JPH03105807A - Laminate membrane of oxide superconductor and oxide magnetic substance - Google Patents

Laminate membrane of oxide superconductor and oxide magnetic substance

Info

Publication number
JPH03105807A
JPH03105807A JP1242070A JP24207089A JPH03105807A JP H03105807 A JPH03105807 A JP H03105807A JP 1242070 A JP1242070 A JP 1242070A JP 24207089 A JP24207089 A JP 24207089A JP H03105807 A JPH03105807 A JP H03105807A
Authority
JP
Japan
Prior art keywords
thin film
oxide
oxide superconductor
magnetic material
laminated thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1242070A
Other languages
Japanese (ja)
Other versions
JP2714176B2 (en
Inventor
Toshiyuki Ono
俊之 大野
Masahiro Kasai
葛西 昌弘
Yuzo Kozono
小園 裕三
Yoko Sugaya
菅家 庸子
Masanobu Hanazono
雅信 華園
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1242070A priority Critical patent/JP2714176B2/en
Publication of JPH03105807A publication Critical patent/JPH03105807A/en
Application granted granted Critical
Publication of JP2714176B2 publication Critical patent/JP2714176B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Thin Magnetic Films (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

PURPOSE:To form a steep interface with little reaction or little crystal structure defect by laminating an oxide superconductor and an oxide magnetic substance. CONSTITUTION:When a laminate membrane of an oxide superconductor 2 and a magnetic substance is formed, a metal or a metal alloy is not used but an oxide magnetic substance is used as the magnetic substance. As a result, even in a high temperature process to form the oxide superconductor membrane, a diffusion and a reaction at the interface can be suppressed. And since many oxide magnetic substances have a crystal structure similar to that of the oxide superconductor 2, an oxide magnetic substance 1 which has the crystal structure and the grid constant of a good conformity can be selected. Consequently, a steep interface with little interface reaction and little crystal structure defect can be formed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、酸化物超伝導材料、及び、その応用に関する
. 〔従来の技術〕 銅を含む酸化物超伝導体は臨界温度Tcが従来の金属系
の超伝導体にくらべてはるかに高く、液体窒素を冷媒と
して用いることができるという利点をもつが、臨界電流
密度Jcが低いという欠点がある。一方、この銅を含む
酸化物超伝導体の超伝導状態は反強磁性絶縁体に正孔を
ドープすることにより出現しており、超伝導メカニズム
においてもスピン間の磁気的な相互作用が重要な働きを
担っていると考えられている。このことから、銅を含む
酸化物超伝導体のTcを,さらに、高めるための、ある
いは.Jcを改善するための方法として酸化物超伝導体
と磁性体の近接的な相互作用を利用することは有力であ
ると考えられる。特に、薄膜に酸化物超伝導体と磁性体
を積層することはこの相互作用を利用する上で有力な方
法であると考えられる。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to oxide superconducting materials and their applications. [Prior art] Oxide superconductors containing copper have the advantage that their critical temperature Tc is much higher than that of conventional metal-based superconductors, and liquid nitrogen can be used as a coolant; It has a drawback that the density Jc is low. On the other hand, the superconducting state of this copper-containing oxide superconductor appears by doping holes into an antiferromagnetic insulator, and the magnetic interaction between spins is also important in the superconducting mechanism. It is believed that it plays a role. From this, it is possible to further increase the Tc of an oxide superconductor containing copper or... It is considered to be effective to utilize the close interaction between an oxide superconductor and a magnetic material as a method for improving Jc. In particular, laminating an oxide superconductor and a magnetic material in a thin film is considered to be an effective method for utilizing this interaction.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、酸化物超伝導体薄膜を形成するには、成膜時の
支持体(基板)の温度を600℃以上にするか,或膜後
に800℃以上で熱処理をする必要があるため、積層膜
を形成する際に金属,合金の磁性体を用いると酸化物超
伝導体との界面で拡散,反応してしまい,異相の形成、
酸化物超伝導体,及び、磁性体の組成ずれ、界面の急峻
性の喪失といった問題を生じる. 〔課題を解決するための手段〕 本発明は、上記の問題点を解決するためのものであり,
前記の酸化物超伝導体と磁性体の積層薄膜において、磁
性体として金属,合金ではなく、酸化物磁性体を用いる
ことを特徴とする。磁性体として酸化物を用いることに
より、酸化物超伝導体薄膜を形成する際の高温プロセス
においても、界面での拡散,反応を抑えることができ、
急峻な界面を形成することができる。また,酸化物磁性
体は酸化物超伝導体と類似の結晶構造をもつものが多い
ので、適宜な結晶構造,及び、格子定数をもつ酸化物磁
性体を選ぶことにより,界面での結晶構造的欠陥の少な
い積層薄膜を形成することができる。
However, in order to form an oxide superconductor thin film, it is necessary to raise the temperature of the support (substrate) to 600°C or higher during film formation, or to perform heat treatment at 800°C or higher after the film is formed. If a magnetic material such as a metal or alloy is used to form a superconductor, it will diffuse and react at the interface with the oxide superconductor, resulting in the formation of a different phase,
This causes problems such as compositional shifts in oxide superconductors and magnetic materials, and loss of steepness at interfaces. [Means for Solving the Problems] The present invention is intended to solve the above problems.
The laminated thin film of an oxide superconductor and a magnetic material is characterized in that an oxide magnetic material is used instead of a metal or an alloy as the magnetic material. By using oxide as the magnetic material, diffusion and reactions at the interface can be suppressed even during the high-temperature process when forming oxide superconductor thin films.
A steep interface can be formed. In addition, many oxide magnetic materials have a crystal structure similar to that of oxide superconductors, so by selecting an oxide magnetic material with an appropriate crystal structure and lattice constant, it is possible to improve the crystal structure at the interface. A laminated thin film with few defects can be formed.

