JP2009283372A - Oxide superconductor introducing artificial pin and method of manufacturing the same - Google Patents

Oxide superconductor introducing artificial pin and method of manufacturing the same Download PDF

Info

Publication number
JP2009283372A
JP2009283372A JP2008135981A JP2008135981A JP2009283372A JP 2009283372 A JP2009283372 A JP 2009283372A JP 2008135981 A JP2008135981 A JP 2008135981A JP 2008135981 A JP2008135981 A JP 2008135981A JP 2009283372 A JP2009283372 A JP 2009283372A
Authority
JP
Japan
Prior art keywords
superconducting
film
oxide
superconducting film
critical current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008135981A
Other languages
Japanese (ja)
Other versions
JP5274895B2 (en
Inventor
Mitsunori Igarashi
光則 五十嵐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2008135981A priority Critical patent/JP5274895B2/en
Publication of JP2009283372A publication Critical patent/JP2009283372A/en
Application granted granted Critical
Publication of JP5274895B2 publication Critical patent/JP5274895B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an oxide superconductor capable of improving critical current characteristics at a magnetic field and restraining deterioration of critical current density at a non-magnetic field and having suitable critical current characteristics; and to provide a simple method of manufacturing the same. <P>SOLUTION: The oxide superconductor 1 has a base body 2 and an oxide superconducting layer 5 formed on one surface of the base body. The oxide superconducting layer is made of a superconductive material of a RE123 system, and is a laminate of a first superconductive film 3 including no impurities and a second superconductive film 4 including impurities. The laminate has at least an interface between the first superconductive film and the second superconductive film. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、超電導電力ケーブル、超電導マグネット、超電導エネルギー貯蔵装置、超電導発電装置、医療用MRI装置、超電導電流リードなどへの応用開発が進められている、磁場下で高い臨界電流特性を示す酸化物超電導導体及びその製造方法に関する。   The present invention has been developed for application to superconducting power cables, superconducting magnets, superconducting energy storage devices, superconducting power generation devices, medical MRI devices, superconducting current leads, and the like. The present invention relates to a superconducting conductor and a method for manufacturing the same.

RE123系超電導導体は、液体窒素温度(77K)でも良好な臨界電流特性を示す高温超電導導体として広く知られている。ここで、RE123系超電導導体とは、組成式「REBaCu」で表記され、「RE」がY、Gd、Smなどの希土類元素からなる超電導導体を意味する。
一般に、純粋なRE123系超電導材料を用い良好な結晶配向性を持つように成膜された超電導導体は、無磁場下で高臨界電流特性を示す。しかし、前記純粋なRE123系超電導導体は、高磁場下で臨界電流特性が急激に低下するという問題がある。
その解決策として、従来、超電導層内に磁束をピン止めするピンニングセンターを導入する試みがなされている。
The RE123-based superconducting conductor is widely known as a high-temperature superconducting conductor that exhibits good critical current characteristics even at a liquid nitrogen temperature (77 K). Here, the RE123-based superconducting conductor is expressed by a composition formula “RE 1 Ba 2 Cu 3 O y ”, and “RE” means a superconducting conductor composed of rare earth elements such as Y, Gd, and Sm.
In general, a superconducting conductor formed using a pure RE123-based superconducting material so as to have good crystal orientation exhibits high critical current characteristics under no magnetic field. However, the pure RE123-based superconducting conductor has a problem that the critical current characteristic is rapidly deteriorated under a high magnetic field.
As a solution, attempts have been made to introduce a pinning center for pinning magnetic flux in the superconducting layer.

