JPH042182A - Thin film superconductor and manufacture thereof - Google Patents

Thin film superconductor and manufacture thereof

Info

Publication number
JPH042182A
JPH042182A JP2101617A JP10161790A JPH042182A JP H042182 A JPH042182 A JP H042182A JP 2101617 A JP2101617 A JP 2101617A JP 10161790 A JP10161790 A JP 10161790A JP H042182 A JPH042182 A JP H042182A
Authority
JP
Japan
Prior art keywords
thin film
film
oxide
superconducting
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2101617A
Other languages
Japanese (ja)
Other versions
JP3025891B2 (en
Inventor
Chomei Matsushima
朝明 松嶋
Hiroshi Ichikawa
洋 市川
Shinichiro Hatta
八田 真一郎
Kentaro Setsune
瀬恒 謙太郎
Kiyotaka Wasa
清孝 和佐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd, Matsushita Electric Works Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2101617A priority Critical patent/JP3025891B2/en
Publication of JPH042182A publication Critical patent/JPH042182A/en
Application granted granted Critical
Publication of JP3025891B2 publication Critical patent/JP3025891B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To improve a critical current density, a critical magnetic field by alternately laminating a layer oxide superconducting thin films each including bismuth, copper and alkaline earth element and magnetic thin films made of perovskite type oxide. CONSTITUTION:Bi-O, Sr-Cu-0, Ca-Cu-O, Bi-Mn-O are evaporated from separate evaporation sources. When Bi-Sr-Ca-Cu-O superconducting thin films and Bi-Mn- O magnetic thin films are periodically laminated, a thin film having a periodic structure of m(Bi-Sr-Ca-Cu-O).n(Bi-Mn-O) can be formed with extremely high controllability. The thin film has far excellent crystallinity as compared with the thin film obtained by periodically laminating a superconducting thin film obtained by simultaneously depositing Bi-Sr-Ca-Cu-O and an oxide magnetic thin film obtained by simultaneously depositing Bi-Mn-O, and has superior critical current density and upper critical magnetic field characteristics. Further, the temperature of a base necessary to obtain excellent superconducting characteristic and heat treatment temperature can be lowered as compared with that of prior art.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、100 ’に以上の高臨界温度が期待される
ビスマスを含む酸化物超電導体の薄膜の製造方法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for producing a thin film of an oxide superconductor containing bismuth, which is expected to have a high critical temperature of 100' or more.

(従来の技術) 高温超電導体として、A15型2元系化合物として窒化
ニオブ(NbN)やゲルマニウムニオブ(Nb3Ge)
などが知られていたが、これらの材料の超電導転移温度
はたかだか23′にであった。一方、ペロブスカイト系
化合物は、さらに高い転移温度が期待され、Ba−La
−Cu−0系の高温超電導体が提案された[ J 、G
、 Bednorz and K、A、Muller。
(Prior art) Niobium nitride (NbN) and germanium niobium (Nb3Ge) are used as A15 type binary compounds as high-temperature superconductors.
were known, but the superconducting transition temperature of these materials was at most 23'. On the other hand, perovskite compounds are expected to have even higher transition temperatures, and Ba-La
-Cu-0-based high-temperature superconductors were proposed [J,G
, Bednorz and K., A., Muller.

ツァイトシュリフト・フユア・フィジーク(Zetsh
rift Fur Physik B)−Conden
sedMatter、 Vol、64.189−193
 (1986) ]。
Zeitschrift Fuyur Physique (Zetsh)
rift Fur Physik B)-Conden
sedMatter, Vol. 64.189-193
(1986)].

さらに、B i−S r−Ca−Cu−0系の材料が1
00 ’に以上の転移温度を示すことも発見された[H
+Maed0.Y、Tanak0.M、Fukutom
i  andT 、 A 5ano 、ジャパニーズ・
ジャーナル・オブ・アプライド−フィジックス(J a
panese J ournal ofApplied
 Physics)Vol、27. L209−210
 (1988)]。
Furthermore, B i-S r-Ca-Cu-0 type material is 1
It was also discovered that [H
+Maed0. Y, Tanak0. M, Fukutom
i andT, A 5ano, Japanese
Journal of Applied Physics (J a
Panese Journal of Applied
Physics) Vol, 27. L209-210
(1988)].

この種の材料の超電導機構の詳細は明らかではないが、
転移温度が室温以上に高くなる可能性があり、高温超電
導体として従来の2元系化合物より、より有望な特性が
期待される。
Although the details of the superconducting mechanism of this type of material are not clear,
The transition temperature can be higher than room temperature, and it is expected to have more promising properties as a high-temperature superconductor than conventional binary compounds.

さらに超電導体と磁性体とを交互に積層することにより
、より高い臨界電流密度およびより高い臨界磁場が従来
から期待されている。
Furthermore, higher critical current density and higher critical magnetic field have been conventionally expected by alternately stacking superconductors and magnetic materials.

(発明が解決しようとする課題) しかしながら、B1−5r−Ca−Cu−〇系の材料は
、現在の技術では主として焼結という過程でしか形成で
きないため、セラミックの粉末あるいはブロックの形状
でしか得られない。一方、この種の材料を実用化する場
合、薄膜状に加工することが強く要望されているが、従
来の技術では、良好な超電導特性を有する薄膜作製は難
しいものであった。
(Problem to be solved by the invention) However, B1-5r-Ca-Cu-〇-based materials can only be formed mainly through the process of sintering with current technology, so they can only be obtained in the form of ceramic powder or blocks. I can't. On the other hand, when this type of material is to be put to practical use, there is a strong demand for processing it into a thin film, but it has been difficult to fabricate a thin film with good superconducting properties using conventional techniques.

すなわち、B1−5r−Ca−Cu−○系には超電導転
移温度の異なるいくつかの相が存在することが知られて
いるが、特に転移温度がtoo ’に以上の相を薄膜の
形態で達成するのは、非常に困難とされていた。
In other words, it is known that there are several phases with different superconducting transition temperatures in the B1-5r-Ca-Cu-○ system, but it is particularly difficult to achieve a phase with a transition temperature of too ' or higher in the form of a thin film. It was considered extremely difficult to do so.

また、従来このBi系において良好な超電導特性を示す
薄膜を形成するためには少なくとも700℃以上の熱処
理あるいは形成時の加熱が必要であり、そのため高い臨
界電流密度、高い臨界磁場が期待される磁性薄膜との周
期的な積層構造を得ることは極めて困難と考えられ、ま
たこの構造を利用した集積化デバイスを構成することも
たいへん困難であるとされていた。
In addition, conventionally, in order to form a thin film exhibiting good superconducting properties in this Bi system, heat treatment at least 700°C or higher or heating during formation is required. It was thought to be extremely difficult to obtain a periodic layered structure with thin films, and it was also considered to be extremely difficult to construct an integrated device using this structure.

