase oxide superstructure with a superconducting transition temperature of 110 This is a method for producing an oxide superconducting thin film to obtain a conductive thin film, in which a bismuth oxide epitaxial layer with a rock salt type crystal structure is formed as a first layer on a magnesium oxide substrate, after which the periodic structure is formed, and after final heat treatment. a
This is a method for producing an epitaxial oxide superconducting thin film in which the , b, and c axes are aligned. B1-8, which has conventionally been performed by single target sputtering or co-evaporation
In the r-Ca-Cu-0 oxide superconducting film, the superconducting phase has an 18-person periodic structure and the melting point is about 900°C111
At 0, a superconducting phase is formed at about 890°C, and at 80, a superconducting phase is formed at about 840°C. For this reason, during normal firing of ceramics, the superconducting phase is formed first at 80, and the superconducting phase grows competitively at 110 at a temperature close to the melting point. In the present invention, the growth of the thin film is controlled on the order of a monoatomic layer, and by making the film have an Akylphus periodic structure with the same period as the 110 superconducting phase from the beginning, the 80 phase and the 110 phase are phased in the heat treatment process. By avoiding the competition between 110 and 110, a phase superconducting thin film is obtained in a single-phase 110, and at the same time, the required heat treatment temperature is lowered by reducing the distance of atomic movement required to form a crystal structure.

さらに酸化マグネシウム基板上にバッファー層としてB
i2O3をヘテロエピタキシャル成長させておく事によ
り、基板上に形成された(Bi−0)/(Sr−Ca−
Cu−0)のアモルファス多層膜は熱処理過程において
エピタキシャル単結晶薄膜とすることができる。
Furthermore, B as a buffer layer on the magnesium oxide substrate.
By heteroepitaxially growing i2O3, (Bi-0)/(Sr-Ca-
The amorphous multilayer film of Cu-0) can be made into an epitaxial single crystal thin film through a heat treatment process.

(実施例) この多層周期構造薄膜を製造するために用いたデュアル
のイオンビームスパッタ装置を第1図に示す。真空チャ
ンバー12は2基のカウフマン型イオン源1,2を装備
し、それぞれBi2O3ターゲット3.Sr−Ca−C
u−0(組成比2:2:3)ターゲット4をスパッタす
る。スパッタされた粒子3’、 4’は天板5で発散視
野が制限され、さらに真空チャンバー外部から駆動され
るシャッター6.7及び水晶振動子膜厚計15により膜
厚をモニターしながらシャッターの交互開閉により、多
層周期構造が形成される。9はヒータ、13は電子銃、
14はスクリーンである。この時、チャンバー内の真空
度は4X10−’torr、基板付近は酸化促進のため
に、酸素ガスを吹き付は局部的に2X10=torrの
酸素分圧した。基板温度は200°Cとし、基板面内の
膜厚分布を極力さけるように60rppmの回転を与え
ている。チャンバー内はニュートラライザでイオン源か
らでるAr+を中和している。イオン源1の出力を1.
000V 70mAとした時にBi2O3の成膜速度は
0.51/seeであり、イオン源2の出力を100O
V 120mAとした時のSr−Ca−Cu−Oxの成
膜速度はLA/secであった。
(Example) FIG. 1 shows a dual ion beam sputtering apparatus used to manufacture this multilayer periodic structure thin film. The vacuum chamber 12 is equipped with two Kaufmann type ion sources 1 and 2, each with a Bi2O3 target 3. Sr-Ca-C
A u-0 (composition ratio 2:2:3) target 4 is sputtered. The sputtered particles 3', 4' are restricted in their divergent field of view by the top plate 5, and the film thickness is monitored by shutters 6 and 7 driven from the outside of the vacuum chamber and by a crystal resonator film thickness meter 15, and the shutters are rotated alternately. A multilayer periodic structure is formed by opening and closing. 9 is a heater, 13 is an electron gun,
14 is a screen. At this time, the degree of vacuum in the chamber was 4X10-'torr, and oxygen gas was locally blown at a partial pressure of 2X10-torr near the substrate to promote oxidation. The substrate temperature was 200° C., and rotation was applied at 60 rpm to avoid as much as possible the film thickness distribution within the substrate surface. Inside the chamber, a neutralizer neutralizes Ar+ emitted from the ion source. Set the output of ion source 1 to 1.
When the voltage is 000V and 70mA, the film formation rate of Bi2O3 is 0.51/see, and the output of the ion source 2 is 100O
The film formation rate of Sr-Ca-Cu-Ox when V was 120 mA was LA/sec.