臨界電流密度を向上させる方法として、例えば特許文献1には、RE123系超電導層と強磁性金属層とを交互に複数層積層することにより、該強磁性金属層をピンニングセンターとして作用させる方法が知られている。
例えば特許文献2には、結晶粒がc軸配向された複数の酸化物超電導層の各層間に、異なる結晶配向を有する酸化物超電導部あるいは超電導性を発揮しない材料からなる不均質部を形成させることにより、磁場中においても臨界電流密度の高い酸化物超電導導体が得られることが記載されている。
また、例えば特許文献3には、異なる酸素分圧や温度条件において成膜することで積層欠陥の量が異なる複数の酸化物超電導層を積層することにより、厚膜化した際にも臨界電流特性が劣化せず、磁場中での臨界電流値が高い薄膜の形成が提案されている。
RE123溶融凝固バルク体においては、例えば特許文献4には、PtないしRhを添加し、かつBaCeOなど非超電導相をピンニングセンターとして導入することで臨界電流特性が向上することが記載されている。
しかしながら、本来超電導層の成膜の際には成膜条件の厳密な制御が必要であり、導入ガスの構成や酸素分圧、基板温度などの成膜条件を変化させて超電導積層体を成膜する方法では、最適成膜条件からずれることによって、臨界電流特性が大きく劣化したり不安定になるなどの問題がある。
As a method for improving the critical current density, for example, Patent Document 1 discloses a method in which a plurality of RE123-based superconducting layers and ferromagnetic metal layers are alternately laminated so that the ferromagnetic metal layer acts as a pinning center. It has been.
For example, in Patent Document 2, an oxide superconducting part having a different crystal orientation or a heterogeneous part made of a material that does not exhibit superconductivity is formed between each of a plurality of oxide superconducting layers in which crystal grains are c-axis oriented. Thus, it is described that an oxide superconducting conductor having a high critical current density can be obtained even in a magnetic field.
Further, for example, in Patent Document 3, critical current characteristics are obtained even when the film thickness is increased by stacking a plurality of oxide superconducting layers having different stacking fault amounts by forming films under different oxygen partial pressures and temperature conditions. Has been proposed to form a thin film having a high critical current value in a magnetic field.
For the RE123 melt-solidified bulk body, for example, Patent Document 4 describes that the critical current characteristics are improved by adding Pt to Rh and introducing a non-superconducting phase such as BaCeO 3 as a pinning center.
However, when the superconducting layer is originally formed, strict control of the film forming conditions is required, and the superconducting laminate is formed by changing the film forming conditions such as the configuration of the introduced gas, the oxygen partial pressure, and the substrate temperature. However, there is a problem that the critical current characteristics are greatly deteriorated or become unstable due to deviation from the optimum film forming conditions.

一方、ピンニングセンターを導入するためのより簡便な製造方法として、例えば非特許文献1、2では、パルスレーザ蒸着法を用い、ターゲットにBaZrOやYなどの不純物相をあらかじめ添加しておくことで、これらを超電導薄膜結晶中に微細に導入する試みが提案されている。この方法では、不純物相の種類によって超電導層内での結晶粒の形状が異なり、ピン止め力を制御することが可能である。
しかしながら、前記不純物相は、一般的にある一定量までは添加すればするほど磁場下における臨界電流特性が向上するが、無磁場下での特性は逆に低下する問題がある。
特開昭63−318014号公報 特開平4−154604号公報 特開2005−116408号公報 特開2006−62896号公報 2007年度春季低温工学予稿集、132P 2007年度春季低温工学予稿集、133P
On the other hand, as a simpler manufacturing method for introducing the pinning center, for example, in Non-Patent Documents 1 and 2, a pulse laser deposition method is used, and an impurity phase such as BaZrO 3 or Y 2 O 3 is added to the target in advance. Thus, an attempt to introduce these finely into a superconducting thin film crystal has been proposed. In this method, the shape of crystal grains in the superconducting layer differs depending on the type of impurity phase, and the pinning force can be controlled.
However, as the impurity phase is generally added up to a certain amount, the critical current characteristic under a magnetic field improves, but there is a problem that the characteristic under no magnetic field deteriorates conversely.
JP-A-63-318014 JP-A-4-154604 JP-A-2005-116408 JP 2006-62896 A 2007 Spring Cryogenic Engineering Proceedings, 132P Spring 2007 Low Temperature Engineering Proceedings, 133P

本発明は、上記事情に鑑みてなされたものであり、磁場下における臨界電流特性を向上させるとともに、無磁場下における臨界電流密度の低下の抑制も図ることができ、ひいては良好な臨界電流特性を有する酸化物超電導導体を提供することを第一の目的とする。
また、本発明は、上述した良好な臨界電流特性を有する酸化物超電導導体を、再現性良く簡便に形成できる酸化物超電導導体の製造方法を提供することを第二の目的とする。
The present invention has been made in view of the above circumstances, and can improve the critical current characteristics under a magnetic field and can suppress the decrease in the critical current density under no magnetic field. It is a first object to provide an oxide superconducting conductor.
In addition, a second object of the present invention is to provide a method for producing an oxide superconducting conductor that can easily form the above-described oxide superconducting conductor having good critical current characteristics with good reproducibility.

前記課題を解決するために、本発明の請求項1に係る酸化物超電導導体は、基体と、該基体の一方の面上に形成された酸化物超電導層とを備え、該酸化物超電導層はRE123系の超電導材料からなり、不純物を含まない第一超電導膜と不純物を含む第二超電導膜との積層体であって、前記積層体は、前記第一超電導膜と前記第二超電導膜との界面を少なくとも備えることを特徴とする酸化物超電導導体。   In order to solve the above problems, an oxide superconducting conductor according to claim 1 of the present invention includes a base and an oxide superconducting layer formed on one surface of the base, and the oxide superconducting layer includes: It is a laminate of a RE123-based superconducting material and includes a first superconducting film that does not contain impurities and a second superconducting film that contains impurities, and the laminated body includes the first superconducting film and the second superconducting film. An oxide superconducting conductor comprising at least an interface.