本発明の目的は、従来の欠点を解消し、100 ’に以
上の高臨界温度が期待されるビスマスを含む酸化物超電
導薄膜およびその製造方法を提供することである。
An object of the present invention is to eliminate the conventional drawbacks and provide a bismuth-containing oxide superconducting thin film that is expected to have a high critical temperature of 100' or more, and a method for manufacturing the same.

(課題を解決するための手段) 本発明者らによる第1の発明の薄膜超電導体は。(Means for solving problems) The thin film superconductor of the first invention by the present inventors is as follows.

主体成分が少なくともビスマス(Bi)、銅(Cu)。The main components are at least bismuth (Bi) and copper (Cu).

およびアルカリ土類(IIa族)を含む層状酸化物超電
導薄膜と、主体成分がペロブスカイト型酸化物からなる
磁性薄膜が交互に積層された構造を持つものである。
It has a structure in which layered oxide superconducting thin films containing alkaline earth elements (group IIa) and magnetic thin films whose main component is a perovskite oxide are laminated alternately.

さらに第2の発明の薄膜超電導体の製造方法は、基体上
に、少なくともBiを含む酸化物と少なくとも銅および
アルカリ土類(IIa族)を含む酸化物とを周期的に積
層させて形成する酸化物薄膜と、ペロブスカイト型酸化
物からなる磁性薄膜とを、交互に積層させて得る薄膜超
電導体の製造方法である。
Furthermore, the method for producing a thin film superconductor according to the second invention includes an oxide film formed by periodically stacking an oxide containing at least Bi and an oxide containing at least copper and alkaline earth (group IIa) on a substrate. This is a method for manufacturing a thin film superconductor obtained by alternately stacking a magnetic thin film made of a perovskite type oxide and a magnetic thin film made of a perovskite type oxide.

ここでアルカリ土類は、lla族元素のうちの少なくと
も一種あるいは二種以上の元素を示す。また、ペロブス
カイト型酸化物とはRFeO3(R=Yt Sm、 E
u、 Gdv Tbt Dy、 H0. Er、 Tm
Here, the alkaline earth refers to at least one or two or more elements of the lla group elements. In addition, perovskite oxide is RFeO3 (R=Yt Sm, E
u, Gdv Tbt Dy, H0. Er, Tm
.

Yb、 Lu)あるいは、MMnO3(M=BieL 
a0.7Cao、s p L0. 、? S ro 、
z e L0. 、t B ao、a *L0.、、、
 pb、、4. La0.tCdo、3)yあるいは、
A Mn O@ (A =G d2 Cot B ax
 F ev Ca2F e)であられされる酸化物磁性
体である。
Yb, Lu) or MMnO3 (M=BieL
a0.7Cao, sp L0. ,? S ro ,
z e L0. , t B ao, a *L0. ,,,
pb,,4. La0. tCdo, 3)y or
A Mn O@ (A = G d2 Cot B ax
It is an oxide magnetic material made of F ev Ca2F e).

(作 用) 第1の発明においては、安定なり1202酸化膜層また
はこれを主体とした層によりともに覆われた結晶構造と
なっているところの、Bi系超電導薄膜と、ペロブスカ
イト型酸化物からなる磁性薄膜とが、交互に積層された
構造をとることによって、超電導薄膜と磁性薄膜との間
での相互拡散の少ない積層が可能となる。また、磁性薄
膜のもつ磁気モーメントまたはスピンと超電導体との相
互作用により、Bi系超電導薄膜における臨界電流密度
および臨界磁場の向上が実現されたものである。
(Function) In the first invention, the film is composed of a Bi-based superconducting thin film and a perovskite-type oxide, which have a crystalline structure covered with a stable 1202 oxide film layer or a layer mainly composed of this. By adopting a structure in which the magnetic thin films are alternately stacked, it is possible to stack the superconducting thin films and the magnetic thin films with less mutual diffusion. Furthermore, the critical current density and critical magnetic field in the Bi-based superconducting thin film have been improved due to the interaction between the magnetic moment or spin of the magnetic thin film and the superconductor.

さらに第2の発明においては上記構造を達成するため、
少なくともBiを含む酸化物と、少なくとも銅およびア
ルカリ土類(IIa族)を含む酸化物あるいはペロブス
カイト型酸化物とを、周期的に積層させて分子レベルの
制御による薄膜の作製を行うことによって、再現性良<
Bi系超電導薄膜と磁性薄膜との積層を得るものである
Furthermore, in the second invention, in order to achieve the above structure,
This can be reproduced by periodically stacking an oxide containing at least Bi and an oxide or perovskite oxide containing at least copper and alkaline earth (group IIa) to create a thin film through control at the molecular level. Good character
A laminated layer of a Bi-based superconducting thin film and a magnetic thin film is obtained.

(実施例) まず、Bi系超電導薄膜と磁性薄膜との周期的な積層構
造を実現するため、Bi系超電導薄膜と種々の磁性薄膜
との界面での相互作用について検討した。
(Example) First, in order to realize a periodic stacked structure of a Bi-based superconducting thin film and a magnetic thin film, the interaction at the interface between a Bi-based superconducting thin film and various magnetic thin films was studied.

通常、Bi系超電導薄膜は500〜700℃に加熱した
基体上に蒸着して得る。蒸着後、そのままでも薄膜は超
電導特性を示すが、その後800〜950℃の熱処理を
施し、超電導特性を向上させる。
Usually, a Bi-based superconducting thin film is obtained by vapor deposition on a substrate heated to 500 to 700°C. After vapor deposition, the thin film exhibits superconducting properties as it is, but it is then subjected to heat treatment at 800 to 950°C to improve its superconducting properties.

しかしながら、基体温度が高いときに磁性薄膜をBi系
超電導薄膜に続いて積層したり、磁性薄膜を形成後熱処
理を行った場合、超電導薄膜と磁性薄膜との間で1元素
の相互拡散が起こり超電導特性が大きく劣化することが
判明した。相互拡散を起こさないためには、超電導薄膜
、磁性薄膜の結晶性が優れていること、超電導薄膜、磁
性薄膜間での格子の整合性が優れていること、磁性薄膜
が800〜950℃の熱処理に対して安定であることが
不可欠と考えられる。
However, when a magnetic thin film is laminated next to a Bi-based superconducting thin film when the substrate temperature is high, or when heat treatment is performed after forming the magnetic thin film, mutual diffusion of one element occurs between the superconducting thin film and the magnetic thin film, resulting in superconducting It was found that the characteristics were significantly deteriorated. In order to prevent mutual diffusion, the crystallinity of the superconducting thin film and the magnetic thin film must be excellent, the lattice matching between the superconducting thin film and the magnetic thin film must be excellent, and the magnetic thin film must be heat-treated at 800 to 950°C. It is considered essential to be stable against

種々の検討を行った結果、ペロブスカイト型酸化物薄膜
が磁性薄膜として適していることを見いだした。この理
由は明らかではないが、ペロブスカイト型酸化物は、B
i系超電導体との格子の整合性がきわめて優れており、
また高温の熱処理においても、Bi系超電導体との界酊
が非常に安定であると考えられる。
As a result of various studies, we found that perovskite-type oxide thin films are suitable as magnetic thin films. The reason for this is not clear, but perovskite oxides are
It has extremely good lattice matching with i-based superconductors,
It is also believed that the interface with the Bi-based superconductor is very stable even during high-temperature heat treatment.

