JPS5828104A - High critical magnetic field superconductive material - Google Patents

High critical magnetic field superconductive material

Info

Publication number
JPS5828104A
JPS5828104A JP56127138A JP12713881A JPS5828104A JP S5828104 A JPS5828104 A JP S5828104A JP 56127138 A JP56127138 A JP 56127138A JP 12713881 A JP12713881 A JP 12713881A JP S5828104 A JPS5828104 A JP S5828104A
Authority
JP
Japan
Prior art keywords
magnetic field
superconducting
magnetic flux
high critical
superconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56127138A
Other languages
Japanese (ja)
Other versions
JPH0258727B2 (en
Inventor
青木 亮三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP56127138A priority Critical patent/JPS5828104A/en
Publication of JPS5828104A publication Critical patent/JPS5828104A/en
Publication of JPH0258727B2 publication Critical patent/JPH0258727B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/06Coils, e.g. winding, insulating, terminating or casing arrangements therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B12/00Superconductive or hyperconductive conductors, cables, or transmission lines
    • H01B12/02Superconductive or hyperconductive conductors, cables, or transmission lines characterised by their form
    • H01B12/06Films or wires on bases or cores
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、優れた超伝導磁束捕捉効果を示す為臨界磁場
超伝導材料Kliするものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention uses a critical magnetic field superconducting material Kli to exhibit an excellent superconducting flux trapping effect.

従来、Wb、 Ta、 Ti  勢(D単結晶、或イハ
Conventionally, Wb, Ta, Ti crystals (D single crystal, or IHA) were used.

Hg−In、Pb−B1 等の合金からなる超伝導#料
が知られている。しかし、これら従来の超伝導材料の超
伝導臨界磁場はそれ程高いものではなく、より^い磁場
まで無損失電流を流すことができるような超伝導材料の
開発が株々検討されている。例えば、 Nb、 Hg−
In等の超伝導材料中に1鉄、コバルト、ガドリニウム
等の強磁性体微粒子を分散、或いは、析出させて不均質
構造を導入して、析出粒界などへの超伝導磁束を捕捉す
るととによ)、高い超伝導臨界磁場を有する超伝導材料
を得る試みがなされている。
Superconducting materials made of alloys such as Hg-In and Pb-B1 are known. However, the superconducting critical magnetic field of these conventional superconducting materials is not so high, and the development of superconducting materials that can allow lossless current to flow up to even higher magnetic fields is being studied. For example, Nb, Hg-
By dispersing or precipitating ferromagnetic particles such as iron, cobalt, and gadolinium in a superconducting material such as In, a heterogeneous structure is introduced, and superconducting magnetic flux is captured at the precipitate grain boundaries. ), attempts have been made to obtain superconducting materials with high superconducting critical magnetic fields.

しかしながら、いずれ奄未だ、十分な捕捉効果を達成す
るには到っていない。これは、強磁性体が超伝導体中に
微細な粒子状態で存在しているため、直線状にのびる超
伝導磁束のの捕捉にそれはど有効に機能していないため
であろうと推測される。
However, Amami has yet to achieve a sufficient trapping effect. This is presumed to be because the ferromagnetic material exists in the superconductor in the form of fine particles, so it does not function effectively in capturing the superconducting magnetic flux extending in a straight line.

本発明者は、かかる点に留意し、超伝導磁束□を効率よ
く捕捉し、高い臨界磁場を有する超伝導材料を提供すべ
く鋭意検討した結果、特定の厚さの超伝導体上に強磁性
を特定の厚さKなるように積層することKよって所期の
目的が達成されることを知得し、本発明を完成するに、
到った。
With this in mind, the inventors of the present invention have conducted intensive studies to provide a superconducting material that efficiently captures superconducting magnetic flux □ and has a high critical magnetic field. In order to complete the present invention, he realized that the desired purpose was achieved by laminating K to a specific thickness K, and completed the present invention.
It has arrived.

即ち、本発明の要旨は、コヒーレンス長より大きい厚さ
の超伝導体上に、強磁性体を該超伝導体の磁束侵入深さ
より大きい厚さに積層してなる高臨界磁場超伝導材料に
存する。
That is, the gist of the present invention resides in a high critical magnetic field superconducting material in which a ferromagnetic material is laminated to a thickness greater than the magnetic flux penetration depth of the superconductor on a superconductor having a thickness greater than the coherence length. .

