JPS63318014A - Superconductive film of metal oxide - Google Patents

Superconductive film of metal oxide

Info

Publication number
JPS63318014A
JPS63318014A JP62151195A JP15119587A JPS63318014A JP S63318014 A JPS63318014 A JP S63318014A JP 62151195 A JP62151195 A JP 62151195A JP 15119587 A JP15119587 A JP 15119587A JP S63318014 A JPS63318014 A JP S63318014A
Authority
JP
Japan
Prior art keywords
metal oxide
current density
layers
layer
critical current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62151195A
Other languages
Japanese (ja)
Other versions
JP2523647B2 (en
Inventor
Yuzo Kozono
小園 裕三
Matahiro Komuro
又洋 小室
Yoshiaki Yazawa
矢沢 義昭
Masanobu Hanazono
雅信 華園
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62151195A priority Critical patent/JP2523647B2/en
Publication of JPS63318014A publication Critical patent/JPS63318014A/en
Application granted granted Critical
Publication of JP2523647B2 publication Critical patent/JP2523647B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/06Coils, e.g. winding, insulating, terminating or casing arrangements therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B12/00Superconductive or hyperconductive conductors, cables, or transmission lines
    • H01B12/02Superconductive or hyperconductive conductors, cables, or transmission lines characterised by their form
    • H01B12/06Films or wires on bases or cores
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Vapour Deposition (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Thin Magnetic Films (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To provide a superconductive film of metal oxide type which raises the critical current density, by furnishing a layer of ferromagnetic metal between superconductive layers of oxide type as a pinning center fixing the line of magnetic flux. CONSTITUTION:Superconductive layers 2 and ferromagnetic metal layers 3 are laid on a base plate 1 one over another by sputtering to accomplish a film construction. In this arrangement the ferromagnetic metal layer serves as a pinning point for fixing the line of magnetic flux. This hinders intrusion of flux to lead to enhancement of the critical current density of superconductor.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は金属酸化物系超電導薄膜に係り、特に臨界電流
密度の大きな超電導薄膜に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a metal oxide-based superconducting thin film, and particularly to a superconducting thin film having a high critical current density.

〔従来の技術〕[Conventional technology]

Y−Ba−Cu=O1やYの代りに希土類金属を用いた
金属酸化物系超電導体については、ジャパニーズ・ジャ
ーナル・オブ・アプライドフィジックス パート2・レ
ターズ(JJAP Part2Letters 、特集
号(1987)において論じられている。これらの超電
導体は液体窒素温度以上で電気抵抗がゼロとなり、かつ
マイスナー効果を示す第2種超電導体である。
Y-Ba-Cu=O1 and metal oxide superconductors using rare earth metals instead of Y are discussed in the Japanese Journal of Applied Physics Part 2 Letters (JJAP Part 2 Letters, special issue (1987)). These superconductors are type 2 superconductors whose electrical resistance becomes zero above the liquid nitrogen temperature and exhibit the Meissner effect.

さらに、この超電導体を真空蒸着法やスパッタリング法
等の薄膜形成技術を用いて薄膜化した場合においても、
液体窒素温度以上で超電導特性を示すことが確認されて
いる。
Furthermore, even when this superconductor is made into a thin film using thin film forming techniques such as vacuum evaporation or sputtering,
It has been confirmed that it exhibits superconducting properties at temperatures above liquid nitrogen temperature.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術においては、臨界電流密度が103〜10
’A/cdであり、臨界電流密度を向」ニさせることが
1つの大きな課題である。
In the above conventional technology, the critical current density is 103 to 10
'A/cd', and one major challenge is to improve the critical current density.

本発明の目的は、臨界電流密度を向−1−する金属酸化
物系超電導薄膜を提供することにある。
An object of the present invention is to provide a metal oxide-based superconducting thin film that improves critical current density.

〔問題点を解決するための手段〕[Means for solving problems]

」1記目的の臨界電流密度を上げるため、磁束線を固定
するピンニングセンターとして、強磁性金属の層を酸化
物超電導層の間に設けることにより達成される。
In order to increase the critical current density, the objective described in item 1 is achieved by providing a layer of ferromagnetic metal between the oxide superconducting layers as a pinning center for fixing magnetic flux lines.

〔作用〕[Effect]

一般に超電導体の臨界電流密度を増加させるのに有効な
ピンニングセンター(ピン止め点)としては、加工によ
って導入される転位組織、時効による析出物、結晶粒界
等の不均質点等がある。そしてこれらは、超電導体内に
侵入した磁束線に対し自由エネルギーの低い谷を作り、
ピン止め点となることが知られている。従来の合金系の
超電導体では、析出物を、化合物系では結晶粒界を使う
In general, pinning centers (pinning points) that are effective in increasing the critical current density of superconductors include dislocation structures introduced by processing, precipitates caused by aging, and heterogeneous points such as grain boundaries. These create a valley with low free energy for the magnetic flux lines that penetrate into the superconductor,
It is known to be a pinning point. Conventional alloy-based superconductors use precipitates, while compound-based superconductors use grain boundaries.