さらにBi系超電導薄膜とペロブスカイト型酸化物薄膜
を周期的に積層したとき、Bi系超電導薄膜本来の臨界
電流密度および臨界磁場が向上することを見いだした。
Furthermore, it has been found that when a Bi-based superconducting thin film and a perovskite-type oxide thin film are stacked periodically, the critical current density and critical magnetic field inherent to the Bi-based superconducting thin film are improved.

第1の発明の内容をさらに深く理解されるために、第1
図を用い具体的な実施例を示す。
In order to understand the contents of the first invention more deeply, please refer to the first invention.
A specific example will be shown using figures.

(実施例1) 第1図は、本実施例で用いた高周波二元マグネトロンス
パッタ装置内部の概略図であり、11はB1−5r−C
a−Cu−0ターゲツト、12はB1−Mn−〇ターゲ
ット、13はシャッター、14はアパーチャー15は基
体、16は基体加熱用ヒーターを示す。焼結体をプレス
成形加工して作製した2個のターゲット11.12を用
い、第1図に示すように配置させた。
(Example 1) FIG. 1 is a schematic diagram of the inside of the high-frequency binary magnetron sputtering apparatus used in this example, and 11 is a B1-5r-C
12 is a B1-Mn-0 target, 13 is a shutter, 14 is an aperture 15 is a substrate, and 16 is a heater for heating the substrate. Two targets 11 and 12 produced by press forming a sintered body were used and arranged as shown in FIG.

すなわち、 Mg0(100)基体15に焦点を結ぶよ
うに各ターゲットが約30°傾いて設置されている。タ
ーゲットの前方には回転するシャッター13があり、そ
の中にはアパーチャー14が設けられている。シャッタ
ーI3の回転をパルスモータで制御することにより、ア
パーチャー14をB1−8r−Ca−Cu−0ターゲツ
トまたはB1−Mn−0ターゲツト上に停止させること
ができる。このようにして、B i−S r−Ca−C
u−○−+Bf−Mn−0−)Bi−8r−Ca−Cu
−0−*B1−Mn−0−+B1−8r−Ca−Cu−
0のサイクルでスパッタ蒸着が行うことができる。B1
−5r−Ca−Cu−0膜、B1−Mn−0膜の積層の
様子を概念的に第2図に示す。同図において、21はB
1−Mn−0膜、22はB1−5r−Ca−Cu−0膜
を示す、ターゲット11゜12への入力電力、およびそ
れぞれのターゲットのスパッタ時間を制御することによ
り、基体15上に蒸着するB1−Mn−011[21,
B1−8r−Ca−Cu−0膜22の膜厚を変えること
ができる。基体15をヒーター16で約700℃に加熱
し、アルゴン・酸素(1: l)混合雰囲気0.5Pa
のガス中で各ターゲットのスパッタリングを行なった。
That is, each target is installed at an angle of approximately 30° so as to focus on the Mg0 (100) substrate 15. In front of the target is a rotating shutter 13 in which an aperture 14 is provided. By controlling the rotation of the shutter I3 with a pulse motor, the aperture 14 can be stopped on the B1-8r-Ca-Cu-0 target or the B1-Mn-0 target. In this way, B i-S r-Ca-C
u-○-+Bf-Mn-0-)Bi-8r-Ca-Cu
-0-*B1-Mn-0-+B1-8r-Ca-Cu-
Sputter deposition can be performed with zero cycles. B1
FIG. 2 conceptually shows how the -5r-Ca-Cu-0 film and the B1-Mn-0 film are stacked. In the same figure, 21 is B
1-Mn-0 film, 22 indicates B1-5r-Ca-Cu-0 film, are deposited on the substrate 15 by controlling the input power to the targets 11 and 12 and the sputtering time of each target. B1-Mn-011 [21,
The thickness of the B1-8r-Ca-Cu-0 film 22 can be changed. The substrate 15 is heated to about 700° C. with a heater 16 and placed in an argon/oxygen (1:l) mixed atmosphere of 0.5 Pa.
Each target was sputtered in the following gas.