以Y本発明を駈明するに、本発明で使用される超伝導体
としては、公知の種々のものを使用することができる。
To further explain the present invention, various known superconductors can be used as the superconductor used in the present invention.

好まし、くけ、ランダウ・バタリ パラメーター(K+
 K−λ/8(λ;磁束侵入深さ、ξ;コヒーレンス長
)の大きい、好ましく FiK 〉/ 0であるような
、もともと高臨界磁場起伝導材料でかつ強磁性体と合金
を作如難いものである庵のが使用される。具体的には、
例えば、Wb ; NbTi等の合金; Wb、8n、
V、Ga。
Preferably, the Landau-Battari parameter (K+
K-λ/8 (λ: magnetic flux penetration depth, ξ: coherence length) is large, preferably FiK 〉/0, which is originally a high critical magnetic field-generating conductive material and is difficult to alloy with ferromagnetic material. The hermitage is used. in particular,
For example, Wb; alloys such as NbTi; Wb, 8n,
V, Ga.

Mt+、Gθ勢の金属間化合物が挙げられる。Examples include Mt+ and Gθ intermetallic compounds.

本発明において、超伝導体は少なくとも使用する超伝導
体のコヒーレンス長より大きい厚番有していることが必
要である。超伝導体の多くは、そのコヒーレンス長が概
ね/θ−′αより小さbので、通常け10−”6以上、
好ましくは、/θ′″4〜/l”qllの範囲から選択
される。超伝導体の厚さが、そのコヒーレンス長以下で
あると超伝導特性が減殺されるので好ましくない。
In the present invention, the superconductor must have a thickness that is at least larger than the coherence length of the superconductor used. The coherence length of most superconductors is generally smaller than /θ−′α, so it is usually greater than or equal to 10−”6.
Preferably, it is selected from the range of /θ'''4 to /l''qll. If the thickness of the superconductor is less than its coherence length, the superconducting properties will be diminished, which is not preferable.

また、本発明においては、 Ml)勢の結晶を使用する
場合は、予め超伝導体に一定方向に結晶格子欠陥または
不均質界面を導入しておくのが好まし−。それは、超伝
導磁束の捕捉をより効果的に行なわせるためである。か
かる結晶格子欠陥または不均質界面を導入する方法とし
ては、冷間加工、線材の複合構造化等の方法が挙げられ
る。
Further, in the present invention, when using a crystal of the Ml) type, it is preferable to introduce crystal lattice defects or inhomogeneous interfaces in a certain direction into the superconductor in advance. This is to trap superconducting magnetic flux more effectively. Examples of methods for introducing such crystal lattice defects or inhomogeneous interfaces include methods such as cold working and forming a wire into a composite structure.

本発明で使用される強磁性体としては、we。The ferromagnetic material used in the present invention includes we.

Co、 lii、 Or、 Mn 等の遷移金属間の合
金またはそれらの酸化物等が挙げられる。かかる強磁性
体は、超伝導体上に直接その粒子、好ましくは、10O
OA〜10μの粒子または薄膜を塗布または蒸着しても
よい、更に、これらを多層積層し、線引き、ロール正弧
等による複合化(合板)加工を施してもよい。
Examples include alloys between transition metals such as Co, lii, Or, Mn, and oxides thereof. Such a ferromagnetic material can be coated directly onto the superconductor with its particles, preferably 10O
Particles or thin films of OA to 10μ may be coated or vapor-deposited.Furthermore, these may be laminated in multiple layers and subjected to composite (plywood) processing by wire drawing, roll arcing, etc.

本発明において、強磁性体は、超伝導体上に該超伝導体
の磁束侵入深さより大きい厚さに積層することが必要で
ある。こわより小さい厚さKIN層した場合は、超伝導
磁束を効率よく捕捉することができ表い。通常%10−
”C11r以上、好ましくは・10−“〜10−”tM
の範囲の厚さに積層すればよい。
In the present invention, the ferromagnetic material must be laminated on the superconductor to a thickness greater than the magnetic flux penetration depth of the superconductor. If the thickness of the KIN layer is smaller than the thickness of the KIN layer, superconducting magnetic flux can be efficiently captured. Usually %10-
"C11r or more, preferably 10-" to 10-"tM
The layers may be laminated to a thickness within the range of .