この積層構造は、第1図,及び、第2図で示すように,
酸化物磁性体層が酸化物超伝導体層の上であっても下で
あってもかまわない.あるいは、第3図で示すように,
酸化物磁性体層と酸化物超伝導体層を,順次、交互に積
層することによって多層膜を形成することもできる。ま
た、第4図で示すように,酸化物磁性体層を二枚の酸化
物超伝導体層ではさんだ三層構造を形成することにより
、「トンネル現象の物理と応用」 (培風館, 198
7p.177〜p.186)で詳述しているような磁性
バリア・トンネル接合素子を構成することができる.こ
の場合,磁性体層として酸化物磁性体を用いることによ
り、酸化物超伝導体層との界面での反応の少ない良好な
素子構造をつくることができる。
This laminated structure, as shown in Figures 1 and 2,
It does not matter whether the oxide magnetic layer is above or below the oxide superconductor layer. Or, as shown in Figure 3,
A multilayer film can also be formed by sequentially and alternately stacking oxide magnetic layers and oxide superconductor layers. In addition, as shown in Figure 4, by forming a three-layer structure in which an oxide magnetic layer is sandwiched between two oxide superconductor layers, "Physics and Applications of Tunneling Phenomenon" (Baifukan, 198
7p. 177-p. It is possible to construct a magnetic barrier tunnel junction device as described in detail in 186). In this case, by using an oxide magnetic material as the magnetic layer, it is possible to create a good device structure with less reaction at the interface with the oxide superconductor layer.

本発明による積層薄膜を形成する際に,酸化物超伝導体
層としては既知のすべての銅を含む酸化物超伝導体を用
いることができるし、あるいは,Tcは低いが、B a
 − P b − B i一〇系、Ba−K−Bi−0
系の酸化物超伝導体を用いることもできる.また、酸化
物磁性体層は,特に、La−Ca−Mn−0系は酸化物
超伝導体層との界面反応が少なく有力である。
When forming the laminated thin film according to the present invention, all known copper-containing oxide superconductors can be used as the oxide superconductor layer, or alternatively, although Tc is low, B a
- P b - Bi 10 series, Ba-K-Bi-0
It is also possible to use oxide superconductors. Further, as for the oxide magnetic layer, in particular, the La-Ca-Mn-0 system is effective because it has little interfacial reaction with the oxide superconductor layer.