薄膜作製後は酸素雰囲気中において、 800℃の熱処
理を2時間施した1本実施例では、各ターゲットのスパ
ッタ電力を、B1−5r−Ca−Cu−〇: 150w
、 B1−Mn−0: 100wとし、ターゲット11
.12のスパッタ時間を制御した。 B1−5r−Ca
−Cu−○膜22の元素の組成比率がBi: Sr: 
Ca: Cu=2 : 2 : 2 : 3.B1−M
n−0膜21の元素の組成比率がBi:Mn:○=1:
1:3になるよう、ターゲット11.12の元素の組成
比率を調整した* B1−8r−Ca−Cu−0膜22
をB1−Mn−0膜21と積層せずに基体15上に形成
した場合、すなわちB1−8r−Ca−Cu−0膜22
そのものの特性は、110 ”Kで超電導転移を起こし
、100 ’にで抵抗値がゼロになるものであった。ま
た、B1MnO3膜だけを成膜し磁化を測定するとバル
クの値と同一であった。B1Mn0.膜および Bi、Sr、C0.Cu、O,膜の膜厚をそれぞれ50
0人とし1層づつ積層した。この膜の抵抗値の温度特性
を第3図に示す。超電導転移温度Cオンセット温度)は
、 110 ’にでありB i M n O、膜を積層
していない場合とかわらなかった。外部磁場10kOe
を積層膜の膜面に垂直に印加し、磁性体膜を磁化させた
のちに外部磁場を取り除いた状態で測定した臨界電流密
度の温度依存性を第4図に示す。臨界電流密度は磁場を
かける前の値にたいして各温度において約30%大きく
なっている。第5図は外部磁場を印加した状態における
電気抵抗の温度特性を示す。B1MnO3膜を積層して
いないB1−5r−Ca−Cu−0膜自身の結果と比較
すると積層膜においては、磁場による超電導転移温度領
域の広がりが小さくなることがわかった。このことは上
部臨界磁場の向上を意味している。これらの臨界電流密
度および上部臨界磁場の向上の理由は明らかではないが
B i M n O3膜の磁化またはスピンがB i−
S r−Ca−Cu−0膜の超伝導機構に影響をもたら
した結果であると考えられる。また、B1MnO3膜お
よびB1−8r−Ca−Cu−0膜単独で成膜したとき
、膜厚がそれぞれ100人および50Å以上のとき結晶
性の薄膜が得られることがわかった。第2図において、
 B1−Mn−〇膜21の膜厚を100人としてB1−
8r−Ca−Cu−0膜22の膜厚が100人、300
人、500人、繰り返し回数を20回としたときの特性
をそれぞれ第6図において、特性61.62.53に示
す。特性61においてはゼロ抵抗温度が約30玉とB 
i−S r−Ca−Cu−0膜22の特性が劣化するこ
とがわかった。この理由として、B i−S r−Ca
−Cu−0膜22とB1〜Mn−0膜21との間で元素
の相互拡散による膜21、22の結晶性の破壊が考えら
れる。さらに特性63においては、B1−Mn−0膜2
1との周期的な積層なしに基体15上につけたときのB
1−5r−Ca−Cu−0膜22本来の超電導特性とほ
とんど同じであり、磁性薄膜B1−Mn−0膜21との
積層効果は確認されなかった。しかし、特性62におい
て、臨界電流密度は磁性膜を積層していない膜と比較し
て約30%向上し、77′にで320万A10となった
。上記臨界磁場はB i−S r−Ca−Cu−0膜本
来のものより約20%向上した。4.2’Kにおいて、
C軸に平行方向に磁場を加えたときの値は30テスラ、
またC軸に垂直方向では450テスラであった。現在、
これらの効果の詳細な理由については未だ不明であるが
、B1−Mn−0膜21が持つ磁気モーメントまたはス
ピンの影響、または、薄いB1−Mn−0[[21を介
して複数のB1−5r−Ca−Cu−○膜22を積層す
ることによりB1−5r−Ca−Cu−0膜22におい
て超電導機構になんらかの変化が引き起こされたことが
考えられる。
In this example, the sputtering power for each target was 150 W for B1-5r-Ca-Cu-〇.
, B1-Mn-0: 100w, target 11
.. 12 sputtering times were controlled. B1-5r-Ca
-Cu-○ The composition ratio of the elements of the film 22 is Bi: Sr:
Ca: Cu=2:2:2:3. B1-M
The composition ratio of the elements of the n-0 film 21 is Bi:Mn:○=1:
The composition ratio of the elements in the target 11.12 was adjusted to be 1:3* B1-8r-Ca-Cu-0 film 22
is formed on the substrate 15 without being laminated with the B1-Mn-0 film 21, that is, the B1-8r-Ca-Cu-0 film 22
Its characteristics were that it underwent a superconducting transition at 110'K and its resistance value became zero at 100'K.Furthermore, when only the B1MnO3 film was formed and the magnetization was measured, it was the same as the bulk value. The thickness of the B1Mn0. film and the Bi, Sr, C0.Cu, O, film was 50%, respectively.
The layers were stacked one layer at a time with 0 people. FIG. 3 shows the temperature characteristics of the resistance value of this film. The superconducting transition temperature C (onset temperature) was 110' and was not different from the case where no B i M n O film was laminated. External magnetic field 10kOe
FIG. 4 shows the temperature dependence of the critical current density, which was measured when the magnetic material film was magnetized by applying it perpendicularly to the film surface of the laminated film, and then the external magnetic field was removed. The critical current density is approximately 30% larger at each temperature than the value before applying the magnetic field. FIG. 5 shows the temperature characteristics of electrical resistance when an external magnetic field is applied. When compared with the results of the B1-5r-Ca-Cu-0 film itself, which is not laminated with a B1MnO3 film, it was found that in the laminated film, the spread of the superconducting transition temperature region due to the magnetic field becomes smaller. This means an improvement in the upper critical magnetic field. The reason for these improvements in critical current density and upper critical magnetic field is not clear, but the magnetization or spin of the B i M n O3 film is
This is considered to be a result of affecting the superconducting mechanism of the S r-Ca-Cu-0 film. It was also found that when the B1MnO3 film and the B1-8r-Ca-Cu-0 film were formed alone, a crystalline thin film was obtained when the film thickness was 100 Å or more and 50 Å or more, respectively. In Figure 2,
B1-Mn-〇The film thickness of film 21 is 100 people.
The thickness of the 8r-Ca-Cu-0 film 22 is 100 and 300.
The characteristics when the number of people is 500 and the number of repetitions is 20 are shown in characteristics 61, 62, and 53 in FIG. 6, respectively. In characteristic 61, the zero resistance temperature is about 30 balls and B
It was found that the characteristics of the i-S r-Ca-Cu-0 film 22 deteriorated. The reason for this is that B i-S r-Ca
It is considered that the crystallinity of the films 21 and 22 is destroyed due to mutual diffusion of elements between the -Cu-0 film 22 and the B1 to Mn-0 film 21. Furthermore, in characteristic 63, B1-Mn-0 film 2
B when applied on the substrate 15 without periodic lamination with 1
The superconducting properties were almost the same as those of the 1-5r-Ca-Cu-0 film 22, and no stacking effect with the magnetic thin film B1-Mn-0 film 21 was observed. However, in characteristic 62, the critical current density was improved by about 30% compared to the film without laminated magnetic film, reaching 3.2 million A10 at 77'. The critical magnetic field was improved by about 20% compared to the original B i-S r-Ca-Cu-0 film. 4. At 2'K,
When a magnetic field is applied in a direction parallel to the C axis, the value is 30 Tesla,
Moreover, in the direction perpendicular to the C axis, it was 450 Tesla. the current,
Although the detailed reasons for these effects are still unknown, they may be due to the influence of the magnetic moment or spin of the B1-Mn-0 film 21, or the influence of the magnetic moment or spin of the B1-Mn-0 film 21, or the It is considered that some change was caused in the superconducting mechanism in the B1-5r-Ca-Cu-0 film 22 by laminating the -Ca-Cu-◯ film 22.

なお、ターゲット11、もしくは12に鉛(pb)を添
加してスパッタしたとき、基体15の温度が上記実施例
よりも約100℃低くても、上記実施例と同等な結果が
得られることを見いだした。
It has been found that when sputtering is performed by adding lead (PB) to target 11 or 12, results equivalent to those of the above embodiment can be obtained even if the temperature of the base 15 is about 100° C. lower than that of the above embodiment. Ta.

さらに、Biの酸化物と、Sr、C0.Cuの酸化物を
異なる蒸発源から真空中で別々に蒸発させ。
Furthermore, Bi oxide, Sr, C0. The oxides of Cu were evaporated separately in vacuum from different evaporation sources.