本発明の請求項2に係る酸化物超電導導体は、請求項1において、前記積層体は、前記第一超電導膜の上に前記第二超電導膜を重ねてなる構成を少なくとも含むことを特徴とする。   An oxide superconducting conductor according to claim 2 of the present invention is characterized in that, in claim 1, the laminate includes at least a configuration in which the second superconducting film is stacked on the first superconducting film. .

本発明の請求項3に係る酸化物超電導導体は、請求項2において、前記積層体は、前記界面を複数備えることを特徴とする。   An oxide superconducting conductor according to claim 3 of the present invention is characterized in that, in claim 2, the multilayer body includes a plurality of the interfaces.

本発明の請求項4に係る酸化物超電導導体の製造方法は、基体の一方の面上に、RE123系の超電導材料からなり、不純物を含まない第一超電導膜と不純物を含む第二超電導膜との積層体であり、前記第一超電導膜と前記第二超電導膜との界面を少なくとも備える酸化物超電導層を形成する製造方法であって、前記酸化物超電導層は全てパルスレーザ蒸着法により形成され、前記第一超電導膜用の母材としては不純物を含まないREBaCuターゲットを、前記第二超電導膜用の母材としては不純物相を混入させたREBaCuターゲットを用いることを特徴とする。 According to a fourth aspect of the present invention, there is provided a method of manufacturing an oxide superconducting conductor comprising: a RE123-based superconducting material on one surface of a substrate; a first superconducting film containing no impurities; a second superconducting film containing impurities; And a manufacturing method for forming an oxide superconducting layer having at least an interface between the first superconducting film and the second superconducting film, wherein the oxide superconducting layer is formed by a pulse laser deposition method. As a base material for the first superconducting film, an RE 1 Ba 2 Cu 3 O y target that does not contain impurities, and as a base material for the second superconducting film, an RE 1 Ba 2 Cu 3 mixed with an impurity phase is used. An O y target is used.

本発明に係る酸化物超電導導体(請求項1)は、酸化物超電導層として、RE123系の超電導材料で不純物を含まない第一超電導膜と不純物を含む第二超電導膜との積層体であって、前記第一超電導膜と前記第二超電導膜との界面を少なくとも備える構造を用いることにより、第二超電導膜内の不純物相に加え、前記界面における格子不整合などによる結晶粒界もまたピンニングセンターとして機能するため、安定したピンニング効果が得られ、磁場下における臨界電流密度の向上が図れる。さらに、第一超電導膜の存在により無磁場下における臨界電流密度の低下の抑制も図れる。ゆえに、本発明は、良好な臨界電流特性を有する酸化物超電導導体の提供に寄与する。   The oxide superconducting conductor according to the present invention (Claim 1) is a laminate of an RE123-based superconducting material containing no impurities and a second superconducting film containing impurities as an oxide superconducting layer. By using a structure having at least the interface between the first superconducting film and the second superconducting film, in addition to the impurity phase in the second superconducting film, crystal grain boundaries due to lattice mismatch at the interface are also pinning centers. Therefore, a stable pinning effect can be obtained, and the critical current density under a magnetic field can be improved. Further, the presence of the first superconducting film can suppress a decrease in critical current density under no magnetic field. Therefore, the present invention contributes to the provision of an oxide superconductor having good critical current characteristics.

本発明に係る酸化物超電導導体の製造方法(請求項4)は、前記第一超電導膜と前記第二超電導膜との積層体である酸化物超電導層を、RE123系の同じ超電導材料であって、それぞれ不純物を含まないターゲットと不純物を含むターゲットを使用して、パルスレーザ蒸着法で形成することにより、最適成膜条件を外すことなく安定した成膜を行うことができる。ゆえに、本発明によれば、良好な臨界電流特性を有する酸化物超電導導体を、再現性良く簡便に形成できる製造方法が得られる。   The method for manufacturing an oxide superconducting conductor according to the present invention (Claim 4) is the same superconducting material based on RE123, wherein the oxide superconducting layer, which is a laminate of the first superconducting film and the second superconducting film, is used. By using a target that does not contain impurities and a target that contains impurities, and forming by pulse laser vapor deposition, stable film formation can be performed without removing optimum film formation conditions. Therefore, according to the present invention, there can be obtained a production method capable of easily forming an oxide superconductor having good critical current characteristics with good reproducibility.