〔作用〕[Effect]

本発明による酸化物磁性体と酸化物超伝導体の積層薄膜
は,界面での相互の原子の拡散による反応が少ないため
、異相を生じない急峻な界面を形成することができる。
The laminated thin film of an oxide magnetic material and an oxide superconductor according to the present invention has little reaction due to mutual diffusion of atoms at the interface, so it is possible to form a steep interface that does not produce different phases.

また、酸化物磁性体として酸化物超伝導体と格子定数の
整合性のよいものを選ぶことによって、界面の結晶構造
的欠陥の少ない積N薄嘆を形成することができる。この
ような良好な界面をもつ積層薄膜によって、例えば、磁
性バリア・トンネル接合素子の特性を向上させることが
できる。
Furthermore, by selecting an oxide magnetic material that has good lattice constant matching with the oxide superconductor, it is possible to form a product N thin film with fewer crystalline defects at the interface. A laminated thin film having such a good interface can improve the characteristics of, for example, a magnetic barrier tunnel junction element.

〔実施例〕〔Example〕

以下、本発明を実施例を用いて説明する。酸化物超伝導
体層、及び、酸化物磁性体層の形成方法は、このほかに
、イオンビームスパッタリング法,電子ビーム蒸着法等
があり,また,これらの方法を組合せて用いてもよい。
The present invention will be explained below using examples. Other methods for forming the oxide superconductor layer and the oxide magnetic layer include ion beam sputtering, electron beam evaporation, and a combination of these methods.

(1)高周波スパッタリング装置にランタン,カルシウ
ム,マンガン,酸素からなる焼結体ターゲットを装着す
る。この焼結体ターゲットの組成は、La :Ca :
 Mn=0.3 : 0.7 : 1となるようにする
。ターゲットの対向位置に5順×2 0 m X 0 
. 5 mの大きさの酸化マグネシウム(MgO)単結
晶を支持体(基板)として固定する。2×10″″’T
orr程度にまで排気した後,支持体の表面温度を60
0℃に保ちつつ、アルゴンを1×10″″’Torrの
圧力まで導入する。
(1) A sintered target made of lanthanum, calcium, manganese, and oxygen is attached to a high-frequency sputtering device. The composition of this sintered target is La:Ca:
Set Mn=0.3:0.7:1. 5 times in the opposite position of the target x 2 0 m x 0
.. A magnesium oxide (MgO) single crystal with a size of 5 m is fixed as a support (substrate). 2×10″″T
After evacuation to about orr, the surface temperature of the support was set to 60
While maintaining the temperature at 0° C., argon is introduced to a pressure of 1×10″″’ Torr.

13.56MHz  ,出力200Wの高周波グロー放
電により.La−Ca−Mn一〇薄膜を1μmの厚みま
で堆積する。この膜を空気中920℃で1時間熱処理す
ることにより、MgO基板上にL a o.sC a 
0.7M n O s膜を形成することができる。
By high frequency glow discharge of 13.56MHz, output 200W. A La-Ca-Mn 10 thin film is deposited to a thickness of 1 μm. By heat-treating this film at 920°C in air for 1 hour, L ao. sCa
A 0.7M nOs film can be formed.