基体上にB1−0−+5r−Cu−0−+Ca−Cu−
0−*5r−Cu−0→B1−0の順で周期的に積層さ
せた場合、さらにMnターゲットを用い真空中で蒸発さ
せ、積層させた場合、(実施例1)に示した積層構造作
製方法より極めて制御性良く、安定した膜質の、しかも
膜表面が極めて平坦なり i−S r−Ca−Cu−〇
超電導薄膜およびB1−Mn−0磁性薄膜が得られるこ
とを見いだした。
B1-0-+5r-Cu-0-+Ca-Cu- on the substrate
When laminated periodically in the order of 0-*5r-Cu-0 → B1-0, and further laminated by evaporation in vacuum using a Mn target, the laminated structure shown in (Example 1) can be produced. It has been found that an i-S r-Ca-Cu-〇 superconducting thin film and a B1-Mn-0 magnetic thin film can be obtained using this method with extremely good controllability, stable film quality, and an extremely flat film surface.

さらに、B1−0.5r−Cu−○、Ca−Cu−0、
B1−Mn−0を別々の蒸発源から蒸発させ、Bi−5
r−Ca−Cu−〇超電導薄膜とB1−Mn−0磁性薄
膜を周期的に積層したとき、極めて制御住良<m(Bi
−5r−Ca−Cu−○) ・n (B 1−Mn−0
)の周期構造を持つ薄膜を形成できることを見いだした
。ここでm、nはそれぞれ少なくとも1以上の正の整数
を示す。さらに、このm(Bi−Sr−Ca−Cu−0
) ・n(Bi−Mn−〇)薄膜は、(実施例1)に示
したB1−5r−Ca−Cu−0を同時に蒸着して得る
超電導薄膜と、B1−Mn−0を同時に蒸着して得る酸
化物磁性薄膜とを周期的に積層して得た薄膜に比べて、
はるかに結晶−性が優れ、臨界電流密度および上部臨界
磁場の特性において勝っていることも併せて見いだした
。さらに、上記の方法で作製したB1−5 r−Ca−
Cu−0超電導薄膜とB1−Mn−0磁性薄膜はともに
薄膜表面が極めて平坦であることを見いだした。
Furthermore, B1-0.5r-Cu-○, Ca-Cu-0,
B1-Mn-0 is evaporated from separate sources, Bi-5
When r-Ca-Cu-〇 superconducting thin films and B1-Mn-0 magnetic thin films are laminated periodically, extremely controlled Sumira<m(Bi
-5r-Ca-Cu-○) ・n (B 1-Mn-0
) was found to be able to form a thin film with a periodic structure. Here, m and n each represent a positive integer of at least 1 or more. Furthermore, this m(Bi-Sr-Ca-Cu-0
) ・n(Bi-Mn-〇) thin film is obtained by simultaneously depositing the superconducting thin film of B1-5r-Ca-Cu-0 shown in (Example 1) and B1-Mn-0. Compared to the thin film obtained by periodically laminating the obtained oxide magnetic thin film,
It was also found that the crystallinity was far superior, and the properties of critical current density and upper critical magnetic field were superior. Furthermore, B1-5 r-Ca- produced by the above method
It was found that both the Cu-0 superconducting thin film and the B1-Mn-0 magnetic thin film have extremely flat thin film surfaces.

これらのことは、異なる元素を別々に順次積層していく
ことにより、基体表面に対し平行な面内だけで積層され
た蒸着元素が動くだけで、基体表面に対し垂直方向への
元素の移動がないことによるものと考えられる。
These things are possible because by stacking different elements separately and sequentially, the deposited elements move only in the plane parallel to the substrate surface, but the elements do not move in the direction perpendicular to the substrate surface. This is thought to be due to the fact that there is no such thing.

さらに、良好な超電導特性を得るに必要な基体の温度、
熱処理温度も、従来より低いことを見いだした。
Furthermore, the temperature of the substrate required to obtain good superconducting properties,
It was also found that the heat treatment temperature was lower than conventional ones.

B1−0.5r−Cu−0,Ca−Cu−0,B1−M
n−0を周期的に積層させる方法としては、いくつか考
えられる。一般に、MBE装置あるいは多元のEB蒸着
装置で蒸発源の前を開閉シャッターで制御したり、気相
成長法で作製する際にガスの種類を切り替えたりするこ
とにより、周期的積層を達成することができる。しかし
この種の非常に薄い層の積層には従来スパッタリング蒸
着は不向きとされていた。この理由は、成膜中のガス圧
の高さに起因する不純物の混入およびエネルギーの高い
粒子によるダメージと考えられている。しかし、このB
i系酸化物超電導体に対してスパッタリングにより異な
る薄い層の積層を行うと、良好な積層膜作製が可能なこ
とを発見した。スパッタ中の高い酸素ガス圧およびスパ
ッタ放電が、Bi系の100 ’に以上の臨界温度を持
つ相の形成、およびB1−Mn−〇絶縁膜の形成に都合
がよいためではなかろうかと考えられる。
B1-0.5r-Cu-0, Ca-Cu-0, B1-M
There are several possible methods for periodically stacking n-0 layers. In general, periodic stacking can be achieved by controlling an opening/closing shutter in front of the evaporation source in an MBE device or multi-source EB evaporation device, or by switching the type of gas during production using the vapor phase growth method. can. However, sputtering deposition has traditionally been considered unsuitable for this type of extremely thin layer stacking. The reason for this is thought to be the incorporation of impurities due to the high gas pressure during film formation and damage caused by high energy particles. However, this B
We have discovered that it is possible to produce a good laminated film by laminating different thin layers on an i-based oxide superconductor by sputtering. This is probably because the high oxygen gas pressure and sputter discharge during sputtering are convenient for the formation of a Bi-based phase having a critical temperature of 100' or more and for the formation of a B1-Mn-〇 insulating film.

スパッタ蒸着で異なる物質を積層させる方法としては、
組成分布を設けた1個のスパッタリングターゲットの放
電位置を周期的に制御するという方法があるが、組成の
異なる複数個のターゲットのスパッタリングという方法
を用いると比較的簡単に達成することができる。この場
合、複数個のターゲットの各々のスパッタ量を周期的に
制御したり、あるいはターゲットの前にシャッターを設
けて周期的に開閉したりして1周期的績層膜を作製する
ことができる。また基板を周期的に運動させて各々ター
ゲットの上を移動させる方法でも作製が可能である。レ
ーザースパッタあるいはイオンビームスパッタを用いた
場合には、複数個のターゲットを周期運動させてビーム
の照射するターゲットを周期的に変えれば、周期的積層
膜が実現される。このように複数個のターゲットを用い
たスパッタリングにより比較的簡単にBl系酸化物の周
期的積層が作製可能となる。
The method of layering different materials using sputter deposition is as follows:
There is a method of periodically controlling the discharge position of one sputtering target with a composition distribution, but this can be achieved relatively easily by using a method of sputtering multiple targets with different compositions. In this case, a one-period layered film can be produced by periodically controlling the amount of sputtering for each of a plurality of targets, or by providing a shutter in front of the target and opening and closing it periodically. It can also be manufactured by a method in which the substrate is moved periodically and moved over each target. When laser sputtering or ion beam sputtering is used, periodic laminated films can be realized by periodically moving a plurality of targets and periodically changing the targets irradiated with the beam. In this way, by sputtering using a plurality of targets, a periodic stack of Bl-based oxides can be produced relatively easily.