以下、図面を参照して本発明の実施形態を説明する。
図1は、本発明の酸化物超電導導体の一実施形態を示す断面図である。本実施形態に係る酸化物超電導導体1は、基体2の一方の面上に、酸化物超電導積層体5が設けられた構造であり、該酸化物超電導積層体5は、同じRE123系の超電導材料からなり、不純物を含まない第一超電導膜3と不純物を含む第二超電導膜4から形成されている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a sectional view showing an embodiment of the oxide superconducting conductor of the present invention. The oxide superconducting conductor 1 according to this embodiment has a structure in which an oxide superconducting laminate 5 is provided on one surface of a base 2, and the oxide superconducting laminate 5 is composed of the same RE123-based superconducting material. The first superconducting film 3 containing no impurities and the second superconducting film 4 containing impurities are formed.

前記基体2としては、一般に酸化物超電導導体1の基体として十分な機械的強度と耐熱性、耐酸化性を有する金属材料からなるテープ状基材、例えばハステロイなどが用いられる。または該テープ状基材表面に中間層を設けたものを基体2として用いてもよい。この基体2の長さ、幅、厚さは、製造する酸化物超電導導体1の用途などに応じて適宜設定することができる。
また、酸化物超電導積層体5は全てパルスレーザ蒸着法により形成され、前記第一超電導膜3用の母材としては不純物を含まないREBaCuターゲットを、前記第二超電導膜4用の母材としては不純物相として例えばZrOを混入させたREBaCuターゲットを用いる。
As the substrate 2, a tape-shaped substrate made of a metal material having sufficient mechanical strength, heat resistance, and oxidation resistance as a substrate for the oxide superconductor 1 is generally used, such as Hastelloy. Alternatively, a substrate having an intermediate layer provided on the surface of the tape-shaped substrate may be used as the substrate 2. The length, width, and thickness of the substrate 2 can be appropriately set according to the use of the oxide superconducting conductor 1 to be manufactured.
The oxide superconducting laminate 5 is all formed by a pulse laser deposition method. As a base material for the first superconducting film 3, an RE 1 Ba 2 Cu 3 O y target containing no impurities is used as the second superconducting film. As the base material for 4, for example, a RE 1 Ba 2 Cu 3 O y target mixed with ZrO 2 as an impurity phase is used.

一実施例として、前記酸化物超電導積層体5として、パルスレーザ蒸着法により前記第一超電導膜3と前記第二超電導膜4を様々な順序で三層積層したときの超電導薄膜の臨界電流特性を測定した。以下、実験に用いた構成を示す。
厚さ100μmのハステロイ製テープ基材の表面に、IBAD法により厚さ1μmのGdZrからなるIBAD中間層を成膜し、該IBAD中間層上に、パルスレーザ蒸着法によって厚さ1μmのCeO中間層を成膜し、該CeO中間層上にパルスレーザ蒸着法によってRE123系酸化物超電導層を成膜し、さらに該酸化物超電導層上に厚さ10μmのAgスパッタ層を成膜して酸化物超電導テープを作製した。
酸化物超電導層の成膜には、REBaCuターゲット、あるいは不純物相として2mol%のZrOを混入させたREBaCuターゲットを用い、温度820℃、圧力90Paのもとでエキシマレーザ光を照射して成膜、積層を行った。
As an example, the critical current characteristic of the superconducting thin film when the oxide superconducting laminate 5 is formed by laminating the first superconducting film 3 and the second superconducting film 4 in various orders by a pulse laser deposition method. It was measured. The configuration used for the experiment is shown below.
An IBAD intermediate layer made of Gd 2 Zr 2 O 7 having a thickness of 1 μm was formed on the surface of a tape substrate made of Hastelloy having a thickness of 100 μm by the IBAD method, and the thickness was formed on the IBAD intermediate layer by a pulse laser deposition method. A 1 μm CeO 2 intermediate layer is formed, an RE123-based oxide superconducting layer is formed on the CeO 2 intermediate layer by pulse laser deposition, and an Ag sputtered layer having a thickness of 10 μm is further formed on the oxide superconducting layer. The oxide superconducting tape was produced by forming a film.
For the formation of the oxide superconducting layer, a RE 1 Ba 2 Cu 3 O y target or a RE 1 Ba 2 Cu 3 O y target mixed with 2 mol% of ZrO 2 as an impurity phase is used, and the temperature is 820 ° C. and the pressure is Film formation and lamination were performed by irradiating excimer laser light at 90 Pa.