また、本発明で使用する強磁性体は、強磁性体中の磁束
捕捉エネルギーは、帯磁率(χ)K比例するため、高磁
場まで2の大きい材料が好ましい。更に好ましくけ%/
 O’Oe以上の磁場まで飽和しない磁化(・不飽和磁
化)を有する材料であるものが好適である。
Furthermore, since the magnetic flux trapping energy in the ferromagnetic material is proportional to the magnetic susceptibility (χ)K, the ferromagnetic material used in the present invention is preferably a material with a large value of 2 up to a high magnetic field. Even better%/
A material having magnetization that does not saturate (unsaturated magnetization) up to a magnetic field of O'Oe or higher is suitable.

上記強磁性体は、好ましくけ、超伝導体の結晶格子欠陥
の方向を含む面と平行になるよう積層される。この様な
特定の方向に強磁性体を特定の厚さに積層することによ
って、超伝導磁束が強磁性体部に捕捉され、超伝導体中
への磁束の侵入を抑止することがで、きるのである。ま
た、強磁性体による磁束の捕捉力は強磁性体自身の作る
反磁場によって弱められるため、強磁性体は反磁場係数
が極めて小さくなるように配置するのが好ましい・ 強磁性体の厚さは、超伝導体材料のコヒーレンス長以上
のサイズである場合に磁束捕捉力が大きいので好ましい
The ferromagnetic material is preferably laminated so as to be parallel to a plane including the direction of crystal lattice defects of the superconductor. By laminating ferromagnetic materials in a specific direction and to a specific thickness, the superconducting magnetic flux is captured by the ferromagnetic material, preventing the magnetic flux from entering the superconductor. It is. In addition, the magnetic flux trapping force of a ferromagnetic material is weakened by the demagnetizing field created by the ferromagnetic material itself, so it is preferable to arrange the ferromagnetic material so that the demagnetizing field coefficient is extremely small.・The thickness of the ferromagnetic material is , it is preferable that the size is greater than or equal to the coherence length of the superconductor material because the magnetic flux trapping force is large.

本発明において、強磁性体による磁束、の捕捉効果は、
超伝導体と強磁性体とを交互JIK重ね。
In the present invention, the magnetic flux capture effect by the ferromagnetic material is
Alternate JIK stacking of superconductors and ferromagnetic materials.

多層、或いは、多線状複合構造として使用すれば、よ)
効果的である0例えば、超伝導体と強磁性体が交互に同
心円状になるように配置した多層構造の超伝導材料を使
用して電流ケーブルに使用した場合、大きい電流を印加
しても安定な無損失通電状態を維持することが可能とな
る。
(If used as a multilayer or multilinear composite structure)
Effective 0 For example, if a multilayered superconducting material in which superconductors and ferromagnetic materials are arranged in alternating concentric circles is used in a current cable, it will remain stable even when a large current is applied. It becomes possible to maintain a lossless energized state.

これは、ケーブルを流れる電流による環状磁力線は、反
磁性超伝導体内に存在するよりは強磁性体内に捕捉され
た方がエネルギー利得が大きいのて、強磁性体に捕捉さ
れた磁束は強い電磁力が働き、電流と磁束との相互作用
により磁束に働くケーブル中心方向への力に抗し工強磁
性体に捕捉されて容易に動けな・くなるためである。
This is because the annular magnetic field lines caused by the current flowing through the cable have a greater energy gain when trapped in a ferromagnetic body than in a diamagnetic superconductor, so the magnetic flux trapped in a ferromagnetic body has a strong electromagnetic force. This is because, due to the interaction between the current and the magnetic flux, the cable resists the force acting on the magnetic flux towards the center of the cable and is captured by the ferromagnetic material, making it difficult to move.