(2)このスパッタリング装置にイットリウム,ノくリ
ウム,銅9酸素からなる焼結体ターゲットを装着する.
この焼結体ターゲットの組或は、Y:Ba:Cu=1:
2:4.5  となるようにする。ターゲットの対向位
置に、(1)で作製したL a o.ac a 0.7
M n O a膜を堆積したMgO単結晶基板を固定す
る。2 X 1 0””Torr程度にまで排気した後
、支持体の表面温度を600℃に保ちつつ、アルゴンを
1×10−4TOrrの圧力まで導入する。13.56
MHz.出力200Wの高周波グロー放電により、YB
a−Cu−O薄膜を1μmの厚みまで堆積する。この膜
を空気中850℃で一時間熱処理することにより、La
o.aCao.7MnOa膜上にYBazcuaoyを
形成することができる。(1)及び(2)の手順で作製
したY Ba2CuaOy/ Lao.aCao.7M
n03積層膜を試料Aとする。
(2) A sintered target made of yttrium, notrium, copper and 9 oxygen is attached to this sputtering device.
This sintered target set or Y:Ba:Cu=1:
The ratio should be 2:4.5. At a position opposite to the target, place the L a o. ac a 0.7
An MgO single crystal substrate on which a MnOa film has been deposited is fixed. After evacuation to about 2×10” Torr, argon is introduced to a pressure of 1×10 −4 Torr while maintaining the surface temperature of the support at 600° C. 13.56
MHz. YB
Deposit a-Cu-O thin film to a thickness of 1 μm. By heat-treating this film in air at 850°C for one hour, La
o. aCao. YBazcuaoy can be formed on the 7MnOa film. Y Ba2CuaOy/Lao. prepared by steps (1) and (2). aCao. 7M
Sample A is the n03 laminated film.

(3)スパッタリング装置にイットリウム,バリウム,
銅,酸素からなる焼結体ターゲットを装着する。この焼
結体ターゲットの組成は、Y:Ba:Cu=1:2:4
.5  となるようにする。
(3) Yttrium, barium,
A sintered target made of copper and oxygen is attached. The composition of this sintered target is Y:Ba:Cu=1:2:4
.. 5.

夕一ゲットの対向位置にMgO単結晶基板を固定する。An MgO single crystal substrate is fixed at a position opposite to the Yuichi get.

2×10″″’Torr程度にまで排気した後,基板の
表面温度を600℃に保ちつつ、アルゴンをI X 1
 0”−’Torrの圧力まで導入する。
After exhausting to about 2×10'''' Torr, argon was pumped to I
A pressure of 0''-'Torr is introduced.

13.56MHz  ,出力200Wの高周波グロー放
電により. Y−Ba−Cu−0@膜を1μmの厚みま
で堆積する。この膜を空気中900℃で一時間熱処理す
ることにより、M g’ 0基板上にYBazCua○
yを形成することができる。
By high frequency glow discharge of 13.56MHz, output 200W. A Y-Ba-Cu-0@ film is deposited to a thickness of 1 μm. By heat-treating this film at 900°C in air for one hour, YBazCua○ was deposited on the M g' 0 substrate.
y can be formed.

この手順で作製したY B a 2C u aoy単層
膜を試料Bとする. (4)電子ビーム蒸着装置を用いてMg○単結晶基板上
に1μmの厚さのMn薄膜を堆積する。次に,この膜を
(3)で用いたスパッタリング装置に取り付ける。2 
X 1 0”Torr程度にまで排気した後、基板の表
面温度を600℃に保ちつつ、アルゴンをI X 1 
0−’Torrの圧力まで導入する。
Sample B is the YBa 2C u aoy monolayer film prepared by this procedure. (4) Deposit a 1 μm thick Mn thin film on a Mg◯ single crystal substrate using an electron beam evaporation device. Next, this film is attached to the sputtering device used in (3). 2
After exhausting to about X 1 0” Torr, argon was pumped to I
A pressure of 0-'Torr is introduced.