液体窒素温度下(77K)における臨界電流特性を測定し、3Tの磁場下における臨界電流密度Jcの磁場印加角度依存性を図2に、無磁場下における臨界電流Ic及び臨界電流密度Jcを図3に表す。
ここで、不純物を含まない第一超電導膜3をN層、不純物を含む第二超電導膜4をP層と表し、基体2表面からの積層順に並べて記号で表すこととする。例えば、基体2表面にN層を形成し、該N層表面にさらにN層を形成し、該N層の表面にP層を形成して三層の積層体を形成した場合の表記はNNPとする。
図2より、磁場下において、三層全て第二超電導膜4からなる構成の積層体PPPの方が、三層全て第一超電導膜3からなる構成の積層体NNNに比べ臨界電流密度Jcが2倍以上高い結果が得られ、不純物相を含むターゲットを使用するだけで簡便に人工ピンが導入されたことが分かる。しかし、図3に示すように、無磁場下においては積層体PPPの臨界電流密度Jcは低下している。
そこで、積層体NNNに対して三層のうち一層を第二超電導膜4に置き換えて混合積層した場合(積層体NNP、NPN、PNN)、図2、図3に示すように、臨界電流密度Jcを制御することができ、その積層構造によっては磁場下における臨界電流密度Jcの向上とともに、無磁場下における臨界電流密度Jcの低下の抑制も図れる。
The critical current characteristics under liquid nitrogen temperature (77K) were measured, the magnetic field application angle dependence of the critical current density Jc under a 3T magnetic field is shown in FIG. 2, and the critical current Ic and critical current density Jc under no magnetic field are shown in FIG. Expressed in
Here, the first superconducting film 3 containing no impurities is represented as an N layer, and the second superconducting film 4 containing impurities is represented as a P layer, which are arranged in the order of lamination from the surface of the substrate 2 and represented by symbols. For example, when a N-layer is formed on the surface of the substrate 2, an N-layer is further formed on the surface of the N-layer, and a P-layer is formed on the surface of the N-layer to form a three-layer laminate, the notation is NNP To do.
From FIG. 2, the critical current density Jc is 2 in the laminated body PPP composed of the second superconducting film 4 in all three layers as compared with the laminated body NNN composed of the first superconducting film 3 in all three layers. The result is more than twice as high, and it can be seen that the artificial pin was simply introduced simply by using the target containing the impurity phase. However, as shown in FIG. 3, the critical current density Jc of the stacked body PPP is lowered in the absence of a magnetic field.
Therefore, when one of the three layers of the multilayer NNN is replaced with the second superconducting film 4 and mixed and laminated (laminate NNP, NPN, PNN), as shown in FIGS. 2 and 3, the critical current density Jc Depending on the laminated structure, the critical current density Jc can be improved under a magnetic field, and the reduction of the critical current density Jc under a non-magnetic field can be suppressed.

本発明の酸化物超電導導体1の構造によれば、第二超電導膜4内に存在する不純物相に加え、第一超電導膜3と第二超電導膜4との界面における格子不整合などによる結晶粒界もまたピンニングセンターとして機能することにより、安定したピンニング効果が得られ、磁場下における臨界電流密度の向上が図れる。さらに、第一超電導膜3の存在により無磁場下における臨界電流密度の低下の抑制も図ることができ、ひいては良好な臨界電流特性を有する酸化物超電導導体を得ることができる。
この際、第一超電導膜3と第二超電導膜4の膜厚、積層数はいかようにも可能である。
According to the structure of the oxide superconducting conductor 1 of the present invention, in addition to the impurity phase present in the second superconducting film 4, crystal grains due to lattice mismatch at the interface between the first superconducting film 3 and the second superconducting film 4. Since the field also functions as a pinning center, a stable pinning effect can be obtained, and the critical current density under a magnetic field can be improved. Further, the presence of the first superconducting film 3 can suppress the decrease in the critical current density in the absence of a magnetic field, and thus an oxide superconducting conductor having good critical current characteristics can be obtained.
At this time, the film thickness and the number of laminated layers of the first superconducting film 3 and the second superconducting film 4 can be arbitrarily set.

さらに本発明の酸化物超電導導体1において、酸化物超電導積層体5は、第一超電導膜3の上に第二超電導膜4を重ねてなる構成を少なくとも含むことが好ましい。
図2、図3より、N層の上にP層を積層した構成を少なくとも含む積層体NPN、NNPは、積層体PNNに比べ良好な臨界電流特性が得られることがわかる。
Furthermore, in the oxide superconducting conductor 1 of the present invention, the oxide superconducting laminate 5 preferably includes at least a configuration in which the second superconducting film 4 is stacked on the first superconducting film 3.
2 and 3, it can be seen that the stacked bodies NPN and NNP including at least the configuration in which the P layer is stacked on the N layer can obtain better critical current characteristics than the stacked body PNN.

さらに、前記酸化物超電導積層体5は、第二超電導膜4が第一超電導膜3に挟まれた構造(NPN)であることが好ましい。これにより、第一超電導膜3と第二超電導膜4との界面の接触面積が増え、界面の格子結晶粒界によるピンニング効果が増大するため、より安定した構造となり、再現性良く高い臨界電流特性が維持できる。   Further, the oxide superconducting laminate 5 preferably has a structure (NPN) in which the second superconducting film 4 is sandwiched between the first superconducting films 3. This increases the contact area at the interface between the first superconducting film 3 and the second superconducting film 4 and increases the pinning effect due to the lattice crystal grain boundary at the interface, resulting in a more stable structure and high reproducibility and high critical current characteristics. Can be maintained.