また、コイル軸に平行な方向に積層した多線状複合構造
の超伝導材料を使用してソレノイドに使用した場合、ソ
レノイドループ内部の高磁束上 11&がコイルを横切って移動するのを抑角されるため
、高磁場を無損失11LfIL状態で維持することが可
能となる。
In addition, when a superconducting material with a multi-wire composite structure laminated in a direction parallel to the coil axis is used in a solenoid, the high magnetic flux inside the solenoid loop is suppressed from moving across the coil. Therefore, it is possible to maintain a high magnetic field in a lossless 11LfIL state.

以上詳述した様に1上記の如くして得られる本IA明の
超伝導材料#′i、超伝導磁束を有効に捕捉する′ため
、砺めて高い超伝導臨界a場を有するのである。従って
、超伝導送電用ケーブル、超伝導マグネット用ソレノイ
ド等に&めて有用なのである。
As detailed above, the superconducting material #'i of the present invention obtained as described above has an extremely high superconducting critical a-field because it effectively captures superconducting magnetic flux. Therefore, it is extremely useful for superconducting power transmission cables, superconducting magnet solenoids, etc.

以下に実施例を挙げて本発明を更に具体的に説明する。The present invention will be explained in more detail with reference to Examples below.

実施例1 精製されたWb単結晶(コヒーレンス長3×/θ−6e
In)K引張加工によ?)〔/、a/〕方向に転位線を
導入し、その方向を含む〔10/〕面に厚さθ、jJr
W11、直径2M11の円板状の試料を切り出した。こ
の試料面に垂直に約1030θの外部磁場を加え、磁気
偏光観察法によシ磁束方向を観察したところ、〔/−2
1〕方向Kh指状(フィンガーライ、り)分布で極めて
異方的に侵入しているのが認められた。この〔/、2/
〕方向を直角に横切るようK (///)方向に厚さ4
tjfim、巾θ、3■のミューメタルバンドを円板状
の試料表面に密勉させて超伝導材料を得た。
Example 1 Purified Wb single crystal (coherence length 3×/θ-6e
In) K tensile processing? ) A dislocation line is introduced in the [/, a/] direction, and the thickness θ, j Jr
A disk-shaped sample with a width of 11 mm and a diameter of 2 M11 was cut out. When an external magnetic field of approximately 1030θ was applied perpendicular to the sample surface and the magnetic flux direction was observed using magnetic polarization observation, it was found that [/-2
1] Extremely anisotropic intrusion was observed in the direction Kh with a finger-like distribution. This [/, 2/
] Thickness 4 in the K (///) direction so as to cross the direction at right angles.
A superconducting material was obtained by closely depositing a mu-metal band of tjfim, width θ, and 3 μm on the surface of a disk-shaped sample.

得られた超伝導材料を絶対温度ダ、7にで磁場を増大印
加しながらNtt内への超伝導磁束侵入密度分布を磁気
偏光観察法によ)観察したところ、磁場がI00υθま
で#−iンユーメタルバンド密着部分への超伝導磁束の
侵入は認められなかった。YOOOeでは侵入が社めら
れた2、z、ミューメタルバンドの密着部分と非密着部
分との間では磁束密度に明らかなレベル差があった。
When we observed the superconducting magnetic flux penetration density distribution into Ntt (by magnetic polarization observation method) while applying an increasing magnetic field to the obtained superconducting material at an absolute temperature of 7, we found that the magnetic field increased to #-i up to I00υθ. No intrusion of superconducting magnetic flux into the close contact portion of the U-metal band was observed. In YOOOe, there was a clear level difference in the magnetic flux density between the close contact part and the non-close contact part of the 2,z and mu metal bands, which were allowed to penetrate.

これから下記式によりミューメタルバンドの超伝導磁束
の捕捉力を算出したところ、ダ〜1X10’(lア。。
From this, we calculated the superconducting magnetic flux trapping force of the mu-metal band using the following formula:

/cd −<−あった。       ′fp:磁束捕
捉力 B(X):@束密度 H:外磁場強度 実施例コ 実施例/[おいて、ミューメタルバンドの代J) K 
、 Fet Os粒子を表面に有するポリエチレンテレ
フタレートフィルムを使用する以外は同様にして超伝導
材料を作製し、Nb内への超伝導磁束侵入密度分布を観
察した。その結果的り0000塘での印加ではフィルム
密着部分への超伝導磁束の侵入は認められなかった。
/cd -<- was there. 'fp: Magnetic flux trapping force B (X): @Flux density H: External magnetic field strength Example / [In place, mu metal band J) K
A superconducting material was produced in the same manner except that a polyethylene terephthalate film having FetOs particles on the surface was used, and the density distribution of superconducting magnetic flux penetrating into Nb was observed. As a result, no superconducting magnetic flux was observed to penetrate into the film-adhesive area when the applied force was 0,000 m2.