以下節2の発明の内容をさらに深く理解するために、具
体的な実施例を示す。
In order to further understand the content of the invention in Section 2 below, specific examples will be shown.

(実施例2) 第7図に本実施例で用いた4元マグネトロンスパッタ装
置の概略図を示す。第7図において、71はBiツタ−
ット、72は5rCu合金ターゲット、73はCa C
u合金ターゲット、74はMnターゲット、75はシャ
ッター、76はアパーチャー、77は基体、78は基体
加熱用ヒーターを示す。計4個のターゲット71.72
.73.74は第7図に示すのと同様に配置させた。す
なわち、MgO(100)基体77に焦点を結ぶように
各ターゲットが約30°傾いて設置されている。ターゲ
ットの前方には回転するシャッター75があり、パルス
モータで駆動することによりその中に設けられたアパー
チャー76の回転が制御され、各ターゲットのサイクル
およびスパッタ時間を設定することができる。基体77
をヒーター78で約600℃に加熱し、アルゴン・酸素
(5: 1)混合雰囲気3Paのガス中で各ターゲット
のスパッタリングを行なった。各ターゲットのスパッタ
電流を、Bi : 30mA 、 5rCu : 80
mA 、 CaCu : 300mA 、 Mn : 
80+*Aにして実験を行った。Bi−+5rCu−+
CaCu−+5rCu−+Biのサイクルでスパッタし
、B1−5r−Ca−Cu−〇膜の元素の組成比率がB
i: Sr: Ca: Cu=2 : 2 : 2 :
 3となる各ターゲットのスパッタ時間を側盤し、上記
サイクルを20周期行うと、110 ’に以上の臨界温
度を持つ相を作製することができる。このまま状態でも
このB1−5r−Ca−Cu−0膜は110 ”K以上
の超電導転移を示すが、さらに酸素中で600 ’C1
1時間の熱処理を行うと非常に再現性がよくなり、超電
導転移温度は115 ’にで抵抗値がゼロになる温度は
100″Kになった。超電導転移温度が100 ’Kを
超す相は金属元素がB1−8r−Cu−Ca−Cu−C
a−Cu−8r−Biの順序で並んだ酸化物の層から成
り立っているとも言われており、本発明の製造方法がこ
の構造を作るのに非常に役だっているのではないがと考
えられる。
(Example 2) FIG. 7 shows a schematic diagram of a four-element magnetron sputtering apparatus used in this example. In Fig. 7, 71 is Bi
72 is a 5rCu alloy target, 73 is Ca C
74 is a Mn target, 75 is a shutter, 76 is an aperture, 77 is a substrate, and 78 is a heater for heating the substrate. Total of 4 targets 71.72
.. 73 and 74 were arranged in the same manner as shown in FIG. That is, each target is installed at an angle of about 30° so as to focus on the MgO (100) substrate 77. In front of the targets is a rotating shutter 75, which is driven by a pulse motor to control the rotation of an aperture 76 provided therein, thereby making it possible to set the cycle and sputtering time for each target. Base body 77
was heated to about 600° C. with a heater 78, and each target was sputtered in a mixed atmosphere of argon and oxygen (5:1) at 3 Pa. The sputtering current of each target was Bi: 30 mA, 5rCu: 80
mA, CaCu: 300mA, Mn:
The experiment was conducted at 80+*A. Bi-+5rCu-+
Sputtering is performed with a cycle of CaCu-+5rCu-+Bi, and the elemental composition ratio of the B1-5r-Ca-Cu-〇 film is B.
i: Sr: Ca: Cu=2: 2: 2:
By setting the sputtering time of each target to 3 and performing the above cycle 20 times, it is possible to produce a phase having a critical temperature of 110' or more. Even in this state, this B1-5r-Ca-Cu-0 film exhibits a superconducting transition of 110'K or more, but it also exhibits a superconducting transition of 600'C1 in oxygen.
After 1 hour of heat treatment, the reproducibility was very good, and the superconducting transition temperature was 115'K, and the temperature at which the resistance value became zero was 100'K.The phase whose superconducting transition temperature exceeds 100'K is metal. Element is B1-8r-Cu-Ca-Cu-C
It is said that it is made up of oxide layers arranged in the order a-Cu-8r-Bi, and it is thought that the manufacturing method of the present invention is extremely useful in creating this structure. .

また、B1−Mn−〇を単独で成膜したとき膜厚が少な
くとも70Å以上でペロブスカイト型結晶構造をとるこ
とを見いだした。
Furthermore, it has been found that when a film of B1-Mn-〇 is formed alone, a perovskite crystal structure is obtained when the film thickness is at least 70 Å or more.

Bi−+5rCu−+CaCc+−)SrCuの積層を
1周期とし“〔n周期積層しその上にB1−Mn−0を
膜厚d(人)になるよう各ターゲットをスパッタし、n
(Bi−3r−Ca−Cu−0) ・d(Bi−Mn−
0)薄膜を基体77上に作製した。ここでnは1以上の
正の整数を示す。n=10のとき、B1−Mn−〇薄膜
の膜厚dを変化させて積層して得た膜の超電導特性を調
べた。このときB1−5r−Ca−Cu−0薄膜/B1
−Mn−0薄膜の積層繰り返し回数は10回とした。第
8図にd =70.200.1000人のときに得た多
層膜の抵抗の温度変化をそれぞれ特性81.82.83
に示す。
Bi−+5rCu−+CaCc+−)SrCu is stacked in one period, and each target is sputtered to have a film thickness of d (layers).
(Bi-3r-Ca-Cu-0) ・d(Bi-Mn-
0) A thin film was produced on the substrate 77. Here, n represents a positive integer of 1 or more. When n=10, the superconducting properties of films obtained by stacking B1-Mn-〇 thin films with varying film thicknesses d were investigated. At this time, B1-5r-Ca-Cu-0 thin film/B1
The number of repetitions of stacking the -Mn-0 thin film was 10 times. Figure 8 shows the temperature changes in the resistance of the multilayer film obtained when d = 70, 200, and 1000 people, respectively.
Shown below.