13.56MHz  .出力2ooWの高周波グロー放
電により、Y−Ba−Cu−0薄膜を1μmの厚みまで
堆積する。この膜を空気中850℃で一時間熱処理する
ことにより、YBazCu30y/ M. n積層膜を
形成することができる6これを試料Cとする. (5)試料A,B,Cについて四端子法により比抵抗の
温度特性(ρ−T特性)を測定する。その結果を第5図
に示す.これによると、試料Aは試料Bに比べTcがわ
ずかに高くなっていることがわかる。一方、試料Cでは
試料Bに比べTcは低下し、遷移幅も大きくなっている
ことがわかる。
13.56MHz. A Y-Ba-Cu-0 thin film is deposited to a thickness of 1 μm by high-frequency glow discharge with an output of 2 ooW. By heat-treating this film at 850°C in air for one hour, YBazCu30y/M. A laminated film can be formed.6 This is designated as sample C. (5) Measure the temperature characteristics of specific resistance (ρ-T characteristics) for samples A, B, and C using the four-terminal method. The results are shown in Figure 5. According to this, it can be seen that sample A has a slightly higher Tc than sample B. On the other hand, it can be seen that in sample C, Tc is lower than in sample B, and the transition width is also larger.

(6)試料A及びCについて、酸化物超伝導体と磁性体
の界面の急峻性を調べるために、シムス(SIMS)に
よる界面付近の組成分析を行なった.その結果を第6図
に示す.試料Aでは界面付近での各元素の拡散は比較的
小さいが、試料Cでは著しく大きくなっていることがわ
かる.第5図において、試料Cのρ一T特性が著しく劣
っていたのはこのためではないかと考えられる。
(6) For samples A and C, composition analysis near the interface was performed using SIMS to investigate the steepness of the interface between the oxide superconductor and the magnetic material. The results are shown in Figure 6. It can be seen that in sample A, the diffusion of each element near the interface is relatively small, but in sample C it is significantly large. This is considered to be the reason why the ρ-T characteristic of sample C in FIG. 5 was extremely poor.

〔発明の効果〕〔Effect of the invention〕

本発明によれば,酸化物超伝導体と酸化物磁性体との積
層により、反応の小さい急峻な界面を形成することがで
きる.
According to the present invention, by stacking an oxide superconductor and an oxide magnetic material, a steep interface with low reaction can be formed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の説明図、第2図は本発明の
第二の実施例の説明図、第3図は本発明の第三の実施例
の説明図,第4図は本発明の第四の実施例の説明図、第
5図は本発明の第五の実施例の説明図、第6図は第六の
実施例の説明図である. 1・・・酸化物磁性体、 2・・・酸化物超伝導体、 3・・・支 第 1 図 第5図 第 2 図 膜釆面かうのi末さ(仕怠≠f立2
Fig. 1 is an explanatory diagram of one embodiment of the present invention, Fig. 2 is an explanatory diagram of a second embodiment of the invention, Fig. 3 is an explanatory diagram of a third embodiment of the invention, and Fig. 4 is an explanatory diagram of a third embodiment of the invention. FIG. 5 is an explanatory diagram of the fourth embodiment of the present invention, FIG. 5 is an explanatory diagram of the fifth embodiment of the present invention, and FIG. 6 is an explanatory diagram of the sixth embodiment. 1... Oxide magnetic material, 2... Oxide superconductor, 3... Support 1 Figure 5 Figure 2 Figure 2.

Claims (1)