以上の条件で、Bi層から順に(Bi203)層4人(
Sr−Ca−Cu−0)層14人を総計200周期を酸
化マグネシウム(100)面上に成膜した。第3図にこ
の成膜直後のX線回折パタンを示す。膜はX線回折で低
角側に2次程度までの長周期による反射が見られ、(B
i−0)と(Sr−Ca−Cu−0)層による周期長約
18人の多層周期構造が作られている事が分かる。また
X線中角回折領域にはハローパターンが観測されること
から膜はアモルファスの多層周期構造膜である。このア
モルファス多層周期構造膜を酸素雰囲気中で800°C
の熱処理を1時間行うことにより超伝導転移温度(零抵
抗)107Kを示す薄膜が得られた。熱処理後の膜のX
線回折パターンを第4図に示す。X線回折パターンは3
7人を基本周期とするC軸配向を示し、各ピークは(0
,On)で指数付けされ、他の異相は認められない事か
ら単一相の超伝導薄膜となっている事が分かる。同時に
従来法でbulkセラミックスの合成と同じ890°C
の熱処理が必要であったのに対し、800°Cの熱処理
で110に超伝導薄膜が合成された。
Under the above conditions, 4 people from Bi layer (Bi203) layer (
A total of 200 cycles of 14 Sr-Ca-Cu-0) layers were formed on a magnesium oxide (100) surface. FIG. 3 shows the X-ray diffraction pattern immediately after this film formation. X-ray diffraction of the film shows long-period reflections up to the second order on the low-angle side, (B
It can be seen that a multilayer periodic structure with a periodic length of approximately 18 people is formed by the (i-0) and (Sr-Ca-Cu-0) layers. Further, since a halo pattern is observed in the X-ray medium angle diffraction region, the film is an amorphous multilayer periodic structure film. This amorphous multilayer periodic structure film was heated to 800°C in an oxygen atmosphere.
A thin film exhibiting a superconducting transition temperature (zero resistance) of 107 K was obtained by performing the heat treatment for 1 hour. X of the film after heat treatment
The line diffraction pattern is shown in FIG. The X-ray diffraction pattern is 3
It shows a C-axis orientation with a fundamental period of 7 people, and each peak is (0
, On), and no other different phases are observed, indicating that it is a single-phase superconducting thin film. At the same time, the temperature is 890°C, which is the same as bulk ceramic synthesis using the conventional method.
However, a superconducting thin film was synthesized in 110 by heat treatment at 800°C.

次に、酸化マグネシウム基板上にバッファー層として酸
化ビスマスをヘテロエピタキシャル成長させておく。本
実施例では基板温度を450°Cとし、基板付近の酸素
ガス分圧を2 X 1O−2torrとし、500A成
長される。この場合γ型立方晶酸化ビスマスが、マネシ
ア基板の方位と一致して成長する。この後基板温度を下
げ前述の例に従い、アモルファス多層周期構造膜を成膜
し、熱処理を加える事で、エピタキシャル成長したB1
−8r−Ca−Cu−0系110に超伝導薄膜か得られ
た。
Next, bismuth oxide is heteroepitaxially grown as a buffer layer on the magnesium oxide substrate. In this example, the substrate temperature is 450° C., the oxygen gas partial pressure near the substrate is 2×1O−2 torr, and 500A is grown. In this case, γ-type cubic bismuth oxide grows in alignment with the orientation of the manesia substrate. After that, the substrate temperature was lowered, and an amorphous multilayer periodic structure film was formed according to the above example, and heat treatment was applied to form the epitaxially grown B1.
A superconducting thin film was obtained in -8r-Ca-Cu-0 system 110.

(発明の効果) 以上のように本発明を適応する事により110にで超伝
導を示しかつ単一相からなるエピタキシャル膜が容易に
得られ実用上非常に有効である。
(Effects of the Invention) As described above, by applying the present invention, an epitaxial film exhibiting superconductivity in 110 and consisting of a single phase can be easily obtained, which is very effective in practice.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を実施した、デュアルイオン源によるイ
オンビームスパッタ装置の構造概略図である。第2図は
従来用いられている高周波マグネトロンスパッタ装置で
ある。第3.4図はX線回折パターンを示す図である。 図において、 1,2・・・イオン源、3・・・Bi2O3ターゲット
、4・・・Sr−Ca−Cu酸化物ターゲット、5・・
・天板、6,7・・・シャッター、8・・・基板ホルダ
ー、9・・・ヒーター、10・・・ゲートバルブ、11
・・・真空排気ポンプ、12・・・真空チャンバー、1
3100反射高エネルギー電子線回折用電子銃、14・
・・スクリーン、15・・・水晶振動子膜厚モニタ、1
6−Bi−8r−Ca−Cu酸化物ターゲット。
FIG. 1 is a schematic structural diagram of an ion beam sputtering apparatus using dual ion sources, in which the present invention is implemented. FIG. 2 shows a conventionally used high frequency magnetron sputtering device. Figure 3.4 shows the X-ray diffraction pattern. In the figure, 1, 2... Ion source, 3... Bi2O3 target, 4... Sr-Ca-Cu oxide target, 5...
・Top plate, 6, 7... Shutter, 8... Board holder, 9... Heater, 10... Gate valve, 11
... Vacuum pump, 12 ... Vacuum chamber, 1
3100 reflection high energy electron diffraction electron gun, 14.
...Screen, 15...Crystal resonator film thickness monitor, 1
6-Bi-8r-Ca-Cu oxide target.