第8図において、d=200人のとき、最も高い超電導
転移温度およびゼロ抵抗温度、すなわち特性82が得ら
れた。特性82の超電導転移温度、ゼロ抵抗温度はB1
−5r−Ca−Cu−0膜本来のそれらの値と同等であ
る。臨界電流密度は77 ’Kにおいて、360万A1
0となり、磁性体薄膜を積層していない薄膜の値より4
5%高くなった。また、上部臨界磁場はB1−5r−C
a−C;u−○膜本来のものより約30%向上する。4
.2 ’Kにおいて、C軸に平行方向に磁場を加えたと
きの値は33テスラ、またC軸に垂直方向では490テ
スラであった。この効果の詳細な理由については未だ不
明であるが1本実施例に示した方法でB i−S r−
Ca−Cu−0膜とB1−Mn−○膜とを周期的に積層
することによって、B i−S r−Ca−Cu−〇膜
とB1−Mn−〇膜がエピタキシャル成長していること
により積層界面での元素の相互拡散の影響がなく、かつ
結晶性に優れた薄いB1−Mn−0膜を介して同じく結
晶性に優れたB i−S r−Ca−Cu−0膜を積層
することによりB1−8r−C,a−Cu−0膜におい
て超電導機構になんらかの変化が引き起こされたことが
考えられる。
In FIG. 8, when d=200 people, the highest superconducting transition temperature and zero resistance temperature, ie, characteristic 82, were obtained. The superconducting transition temperature and zero resistance temperature of characteristic 82 are B1
-5r-Ca-Cu-0 film original values. The critical current density is 3.6 million A1 at 77'K
0, which is 4 compared to the value of a thin film that is not laminated with a magnetic thin film.
5% higher. Also, the upper critical magnetic field is B1-5r-C
a-C; improved by about 30% over the original value of the u-○ film. 4
.. At 2'K, the value when a magnetic field was applied in the direction parallel to the C axis was 33 Tesla, and the value was 490 Tesla in the direction perpendicular to the C axis. Although the detailed reason for this effect is still unknown, the method shown in this example allows B i-S r-
By periodically stacking the Ca-Cu-0 film and the B1-Mn-○ film, the B i-S r-Ca-Cu-○ film and the B1-Mn-○ film are epitaxially grown. Layering a B i-S r-Ca-Cu-0 film, which also has excellent crystallinity, through a thin B1-Mn-0 film, which has no effect of mutual diffusion of elements at the interface and has excellent crystallinity. It is considered that some change was caused in the superconducting mechanism in the B1-8r-C, a-Cu-0 film.

さらに、ターゲット71.もしくは74に鉛(pb)を
添加してスパッタしたとき、基体77の温度が上記実施
例よりも約100℃低くても、上記実施例と同等な結果
が得られることを見いだした。
Furthermore, target 71. Alternatively, it has been found that when lead (pb) is added to 74 and sputtered, results equivalent to those of the above example can be obtained even if the temperature of the base 77 is about 100° C. lower than that of the above example.

(発明の効果) 第1の発明の薄膜超電導体は、Bi系薄膜超電導体の臨
界電流密度、臨界磁場の向上をはかる構造を提供するも
のであり、第2の発明の薄膜超電導体の製造方法は第1
の発明をより効果的に実現し、デバイス等の応用には必
須の低温でのプロセスを確立したものであり、本発明の
工業的価値は大きい。
(Effects of the Invention) The thin film superconductor of the first invention provides a structure that improves the critical current density and critical magnetic field of the Bi-based thin film superconductor, and the method for manufacturing a thin film superconductor of the second invention is the first
This invention more effectively realizes the invention described above, and establishes a low-temperature process that is essential for applications such as devices, and the present invention has great industrial value.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は第1の発明の実施例における薄膜の製造装置の
概略図、第2図は第1の発明の構造概念図、第3図、第
6図は第1図の装置により得た薄膜における抵抗値の温
度特性図、第4図は第1図の装置により得た薄膜におけ
る臨界電流密度の温度依存性を示す図、第5図は第1図
の装置により得た薄膜における外部磁場下における抵抗
値の温度特性図、第7図は第2の発明の実施例における
薄膜の製造装置の概略図、第8図は第7図の装置により
得た薄膜における抵抗値の温度特性図である。 11、12.71.72.73.74・・・スパッタリ
ングターゲット、13.75・・・シャッター14、7
6・・・アパーチャー、15.77Mg○基体、 16
.78・・・ ヒーター、 21− B1−Mn−0膜
、22− B1−5r−Ca−Cu−〇膜、61.62
.63.81.82.83−・・薄膜の抵抗の温度特性
。 特許出願人 松下電器産業株式会社 松下電工株式会社 代 理 人 星 野 恒 司 第 囚 X715基体 第 図 イ ーーマ 々1 第 区 外部T4壜 第 ア 図
FIG. 1 is a schematic diagram of a thin film manufacturing apparatus according to an embodiment of the first invention, FIG. 2 is a structural conceptual diagram of the first invention, and FIGS. 3 and 6 are thin films obtained by the apparatus of FIG. 1. Figure 4 shows the temperature dependence of the critical current density in the thin film obtained with the apparatus shown in Figure 1. Figure 5 shows the temperature dependence of the critical current density in the thin film obtained with the apparatus shown in Figure 1 under an external magnetic field. 7 is a schematic diagram of the thin film manufacturing apparatus in the embodiment of the second invention, and FIG. 8 is a temperature characteristic diagram of the resistance value of the thin film obtained by the apparatus of FIG. 7. . 11, 12.71.72.73.74... Sputtering target, 13.75... Shutter 14, 7
6...Aperture, 15.77Mg○ base, 16
.. 78... Heater, 21- B1-Mn-0 film, 22- B1-5r-Ca-Cu-〇 film, 61.62
.. 63.81.82.83--Temperature characteristics of thin film resistance. Patent applicant Matsushita Electric Industrial Co., Ltd. Matsushita Electric Works Co., Ltd. Agent Koji Hoshino No. 1

Claims (4)