【特許請求の範囲】 1、酸化物超伝導体と酸化物磁性体とを積層することを
特徴とする積層薄膜。 2、支持体上に形成した酸化物超伝導体薄膜上に酸化物
磁性体薄膜を形成することを特徴とする積層薄膜。 3、支持体上に形成した酸化物磁性体薄膜上に酸化物超
伝導体薄膜を形成することを特徴とする積層薄膜。 4、支持体上に形成した酸化物超伝導体薄膜上に酸化物
磁性体薄膜を形成し、さらに、その上に酸化物超伝導体
薄膜を形成した三層構造を有することを特徴とする積層
薄膜。 5、酸化物超伝導体と酸化物磁性体を交互に積層するこ
とにより形成された多層構造を有することを特徴とする
積層薄膜。 6、前記酸化物磁性体が強磁性を示すことを特徴とする
請求項1、2、3、4または5に記載の積層薄膜。 7、前記酸化物磁性体が反強磁性を示すことを特徴とす
る請求項1、2、3、4および5に記載の積層薄膜。 8、前記酸化物磁性体がランタン、カルシウム、マンガ
ン、酸素により構成されることを特徴とする請求項1、
2、3、4または5に記載の積層薄膜。 9、前記酸化物磁性体がLa_1_−_xCa_xMn
O_3(x=0.05〜0.95)であることを特徴と
する請求項1、2、3、4または5に記載の積層薄膜。 10、前記酸化物磁性体の結晶構造がペロブスカイト構
造であることを特徴とする請求項1ないし9に記載の積
層薄膜。 11、前記酸化物超伝導体が銅を含むことを特徴とする
請求項1ないし10に記載の積層薄膜。 12、前記酸化物超伝導体がイットリウムあるいは希土
類元素、バリウム、銅、酸素により構成されることを特
徴とする請求項1ないし11に記載の積層薄膜。 13、前記酸化物超伝導体がビスマス、鉛、ストロンチ
ウム、カルシウム、銅、酸素により構成されることを特
徴とする請求項1ないし11に記載の積層薄膜。 14、請求項1ないし13に記載の積層薄膜をもちいて
形成されることを特徴とする磁性バリア・トンネル接合
素子。
[Claims] 1. A laminated thin film characterized by laminating an oxide superconductor and an oxide magnetic material. 2. A laminated thin film characterized in that an oxide magnetic thin film is formed on an oxide superconductor thin film formed on a support. 3. A laminated thin film characterized in that an oxide superconductor thin film is formed on an oxide magnetic thin film formed on a support. 4. A laminate having a three-layer structure in which an oxide magnetic thin film is formed on an oxide superconductor thin film formed on a support, and an oxide superconductor thin film is further formed thereon. Thin film. 5. A laminated thin film characterized by having a multilayer structure formed by alternately laminating an oxide superconductor and an oxide magnetic material. 6. The laminated thin film according to claim 1, 2, 3, 4, or 5, wherein the oxide magnetic material exhibits ferromagnetism. 7. The laminated thin film according to claims 1, 2, 3, 4 and 5, wherein the oxide magnetic material exhibits antiferromagnetism. 8. Claim 1, wherein the oxide magnetic material is composed of lanthanum, calcium, manganese, and oxygen.
6. The laminated thin film according to 2, 3, 4 or 5. 9. The oxide magnetic material is La_1_-_xCa_xMn
6. The laminated thin film according to claim 1, 2, 3, 4, or 5, characterized in that O_3 (x=0.05 to 0.95). 10. The laminated thin film according to any one of claims 1 to 9, wherein the crystal structure of the oxide magnetic material is a perovskite structure. 11. The laminated thin film according to any one of claims 1 to 10, wherein the oxide superconductor contains copper. 12. The laminated thin film according to any one of claims 1 to 11, wherein the oxide superconductor is composed of yttrium, a rare earth element, barium, copper, and oxygen. 13. The laminated thin film according to any one of claims 1 to 11, wherein the oxide superconductor is composed of bismuth, lead, strontium, calcium, copper, and oxygen. 14. A magnetic barrier tunnel junction element formed using the laminated thin film according to any one of claims 1 to 13.
JP1242070A 1989-09-20 1989-09-20 Laminated thin film of oxide superconductor and oxide magnetic material Expired - Lifetime JP2714176B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1242070A JP2714176B2 (en) 1989-09-20 1989-09-20 Laminated thin film of oxide superconductor and oxide magnetic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1242070A JP2714176B2 (en) 1989-09-20 1989-09-20 Laminated thin film of oxide superconductor and oxide magnetic material

Publications (2)

Publication Number Publication Date
JPH03105807A true JPH03105807A (en) 1991-05-02
JP2714176B2 JP2714176B2 (en) 1998-02-16