本実施形態に係る酸化物超電導導体の製造方法は、基体の一方の面上に酸化物超電導積層体5を形成する方法であって、全てパルスレーザ蒸着法を用い、不純物を含まないREBaCuターゲットと不純物相として例えばZrOを混入させたREBaCuターゲットを用いることを特徴とする。これにより、厳密な成膜条件を必要とする酸化物超電導薄膜の作製において、最適な成膜条件を維持しつつ、安定して良好な臨界電流特性を有する酸化物超電導導体を、再現性良く簡便に形成することができる。 The manufacturing method of the oxide superconducting conductor according to the present embodiment is a method of forming the oxide superconducting laminate 5 on one surface of the substrate, and all uses a pulse laser deposition method and does not contain impurities RE 1 Ba. which comprises using a 2 Cu 3 O y RE 1 Ba 2 Cu 3 O y targets as a target and impurity phases example by mixing ZrO 2. As a result, in the production of oxide superconducting thin films that require strict film formation conditions, an oxide superconductor having good critical current characteristics stably while maintaining optimum film formation conditions can be easily reproduced with good reproducibility. Can be formed.

本発明の一実施例として、図4に示すような酸化物超電導テープなどの形状が挙げられる。ハステロイ製テープ基材11の表面に、IBAD法によって酸化物(例えば GdZr)からなるIBAD中間層12、該IBAD中間層12の表面にパルスレーザ蒸着法によって CeO中間層13、該 CeO中間層13の表面にパルスレーザ蒸着法によってRE123系の酸化物超電導層14、該酸化物超電導層14上にAgスパッタ層15がそれぞれ成膜され、Cuなどからなる安定化金属テープまたはNi−Crのような高抵抗テープ16とをハンダで貼り合わせた構造である。
本発明の酸化物超電導導体は、第一超電導膜3と第二超電導膜4との積層数や積層順序を変化させることにより、無磁場下乃至(または)磁場下での臨界電流特性を制御可能であり、さらにAgスパッタ層15の膜厚や、安定化金属テープまたは高抵抗テープ16の選定によって多様な超電導線材の作製が可能となる。
As an embodiment of the present invention, a shape such as an oxide superconducting tape as shown in FIG. On the surface of the Hastelloy tape substrate 11, an oxide (for example, an IBAD method) IBAD intermediate layer 12 made of Gd 2 Zr 2 O 7), the IBAD CeO 2 intermediate layer 13 to the surface by pulsed laser deposition of the intermediate layer 12, the RE123-based by pulsed laser deposition on the surface of the CeO 2 intermediate layer 13 An oxide superconducting layer 14 and an Ag sputtered layer 15 are formed on the oxide superconducting layer 14, and a stabilized metal tape made of Cu or the like or a high resistance tape 16 such as Ni-Cr is bonded together by solder. Structure.
The oxide superconducting conductor of the present invention can control critical current characteristics under no magnetic field or (or) magnetic field by changing the number of layers and the order of stacking the first superconducting film 3 and the second superconducting film 4. Furthermore, various superconducting wires can be produced by selecting the film thickness of the Ag sputter layer 15 and the selection of the stabilized metal tape or the high-resistance tape 16.

本発明は、基体上に形成された酸化物超電導層が、不純物を含まないRE123系の超電導膜と不純物を含むRE123系の超電導膜とを界面を有するように積層させることにより、効率良く人工的にピンニングセンターを導入し、磁場下における特性の向上とともに、無磁場下における特性の低下の抑制を図れる酸化物超電導導体及びその製造に利用することが可能であり、例えば、小型でハイパワーな磁場発生源として、超電導マグネットをはじめとする様々なデバイス等への応用が期待できる。   In the present invention, an oxide superconducting layer formed on a substrate is efficiently artificially laminated by stacking an RE123-based superconducting film containing no impurities and an RE123-based superconducting film containing impurities so as to have an interface. Can be used for oxide superconducting conductors that can improve characteristics under a magnetic field and suppress deterioration of characteristics under no magnetic field, and the production thereof. For example, a small and high-power magnetic field The generation source can be expected to be applied to various devices including superconducting magnets.