手続補正書(自発) 昭和j6年//月ん 日 特許庁長官島田春樹殿 1 事件の表示 昭和st年 特 許願第1.27/3
g号2発 明の名称 高臨界磁場超伝導材料3 補正を
する者  出 願 人 (!9t )  三菱化成工業株式会社略4代理人〒1
00 (ほか 1 名) 5補正の対象   明細書の「発明の詳細な説明」の欄
6補正の、内容 (1)  明細書弘頁最下行から同夕頁/行に[遷移マ
リラム等の希土類金属間の合金またはそれらめ化合物等
」と訂正する。
Procedural amendment (spontaneous) 1939///Monday Haruki Shimada, Commissioner of the Japan Patent Office 1 Indication of case 1939 Patent application No. 1.27/3
Name of the invention No. g 2 High critical magnetic field superconducting material 3 Person making the amendment Applicant (!9t) Mitsubishi Chemical Industries, Ltd. Approximately 4 agents 〒1
00 (1 other person) Subject of 5 amendments Contents of 6 amendments in column ``Detailed description of the invention'' of the specification (1) From the bottom line of the main page of the specification to the same page/line [rare earth metals such as transition marillam] "alloys between them or their compounds, etc."

(2)明細書♂頁r行に「磁束方向」とあるめを1磁束
密度分布」と訂正する。
(2) On page ♂, line r of the specification, the words ``magnetic flux direction'' are corrected to ``1 magnetic flux density distribution''.

(3)明細書り頁/〜2行に「密着部分と非密着部分と
の間では」とあるのを「密着部分の前後ではjと訂正す
る。
(3) On the second line of the specification page, the phrase ``between the close contact area and the non-contact area'' should be corrected to ``j before and after the close contact area.''

以  上that's all

Claims (1)

【特許請求の範囲】 (1)コヒーレンス長よシ大きい厚さの超伝導体上に1
強磁性体を該超伝導体の磁束侵入深さより大きい厚さに
積層してなる高臨界磁場超伝導材料の範S第1項記載の
高臨界磁場超伝導材料。 (3)  強磁性体が、70″″l′〜IQ″″151
1の厚さに積層された特許請求の範囲第7狽記載の高臨
界磁場超伝導材料。 (4)超゛伝導体が、一定方向に結晶格子欠陥または不
均質外画を導入されたものである特許請求の範囲第1I
IJ記載の高臨界磁場超伝導材料。 (5)強磁性体が、IO’Oe以上の磁場まで飽和しな
い磁化を有する特許請求の範囲第7項記載の高臨界磁場
超伝導材料。
[Claims] (1) 1 on a superconductor with a thickness greater than the coherence length.
A high critical magnetic field superconducting material according to item S, item 1 of the high critical magnetic field superconducting material, which is formed by laminating ferromagnetic materials to a thickness greater than the magnetic flux penetration depth of the superconductor. (3) The ferromagnetic material is 70″l′ to IQ″″151
The high critical magnetic field superconducting material according to claim 7, which is laminated to a thickness of 1. (4) Claim 1I in which the superconductor has crystal lattice defects or non-uniform outer regions introduced in a certain direction.
High critical magnetic field superconducting material described in IJ. (5) The high critical magnetic field superconducting material according to claim 7, wherein the ferromagnetic material has magnetization that does not saturate up to a magnetic field of IO'Oe or higher.
JP56127138A 1981-08-13 1981-08-13 High critical magnetic field superconductive material Granted JPS5828104A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56127138A JPS5828104A (en) 1981-08-13 1981-08-13 High critical magnetic field superconductive material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56127138A JPS5828104A (en) 1981-08-13 1981-08-13 High critical magnetic field superconductive material