Claims (2)

【特許請求の範囲】[Claims] (1)酸化ビスマス(Bi_2O_3)とストロンチウ
ム・カルシウム・銅酸化物(Sr_2Ca_2Cu_3
O_x)をターゲットとして基板上にアモルファスのB
i_2O_3とSr_2Ca_2Cu_3O_xによる
多層周期構造を作製し、後にこの膜を熱処理する事によ
り単一相酸化物超伝導薄膜を得ることを特徴とする酸化
物超伝導薄膜の製造方法。
(1) Bismuth oxide (Bi_2O_3) and strontium/calcium/copper oxide (Sr_2Ca_2Cu_3)
Amorphous B is deposited on the substrate using O_x) as a target.
A method for producing an oxide superconducting thin film, which comprises producing a multilayer periodic structure of i_2O_3 and Sr_2Ca_2Cu_3O_x, and then heat-treating this film to obtain a single-phase oxide superconducting thin film.
(2)酸化マグネシウム基板上に第一層としてγ相立方
晶のBi酸化物エピタキシャル層を形成し、この上にア
モルファスのSr_2Ca_2Cu_3O_xとBi_
2O_3の多層周期構造を作製し、熱処理することによ
り、エピタキシャル酸化物超伝導薄膜を得ることを特徴
とする酸化物超伝導薄膜の製造方法。
(2) A γ-phase cubic Bi oxide epitaxial layer is formed as a first layer on a magnesium oxide substrate, and amorphous Sr_2Ca_2Cu_3O_x and Bi_
A method for producing an oxide superconducting thin film, which comprises producing an epitaxial oxide superconducting thin film by preparing a 2O_3 multilayer periodic structure and heat-treating it.
JP19149988A 1988-07-29 1988-07-29 Production of thin oxide superconducting film Pending JPH0244029A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19149988A JPH0244029A (en) 1988-07-29 1988-07-29 Production of thin oxide superconducting film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19149988A JPH0244029A (en) 1988-07-29 1988-07-29 Production of thin oxide superconducting film

Publications (1)

Publication Number Publication Date
JPH0244029A true JPH0244029A (en) 1990-02-14

Family

ID=16275667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19149988A Pending JPH0244029A (en) 1988-07-29 1988-07-29 Production of thin oxide superconducting film

Country Status (1)

Country Link
JP (1) JPH0244029A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02149401A (en) * 1988-11-29 1990-06-08 Fujitsu Ltd Preparation of superconducting film
JP2010507506A (en) * 2006-11-03 2010-03-11 ザ プロクター アンド ギャンブル カンパニー Water-soluble substrate with dissolution resistance before immersion in water

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02149401A (en) * 1988-11-29 1990-06-08 Fujitsu Ltd Preparation of superconducting film
JP2010507506A (en) * 2006-11-03 2010-03-11 ザ プロクター アンド ギャンブル カンパニー Water-soluble substrate with dissolution resistance before immersion in water

Similar Documents

Publication Publication Date Title
Lathrop et al. Production of YBa2Cu3O7− y superconducting thin films in situ by high‐pressure reactive evaporation and rapid thermal annealing
JP2004071359A (en) Oxide superconductor wire material
JPH0297427A (en) Production of oxide superconducting thin film
JP3289134B2 (en) Low anisotropy high temperature superconductor based on uncertainty principle and its manufacturing method
JPH0244029A (en) Production of thin oxide superconducting film
JP2501620B2 (en) Preparation method of superconducting thin film
JP2501035B2 (en) Superconducting thin film
US5296455A (en) Process for preparing superconductor of compound oxide of Bi-Sr-Ca-Cu system
JPH0244024A (en) Production of thin oxide superconducting film
US5236894A (en) Process for producing a superconducting thin film at relatively low temperature
JPH04275470A (en) Product composed of superconductor/insulator structure and manufacture of said product
Naylor et al. Melt processing of Bi-2212 on MgO and MgO-buffered substrates
JPH02120229A (en) Production of superconducting thin film of oxide
JPH02120231A (en) Production of superconducting thin film of oxide
JPH02120232A (en) Production of superconducting thin film of oxide
JP3188912B2 (en) Method for producing oxide superconducting thin film
JP2501609B2 (en) Method for producing complex oxide superconducting thin film
JPH03275504A (en) Oxide superconductor thin film and its production
JP2577056B2 (en) Preparation method of composite oxide superconducting thin film
JP2720665B2 (en) Superconducting laminated thin film and manufacturing method thereof
Lathrop et al. In-Situ Production of Superconducting YBa2Cu3O7-y Thin Films by High Pressure Reactive Evaporation with Rapid Thermal Annealing
JP2835235B2 (en) Method of forming oxide superconductor thin film
JPH0761867B2 (en) Method for producing complex oxide superconducting thin film
JPH04349108A (en) Formation of high temperature superconducting thin film
Houlton et al. Development of materials for high temperature superconductor Josephson junctions