しかし、これらは、バルクの場合であり、膜厚が数μm
以下の薄膜の場合、析出物や結晶粒界の不均質点を設け
ると、膜の結晶配向性、結晶構造等に影響を及ぼし、本
来の超電導特性としての臨界温度を低下させるという欠
点がある。本発明は、第1図に示すように、ピン止め点
として、強磁性元素の導入を行なったものである。すな
わち、超電導層と強磁性金属層を交互に積層した膜構造
とすることにより、強磁性金属層が磁束線を固定するピ
ン止め点として作用し、これによって、磁束の侵入が妨
げられ超電導体の臨界電流密度を向上させる。
However, these are bulk cases, and the film thickness is several μm.
In the case of the following thin films, the provision of inhomogeneous points such as precipitates and grain boundaries has the disadvantage of affecting the crystal orientation, crystal structure, etc. of the film, and lowering the critical temperature of the original superconducting properties. In the present invention, as shown in FIG. 1, a ferromagnetic element is introduced as a pinning point. In other words, by creating a film structure in which superconducting layers and ferromagnetic metal layers are alternately laminated, the ferromagnetic metal layers act as pinning points for fixing magnetic flux lines, thereby preventing magnetic flux from entering the superconductor. Improve critical current density.

〔実施例〕〔Example〕

以下、本発明の一実施例を図面を用いて説明する。第1
図は本発明の膜構造を示す。基板上の上に超電導層2と
強磁性金属層3を交互にスパッタリング法で積層する。
An embodiment of the present invention will be described below with reference to the drawings. 1st
The figure shows the membrane structure of the invention. Superconducting layers 2 and ferromagnetic metal layers 3 are alternately laminated on a substrate by sputtering.

第1表にスパッタリング条件を示す。スパッタリングタ
ーゲットは超電導層用としてYtBazCuaO7、強
磁性層用としてFeを用いた場合である。いずれも4“
φ−5tのターゲットを用いた。基板はSi<100>
である。
Table 1 shows the sputtering conditions. The sputtering targets used are YtBazCuaO7 for the superconducting layer and Fe for the ferromagnetic layer. Both are 4"
A φ-5t target was used. The substrate is Si<100>
It is.

スパッタリング後、真空度3.X 10−5Torr酸
素ガス導入雰囲気中で熱処理を行なっている。熱処理温
度は500〜600 ’Cで熱処理時間5hrである。
After sputtering, the degree of vacuum is 3. Heat treatment is performed in an atmosphere in which oxygen gas is introduced at X 10-5 Torr. The heat treatment temperature is 500-600'C and the heat treatment time is 5 hours.

第  1  表 第2図はY−Ba−Cu−0膜のみの電気抵抗一温度特
性を示す。臨界温度Tcは86にである。
Table 1 and Figure 2 show the electrical resistance-temperature characteristics of only the Y-Ba-Cu-0 film. The critical temperature Tc is 86°C.

この時、臨界電流密度は温度77Kにおいて、5X10
3A/dであった。これに対し、Fe層を超電導層の間
に交互に入れた時の臨界電流密度JcとFe層の厚さd
mの関係を第3図に示す。
At this time, the critical current density is 5X10 at a temperature of 77K.
It was 3A/d. On the other hand, when Fe layers are alternately inserted between superconducting layers, the critical current density Jc and the Fe layer thickness d
Figure 3 shows the relationship between m.

超電導層の厚さds をパラメータにして示した。The thickness ds of the superconducting layer is shown as a parameter.

超電導層の全膜厚は約1μmである。dm=lo00人
の時、Jcはdm≦゛100人で超電導層のみの場合よ
り大となり、dm>100人で超電導層のみの場合より
小とくなる。他のdsに対しても同様な傾向であった。
The total thickness of the superconducting layer is approximately 1 μm. When dm=lo00 people, Jc becomes larger than when only the superconducting layer is used when dm≦100 people, and smaller than when only the superconducting layer is used when dm>100 people. Similar trends were observed for other ds.

なお、Jcが5 X 103A/d以上の領域では、F
e層の膜厚や超電導層の1層の膜厚によらず臨界温度は
ほぼ一定であった。以上の様に本実施例によれば、酸化
物系超電導膜の臨界電流密度を大幅に向上できるという
効果がある。なお、上記実施例の他、Yの代りに希土類
元素を用いた酸化物超電導体においても同様の結果であ
った。
In addition, in the area where Jc is 5 x 103A/d or more, F
The critical temperature was almost constant regardless of the thickness of the e-layer or the thickness of one superconducting layer. As described above, according to this embodiment, there is an effect that the critical current density of the oxide-based superconducting film can be significantly improved. In addition to the above examples, similar results were obtained for oxide superconductors in which a rare earth element was used instead of Y.