【特許請求の範囲】[Claims] (1)主体成分が少なくともビスマス(Bi)、銅(C
u)、およびアルカリ土類(IIa族)を含む層状酸化物
超電導薄膜と、少なくとも1種類以上のペロブスカイト
型酸化物からなる磁性薄膜が交互に積層された構造を持
つことを特徴とする薄膜超電導体。 ここでアルカリ土類は、IIa族元素のうち少なくとも一
種あるいは二種以上の元素を示し、ペロブスカイト型酸
化物とはRFeO_3(R=Y,Sm,Eu,Gd,T
b,Dy,Ho,Er,Tm,Yb,Lu)あるいは、
MMnO_3(M=Bi,La_0_._7Ca_0_
._3,La_0_._7Sr_0_._3,La_0
_._7Ba_0_._3,La_0_._6,Pb_
0_._4,La_0_._7Cd_0_._3),あ
るいは、AMnO_6(A=Gd_2Co,Ba_2F
e,Ca_2Fe)であらわされる酸化物磁性体および
これらのうち少なくとも二種以上をふくむ複合酸化物磁
性体を示す。
(1) The main components are at least bismuth (Bi) and copper (C).
u), and a thin film superconductor having a structure in which layered oxide superconducting thin films containing alkaline earth elements (group IIa) and magnetic thin films consisting of at least one type of perovskite oxide are alternately laminated. . Here, alkaline earth refers to at least one or two or more elements of Group IIa elements, and perovskite oxide refers to RFeO_3 (R=Y, Sm, Eu, Gd, T
b, Dy, Ho, Er, Tm, Yb, Lu) or
MMnO_3(M=Bi, La_0_._7Ca_0_
.. _3, La_0_. _7Sr_0_. _3, La_0
_. _7Ba_0_. _3, La_0_. _6、Pb_
0__. _4, La_0_. _7Cd_0_. _3), or AMnO_6 (A=Gd_2Co, Ba_2F
The figure shows an oxide magnetic material represented by (e, Ca_2Fe) and a composite oxide magnetic material containing at least two or more of these.
(2)基体上に、少なくともBiを含む酸化物と少なく
とも銅およびアルカリ土類(IIa族)を含む酸化物とを
周期的に積層させて形成する酸化物薄膜と、ペロブスカ
イト型酸化物からなる磁性薄膜とを、交互に積層させて
得ることを特徴とする薄膜超電導体の製造方法。 ここでアルカリ土類は、IIa族元素のうちの少なくとも
一種あるいは二種以上の元素を示し、ペロブスカイト型
酸化物とはRFeO_3(R=Y,Sm,Eu,Gd,
Tb,Dy,Ho,Er,Tm,Yb,Lu)あるいは
、MMnO_3(M=Bi,La_0_._7Ca_0
_._3,La_0_._7Sr_0_._3,La_
0_._7Ba_0_._3,La_0_.6,Pb_
0_._4,La_0_._7Cd_0_._3),あ
るいは、AMnO_6(A=Gd_2Co,Ba_2F
e,Ca_2Fe)であらわされる酸化物磁性体を示す
(2) An oxide thin film formed by periodically stacking an oxide containing at least Bi and an oxide containing at least copper and alkaline earth (group IIa) on a substrate, and a magnetic material made of a perovskite oxide. 1. A method for producing a thin film superconductor, characterized in that the thin film superconductor is obtained by alternately laminating thin films. Here, alkaline earth refers to at least one or two or more elements of Group IIa elements, and perovskite oxide refers to RFeO_3 (R=Y, Sm, Eu, Gd,
Tb, Dy, Ho, Er, Tm, Yb, Lu) or MMnO_3 (M=Bi, La_0_._7Ca_0
_. _3, La_0_. _7Sr_0_. _3、La_
0__. _7Ba_0_. _3, La_0_. 6, Pb_
0__. _4, La_0_. _7Cd_0_. _3), or AMnO_6 (A=Gd_2Co, Ba_2F
This shows an oxide magnetic material represented by e, Ca_2Fe).
(3)積層物質の蒸発を少なくとも二種以上の蒸発源で
行うことを特徴とする請求項(2)記載の薄膜超電導体
の製造方法。
(3) The method for manufacturing a thin film superconductor according to claim (2), characterized in that the evaporation of the laminated material is performed using at least two types of evaporation sources.
(4)積層物質の蒸発をスパッタリングで行なうことを
特徴とする請求項(2)記載の薄膜超電導体の製造方法
(4) The method for manufacturing a thin film superconductor according to claim (2), wherein the evaporation of the laminated material is performed by sputtering.
JP2101617A 1990-04-19 1990-04-19 Thin film superconductor and method of manufacturing the same Expired - Lifetime JP3025891B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2101617A JP3025891B2 (en) 1990-04-19 1990-04-19 Thin film superconductor and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2101617A JP3025891B2 (en) 1990-04-19 1990-04-19 Thin film superconductor and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH042182A true JPH042182A (en) 1992-01-07
JP3025891B2 JP3025891B2 (en) 2000-03-27

Family

ID=14305367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2101617A Expired - Lifetime JP3025891B2 (en) 1990-04-19 1990-04-19 Thin film superconductor and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3025891B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63318014A (en) * 1987-06-19 1988-12-26 Hitachi Ltd Superconductive film of metal oxide
JPH03105807A (en) * 1989-09-20 1991-05-02 Hitachi Ltd Laminate membrane of oxide superconductor and oxide magnetic substance

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63318014A (en) * 1987-06-19 1988-12-26 Hitachi Ltd Superconductive film of metal oxide
JPH03105807A (en) * 1989-09-20 1991-05-02 Hitachi Ltd Laminate membrane of oxide superconductor and oxide magnetic substance

Also Published As

Publication number Publication date
JP3025891B2 (en) 2000-03-27

Similar Documents

Publication Publication Date Title
JP2741277B2 (en) Thin film superconductor and method of manufacturing the same
JP3037514B2 (en) Thin film superconductor and method of manufacturing the same
JPH042182A (en) Thin film superconductor and manufacture thereof
JP2733368B2 (en) Superconducting thin film and method for producing the same
JPH0316920A (en) Oxide superconductive thin film and its production
JP2979422B2 (en) Method of manufacturing insulator and insulating thin film, and method of manufacturing superconducting thin film and superconducting thin film
JP3478543B2 (en) Oxide superconducting thin film and method for producing the same
JP2669052B2 (en) Oxide superconducting thin film and method for producing the same
EP0640994B1 (en) Superconductor thin film and manufacturing method
JPH05170448A (en) Production of thin ceramic film
JP2558880B2 (en) Method for producing copper oxide thin film
JPH0465320A (en) Superconducting thin film and its production
JPH03170333A (en) Thin filmy super conductor and its preparation
JP2502744B2 (en) Method of manufacturing thin film super-electric body
JPH0316919A (en) Superconductive thin film and its production
JPH02122065A (en) Production of thin film type superconductor
JPH042617A (en) Oxide superconducting thin film and production thereof
JP2502743B2 (en) Method of manufacturing thin film superconductor
JPH0437609A (en) Oxide superconducting thin film and its production
JPH0822742B2 (en) Thin film superconductor and method of manufacturing the same
JPH0822740B2 (en) Oxide superconducting thin film and method for producing the same
JP2555477B2 (en) Superconducting thin film and manufacturing method thereof
JPH05171414A (en) Superconducting thin film and its production
JPH05194095A (en) Production of thin-film electric conductor
JPH04362016A (en) Production of ceramic thin film

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100128

Year of fee payment: 10

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100128

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100128

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110128

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110128

Year of fee payment: 11