本発明に係る一実施形態の酸化物超電導導体の一例を示す断面図。Sectional drawing which shows an example of the oxide superconductor of one Embodiment which concerns on this invention. 酸化物超電導層の積層順と磁場下での臨界電流密度との関係を表すグラフ。The graph showing the relationship between the stacking order of an oxide superconducting layer and the critical current density under a magnetic field. 酸化物超電導層の積層順と無磁場下での臨界電流密度との関係を表すグラフ。The graph showing the relationship between the lamination | stacking order of an oxide superconducting layer, and the critical current density under a non-magnetic field. 本発明に係る酸化物超電導テープの一実施形態を示す要部斜視図。The principal part perspective view which shows one Embodiment of the oxide superconducting tape which concerns on this invention.

符号の説明Explanation of symbols

1、10 酸化物超電導導体、2 基体、3 第一超電導膜、4 第二超電導膜、5 酸化物超電導層(積層体)、11 ハステロイ製テープ基材、12 IBAD中間層、13 CeO中間層、14 酸化物超電導層、15 Agスパッタ層、16 安定化金属テープまたは高抵抗テープ。 1, 10 oxide superconducting conductor, 2 substrate, 3 first superconducting film, 4 second superconducting film, 5 oxide superconducting layer (laminated body), 11 Hastelloy tape base material, 12 IBAD intermediate layer, 13 CeO 2 intermediate layer 14 Oxide superconducting layer, 15 Ag sputter layer, 16 Stabilized metal tape or high resistance tape.

Claims (4)

基体と、該基体の一方の面上に形成された酸化物超電導層とを備え、該酸化物超電導層はRE123系の超電導材料からなり、不純物を含まない第一超電導膜と不純物を含む第二超電導膜との積層体であって、
前記積層体は、前記第一超電導膜と前記第二超電導膜との界面を少なくとも備えることを特徴とする酸化物超電導導体。
A substrate and an oxide superconducting layer formed on one surface of the substrate, the oxide superconducting layer being made of a RE123-based superconducting material, a first superconducting film containing no impurities, and a second superconducting film containing impurities. A laminate with a superconducting film,
The laminated body includes at least an interface between the first superconducting film and the second superconducting film.
前記積層体は、前記第一超電導膜の上に前記第二超電導膜を重ねてなる構成を少なくとも含むことを特徴とする請求項1に記載の酸化物超電導導体。   The oxide superconducting conductor according to claim 1, wherein the stacked body includes at least a configuration in which the second superconducting film is stacked on the first superconducting film. 前記積層体は、前記界面を複数備えることを特徴とする請求項2に記載の酸化物超電導導体。   The oxide superconducting conductor according to claim 2, wherein the multilayer body includes a plurality of the interfaces. 基体の一方の面上に、RE123系の超電導材料からなり、不純物を含まない第一超電導膜と不純物を含む第二超電導膜との積層体であり、前記第一超電導膜と前記第二超電導膜との界面を少なくとも備える酸化物超電導層を形成する製造方法であって、
前記酸化物超電導層は全てパルスレーザ蒸着法により形成され、前記第一超電導膜用の母材としては不純物を含まないREBaCuターゲットを、前記第二超電導膜用の母材としては不純物相を混入させたREBaCuターゲットを用いることを特徴とする酸化物超電導導体の製造方法。
A laminated body of a first superconducting film containing an impurity and a second superconducting film made of an RE123-based superconducting material and a second superconducting film containing an impurity on one surface of the substrate, the first superconducting film and the second superconducting film A method of forming an oxide superconducting layer having at least an interface with
The oxide superconducting layers are all formed by a pulse laser deposition method. As a base material for the first superconducting film, an RE 1 Ba 2 Cu 3 O y target containing no impurities is used, and a base material for the second superconducting film is used. As a manufacturing method of an oxide superconducting conductor using an RE 1 Ba 2 Cu 3 O y target mixed with an impurity phase.
JP2008135981A 2008-05-23 2008-05-23 Oxide superconducting conductor Active JP5274895B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008135981A JP5274895B2 (en) 2008-05-23 2008-05-23 Oxide superconducting conductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008135981A JP5274895B2 (en) 2008-05-23 2008-05-23 Oxide superconducting conductor

Publications (2)

Publication Number Publication Date
JP2009283372A true JP2009283372A (en) 2009-12-03
JP5274895B2 JP5274895B2 (en) 2013-08-28

Family

ID=41453606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008135981A Active JP5274895B2 (en) 2008-05-23 2008-05-23 Oxide superconducting conductor

Country Status (1)