第4図は、磁性層に酸化物磁性体を用いた時の膜構成を
示す。酸化物磁性層として、スピネル型酸化物(MO−
Fe203. Mは2価の金属イオンでFe、Co、N
j等)やペロブスカイト型酸化物(M F e Os 
、 MはLa、Ca、Ba等の3価のイオン)等の場合
を用いたものである。スパッタリング条件は表1と同じ
である。この場合、磁性層が酸化物であるので、スパッ
タリング膜作製後の熱処理に対する安定性が良くなると
いう効果がある。
FIG. 4 shows a film structure when an oxide magnetic material is used for the magnetic layer. As the oxide magnetic layer, spinel type oxide (MO-
Fe203. M is a divalent metal ion such as Fe, Co, N
j, etc.) and perovskite-type oxides (M Fe Os
, M is a trivalent ion such as La, Ca, Ba, etc.). The sputtering conditions are the same as in Table 1. In this case, since the magnetic layer is an oxide, there is an effect that stability against heat treatment after sputtering film formation is improved.

〔発明の効果〕 本発明によれば、酸化物系超電導体の臨界電流密度を大
きくできるので、配線材料やコイル等に用いた場合、大
電流を流せるという効果がある。
[Effects of the Invention] According to the present invention, the critical current density of the oxide-based superconductor can be increased, so that when used for wiring materials, coils, etc., a large current can be passed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の膜構造を示す断面図、第2図は抵抗と
温度との関係を示す線図、第3図は臨界電流密度とFe
層厚さとの関係を示す線図、第4図は本発明の他の例の
膜構造を示す断面図である。 1・・・基板、2・・超電導層、3・・磁性体層。
Figure 1 is a cross-sectional view showing the film structure of the present invention, Figure 2 is a diagram showing the relationship between resistance and temperature, and Figure 3 is a diagram showing the relationship between critical current density and Fe
A diagram showing the relationship with layer thickness, and FIG. 4 is a sectional view showing the film structure of another example of the present invention. 1...Substrate, 2...Superconducting layer, 3...Magnetic layer.

Claims (1)

【特許請求の範囲】 1、層状プロブスカイト型の金属酸化物系超電導材M−
Ba−Cu−O(MはY、又は原子番号57〜71の希
土類金属)と強磁性金属材 (Fe、Co、Ni、Gd、等)あるいは強磁性金属合
金材を交互に積層したことを特徴とする金属酸化物超電
導薄膜。 2、特許請求の範囲第1項において、超電導層の膜厚d
sが25〜1000Åの範囲、強磁性層の膜厚dmが5
〜100Åの範囲で、かつds≧dmで積層したことを
特徴とする金属酸化物超電導薄膜。 3、特許請求の範囲第1項において、強磁性層の材料と
して、酸化物磁性材料を用いたことを特徴とする金属酸
化物超電導薄膜。
[Claims] 1. Layered provskite type metal oxide superconducting material M-
It is characterized by alternating layers of Ba-Cu-O (M is Y or a rare earth metal with an atomic number of 57 to 71) and a ferromagnetic metal material (Fe, Co, Ni, Gd, etc.) or a ferromagnetic metal alloy material. Metal oxide superconducting thin film. 2. In claim 1, the thickness d of the superconducting layer
s is in the range of 25 to 1000 Å, and the thickness dm of the ferromagnetic layer is 5
A metal oxide superconducting thin film, characterized in that the layers are stacked in a range of 100 Å and ds≧dm. 3. A metal oxide superconducting thin film according to claim 1, characterized in that an oxide magnetic material is used as the material of the ferromagnetic layer.
JP62151195A 1987-06-19 1987-06-19 Metal oxide superconducting thin film Expired - Lifetime JP2523647B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62151195A JP2523647B2 (en) 1987-06-19 1987-06-19 Metal oxide superconducting thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62151195A JP2523647B2 (en) 1987-06-19 1987-06-19 Metal oxide superconducting thin film

Publications (2)

Publication Number Publication Date
JPS63318014A true JPS63318014A (en) 1988-12-26
JP2523647B2 JP2523647B2 (en) 1996-08-14

Family

ID=15513336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62151195A Expired - Lifetime JP2523647B2 (en) 1987-06-19 1987-06-19 Metal oxide superconducting thin film

Country Status (1)