Publications (2)

Publication Number Publication Date
JPS5828104A true JPS5828104A (en) 1983-02-19
JPH0258727B2 JPH0258727B2 (en) 1990-12-10

Family

ID=14952549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56127138A Granted JPS5828104A (en) 1981-08-13 1981-08-13 High critical magnetic field superconductive material

Country Status (1)

Country Link
JP (1) JPS5828104A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63318014A (en) * 1987-06-19 1988-12-26 Hitachi Ltd Superconductive film of metal oxide
EP4300520A1 (en) * 2022-06-28 2024-01-03 Airbus Improved inductive component for electric or hybrid aircraft

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63318014A (en) * 1987-06-19 1988-12-26 Hitachi Ltd Superconductive film of metal oxide
EP4300520A1 (en) * 2022-06-28 2024-01-03 Airbus Improved inductive component for electric or hybrid aircraft

Also Published As

Publication number Publication date
JPH0258727B2 (en) 1990-12-10

Similar Documents

Publication Publication Date Title
Von Helmolt et al. Intrinsic giant magnetoresistance of mixed valence La‐A‐Mn oxide (A= Ca, Sr, Ba)
DE3650560T2 (en) Surveillance system label for use in anti-theft
Hwang et al. Enhancing the low field magnetoresistive response in perovskite manganites
JPH0297098A (en) Superconductive magnetic shielding body
Mattson et al. Magnetoresistivity and oscillatory interlayer magnetic coupling of sputtered Fe/Nb superlattices
Ogimoto et al. Tunneling magnetoresistance above room temperature in La0. 7Sr0. 3MnO3/SrTiO3/La0. 7Sr0. 3MnO3 junctions
Vavra et al. Magnetoresistance and Hall effect in epitaxial Co-Au superlattices
JPS61183979A (en) Superconductive magnetic shield
Ikuta et al. Extracting the utmost from the high performance of Sm–Ba–Cu–O bulk superconductors by pulse field magnetization
JPS5828104A (en) High critical magnetic field superconductive material
Stamopoulos et al. Effective ferromagnetic coupling between a superconductor and a ferromagnet in La Ca Mn O∕ Nb hybrids
Saito et al. X-ray absorption spectroscopy and x-ray magnetic circular dichroism of epitaxially grown Heusler alloy Co2MnSi ultrathin films facing a MgO barrier
Muralidhar et al. Influence of combined Pt and CeO2 additions on microstructure and magnetic properties in (Nd, Eu, Gd)-Ba-Cu-O
Collings et al. Magnetic studies of proximity-effect coupling in a very closely spaced fine-filament NbTi/CuMn composite superconductor
Fuerst et al. Effect of manganese substitution in erbium‐iron‐manganese‐boron: Spin reorientation, moment compensation, and structure
Awad et al. The effect of nanosized CoFe 2 O 4 addition on the magnetic properties of GdBa 2 Cu 3 O 7-δ using AC magnetic susceptibility measurements
Collings et al. Design of Multifilamentary Strand for Superconducting Supercollider (SSC) Applications--Reduction of Magnetizations Due to Proximity Effect and Persistent Current
Glowacki et al. Superconducting–magnetic heterostructures: a method of decreasing ac losses and improving critical current density in multifilamentary conductors
Nikolaev et al. Temperature dependence of interlayer exchange coupling in manganite-based superlattices
Anisimov et al. Magnetic anisotropies of Fe/sub n//V/sub m/[001] superlattices determined by ferromagnetic resonance
Koizumi et al. Interlayer exchange coupling and interface magnetic anisotropy with crossed in-plane and perpendicular magnetic anisotropies
Hannachi et al. Comparative Study of the Effect of Magnetic Nanoparticle CoFe {sub 2} O {sub 4} on Fluctuation-Induced Conductivity of Y-123 and Y-358 Superconductors
JP2821772B2 (en) Superconducting magnetic shield material
JPH03166795A (en) Magnetic shield material
Kanki et al. Magnetotransport properties of ferromagnetic La 0.8 Ba 0.2 MnO 3/antiferromagnetic LaMO 3 (M= Cr, Fe) perovskite trilayer films