Country Link
JP (1) JP5274895B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009289666A (en) * 2008-05-30 2009-12-10 International Superconductivity Technology Center Y system oxide superconductive wire rod
WO2012161233A1 (en) 2011-05-23 2012-11-29 古河電気工業株式会社 Oxide superconducting thin film
JP2013057099A (en) * 2011-09-08 2013-03-28 Fujikura Ltd Production method of base material for oxide superconductor, base material for oxide superconductor, and oxide superconductor
JP2013136815A (en) * 2011-12-28 2013-07-11 Fujikura Ltd Target for laser abrasion, method for manufacturing oxide superconductive wire material using the same, and oxide superconductive wire material
JP2015141831A (en) * 2014-01-29 2015-08-03 公益財団法人国際超電導産業技術研究センター Oxide superconductive wire
EP2922106A1 (en) * 2014-03-17 2015-09-23 Kabushiki Kaisha Toshiba Superconducting member and method for manufacturing the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63318014A (en) * 1987-06-19 1988-12-26 Hitachi Ltd Superconductive film of metal oxide
JPH02260672A (en) * 1989-03-31 1990-10-23 Toshiba Corp Superconductive member
JPH05310421A (en) * 1992-05-08 1993-11-22 Asahi Glass Co Ltd Thick-film laminate of oxide superconductor and its production
JP2008130291A (en) * 2006-11-17 2008-06-05 Central Res Inst Of Electric Power Ind Superconductor film and its manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63318014A (en) * 1987-06-19 1988-12-26 Hitachi Ltd Superconductive film of metal oxide
JPH02260672A (en) * 1989-03-31 1990-10-23 Toshiba Corp Superconductive member
JPH05310421A (en) * 1992-05-08 1993-11-22 Asahi Glass Co Ltd Thick-film laminate of oxide superconductor and its production
JP2008130291A (en) * 2006-11-17 2008-06-05 Central Res Inst Of Electric Power Ind Superconductor film and its manufacturing method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009289666A (en) * 2008-05-30 2009-12-10 International Superconductivity Technology Center Y system oxide superconductive wire rod
WO2012161233A1 (en) 2011-05-23 2012-11-29 古河電気工業株式会社 Oxide superconducting thin film
JP2013057099A (en) * 2011-09-08 2013-03-28 Fujikura Ltd Production method of base material for oxide superconductor, base material for oxide superconductor, and oxide superconductor
JP2013136815A (en) * 2011-12-28 2013-07-11 Fujikura Ltd Target for laser abrasion, method for manufacturing oxide superconductive wire material using the same, and oxide superconductive wire material
JP2015141831A (en) * 2014-01-29 2015-08-03 公益財団法人国際超電導産業技術研究センター Oxide superconductive wire
EP2922106A1 (en) * 2014-03-17 2015-09-23 Kabushiki Kaisha Toshiba Superconducting member and method for manufacturing the same

Also Published As

Publication number Publication date
JP5274895B2 (en) 2013-08-28

Similar Documents

Publication Publication Date Title
JP5274895B2 (en) Oxide superconducting conductor
JP2008210600A (en) Rare earth system tape-shape oxide superconductor and composite substrate used for it
KR101247548B1 (en) Superconductive articles having density characteristics
KR101289999B1 (en) Process for producing superconducting thin-film material and superconducting equipment
RU2518505C1 (en) Strip high-temperature superconductors
JP2017500756A (en) Integrated superconductor device and manufacturing method thereof
JP6104757B2 (en) Oxide superconducting wire and method for producing the same
WO2011004842A1 (en) Substrate, process for production of substrate, electrically super-conductive wire material, and process for production of electrically super-conductive wire material
KR101318128B1 (en) Anti-epitaxial film in a superconducting article and related articles, devices and systems
JP2013122822A (en) Oxide superconductive wiring material
JP5405069B2 (en) Tape-shaped oxide superconductor and substrate used therefor
US9570215B2 (en) Method for manufacturing precursor, method for manufacturing superconducting wire, precursor, and superconducting wire
JP2007109717A (en) Superconducting element and its fabrication process
JP7445238B2 (en) Superconducting wire and method for manufacturing superconducting wire
WO2022158413A1 (en) High-temperature superconducting wire and method for manufacturing same
JP2013037838A (en) Oxide superconductive wire material and manufacturing method therefor
JP5739972B2 (en) Superconducting wire precursor and superconducting wire
JP2012243499A (en) Oxide superconducting thin film wire rod and method for producing the same
JP2016143516A (en) Oxide superconducting wire and manufacturing method therefor
JP2011090934A (en) Base material for superconductive thin film wiring material, manufacturing method thereof, and superconductive thin film wiring material
JP5087447B2 (en) Oxide superconducting wire and manufacturing method of oxide superconducting wire
JP2009238501A (en) Oxide superconductive wire rod and method of manufacturing the same
JP6167443B2 (en) Superconducting wire and manufacturing method thereof
JP2012253128A (en) Oxide superconducting coil and manufacturing method thereof
JP2016207662A (en) Manufacturing method of oxide superconducting wire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120925

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121126

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130321

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130410

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130515

R151 Written notification of patent or utility model registration

Ref document number: 5274895

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250