Country Link
JP (1) JP2523647B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6450314A (en) * 1987-08-19 1989-02-27 Semiconductor Energy Lab Manufacture of superconductive material
JPH03105807A (en) * 1989-09-20 1991-05-02 Hitachi Ltd Laminate membrane of oxide superconductor and oxide magnetic substance
JPH042182A (en) * 1990-04-19 1992-01-07 Matsushita Electric Ind Co Ltd Thin film superconductor and manufacture thereof
WO2002011215A1 (en) * 2000-07-31 2002-02-07 Sociedad Española De Carburos Metalicos, S.A. Critical current density improvement in high-temperature superconductors
JP2005078939A (en) * 2003-08-29 2005-03-24 Japan Science & Technology Agency Superconducting film and its manufacturing method
JP2009283372A (en) * 2008-05-23 2009-12-03 Fujikura Ltd Oxide superconductor introducing artificial pin and method of manufacturing the same
WO2012161233A1 (en) 2011-05-23 2012-11-29 古河電気工業株式会社 Oxide superconducting thin film
WO2016034780A1 (en) * 2014-09-01 2016-03-10 Harry Vivier Permanent magnet with laminate structure
EP4300520A1 (en) * 2022-06-28 2024-01-03 Airbus Improved inductive component for electric or hybrid aircraft

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5828104A (en) * 1981-08-13 1983-02-19 三菱化学株式会社 High critical magnetic field superconductive material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5828104A (en) * 1981-08-13 1983-02-19 三菱化学株式会社 High critical magnetic field superconductive material

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6450314A (en) * 1987-08-19 1989-02-27 Semiconductor Energy Lab Manufacture of superconductive material
JPH03105807A (en) * 1989-09-20 1991-05-02 Hitachi Ltd Laminate membrane of oxide superconductor and oxide magnetic substance
JPH042182A (en) * 1990-04-19 1992-01-07 Matsushita Electric Ind Co Ltd Thin film superconductor and manufacture thereof
WO2002011215A1 (en) * 2000-07-31 2002-02-07 Sociedad Española De Carburos Metalicos, S.A. Critical current density improvement in high-temperature superconductors
JP2005078939A (en) * 2003-08-29 2005-03-24 Japan Science & Technology Agency Superconducting film and its manufacturing method
JP4495426B2 (en) * 2003-08-29 2010-07-07 独立行政法人科学技術振興機構 Superconducting film and manufacturing method thereof
US7772157B2 (en) 2003-08-29 2010-08-10 Japan Science And Technology Agency Superconducting film and method of manufacturing the same
US8148300B2 (en) 2003-08-29 2012-04-03 Japan Science And Technology Agency Superconducting film and method of manufacturing the same
JP2009283372A (en) * 2008-05-23 2009-12-03 Fujikura Ltd Oxide superconductor introducing artificial pin and method of manufacturing the same
WO2012161233A1 (en) 2011-05-23 2012-11-29 古河電気工業株式会社 Oxide superconducting thin film
WO2016034780A1 (en) * 2014-09-01 2016-03-10 Harry Vivier Permanent magnet with laminate structure
EP4300520A1 (en) * 2022-06-28 2024-01-03 Airbus Improved inductive component for electric or hybrid aircraft

Also Published As

Publication number Publication date
JP2523647B2 (en) 1996-08-14

Similar Documents

Publication Publication Date Title
US10290399B2 (en) Integrated superconductor device and method of fabrication
JPS63318014A (en) Superconductive film of metal oxide
JP2939544B1 (en) Mg-doped low-anisotropic high-temperature superconductor and method for producing the same
JPH03153089A (en) Tunnel junction element wherein compound oxide superconductive material is used
JP2501620B2 (en) Preparation method of superconducting thin film
JP2644284B2 (en) Superconducting element
JP2501035B2 (en) Superconducting thin film
US9768370B2 (en) Low AC loss high temperature superconductor tape
JPH04275470A (en) Product composed of superconductor/insulator structure and manufacture of said product
JP2544759B2 (en) How to make a superconducting thin film
JPH01280380A (en) Semiconductor substrate having superconductor layer
JP3061627B2 (en) Manufacturing method of oxide superconducting tape conductor
JP3058515B2 (en) Superconducting Josephson device and its manufacturing method
JP2798370B2 (en) Copper oxide superconducting material
JP2931779B2 (en) Superconducting element
JPH01280375A (en) Semiconductor substrate having superconductor layer
JPH04167479A (en) Laminated superconductor
Ghien et al. Fabrication of high Tc superconducting films with diffusion barriers
JPH0829938B2 (en) Composite oxide superconducting thin film and method for producing the same
Allen et al. Critical current density measurements of thin films of YBaCuO
Suzuki Thin Film Preparation and Device Application of Low Carrier Density Superconductor BaPb1-xBixO3
Venturini et al. Magnetization, flux creep and transport in Tl-Ca-Ba-Cu-O thin films
JPS63252311A (en) Compositional modulation type conductive material
JPH01280379A (en) Semiconductor substrate having superconductor layer
JPH0474716A (en) Bi-system superconductive material