Family

ID=17083837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1242070A Expired - Lifetime JP2714176B2 (en) 1989-09-20 1989-09-20 Laminated thin film of oxide superconductor and oxide magnetic material

Country Status (1)

Country Link
JP (1) JP2714176B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03228803A (en) * 1990-01-31 1991-10-09 Sumitomo Cement Co Ltd Oxide superconducting multiple body
JPH042182A (en) * 1990-04-19 1992-01-07 Matsushita Electric Ind Co Ltd Thin film superconductor and manufacture thereof
EP0482198A1 (en) * 1990-05-11 1992-04-29 Hitachi, Ltd. Superconducting element using oxide superconductor
JPH0563249A (en) * 1991-08-30 1993-03-12 Hitachi Ltd Spin interaction element

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63318014A (en) * 1987-06-19 1988-12-26 Hitachi Ltd Superconductive film of metal oxide
JPS6452312A (en) * 1987-08-21 1989-02-28 Matsushita Electric Ind Co Ltd Superconductor
JPS6472416A (en) * 1987-09-14 1989-03-17 Matsushita Electric Ind Co Ltd Super-structure superconductive material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63318014A (en) * 1987-06-19 1988-12-26 Hitachi Ltd Superconductive film of metal oxide
JPS6452312A (en) * 1987-08-21 1989-02-28 Matsushita Electric Ind Co Ltd Superconductor
JPS6472416A (en) * 1987-09-14 1989-03-17 Matsushita Electric Ind Co Ltd Super-structure superconductive material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03228803A (en) * 1990-01-31 1991-10-09 Sumitomo Cement Co Ltd Oxide superconducting multiple body
JPH042182A (en) * 1990-04-19 1992-01-07 Matsushita Electric Ind Co Ltd Thin film superconductor and manufacture thereof
EP0482198A1 (en) * 1990-05-11 1992-04-29 Hitachi, Ltd. Superconducting element using oxide superconductor
JPH0563249A (en) * 1991-08-30 1993-03-12 Hitachi Ltd Spin interaction element

Also Published As

Publication number Publication date
JP2714176B2 (en) 1998-02-16

Similar Documents

Publication Publication Date Title
EP0467237B1 (en) Method of preparing oxide superconducting wire
JPH02260674A (en) Tunnel type josephson element and manufacture thereof
JPH10507590A (en) Multilayer composite and method of manufacture
JPH03105807A (en) Laminate membrane of oxide superconductor and oxide magnetic substance
JPS63310515A (en) Manufacture of superconductor membrane
JP2501035B2 (en) Superconducting thin film
JP3099891B2 (en) Superconducting material
JP3251093B2 (en) Superconductor and method of manufacturing the same
JP2741277B2 (en) Thin film superconductor and method of manufacturing the same
JP3058515B2 (en) Superconducting Josephson device and its manufacturing method
JP3025891B2 (en) Thin film superconductor and method of manufacturing the same
JP2703403B2 (en) Superconducting wiring fabrication method
JP2502344B2 (en) Method for producing complex oxide superconductor thin film
JP2931779B2 (en) Superconducting element
JPH057027A (en) Oxide superconducting thin film and manufacture thereof and superconducting tunnel junction and manufacture thereof
JP2835203B2 (en) Superconducting element manufacturing method
JP2748457B2 (en) Superconducting film manufacturing method
JPH0715049A (en) Superconducting multilayered thin film
JPH06196760A (en) Superconductive lamination thin film
JPH0446098A (en) Superconducting member
JP2866476B2 (en) Laminated superconductor and manufacturing method thereof
JP3001273B2 (en) Superconducting laminated thin film
JP2501609B2 (en) Method for producing complex oxide superconducting thin film
JP3284010B2 (en) Metal oxide material and superconducting device using the same
JP2778119B2 (en) Composite oxide superconducting thin film and method for forming the same