JP2013122822A - Oxide superconductive wiring material - Google Patents

Oxide superconductive wiring material Download PDF

Info

Publication number
JP2013122822A
JP2013122822A JP2011269848A JP2011269848A JP2013122822A JP 2013122822 A JP2013122822 A JP 2013122822A JP 2011269848 A JP2011269848 A JP 2011269848A JP 2011269848 A JP2011269848 A JP 2011269848A JP 2013122822 A JP2013122822 A JP 2013122822A
Authority
JP
Japan
Prior art keywords
oxide superconducting
layer
superconducting wire
current
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011269848A
Other languages
Japanese (ja)
Inventor
Takahiro Honda
貴裕 本田
Tatsuoki Nagaishi
竜起 永石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2011269848A priority Critical patent/JP2013122822A/en
Publication of JP2013122822A publication Critical patent/JP2013122822A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an oxide superconductive wiring material which does not allow a current to flow from one oxide superconductive layer to another oxide superconductive layer to result in a current loss when the current is applied, to thereby exhibit sufficient superconductive properties.SOLUTION: An oxide superconductive wiring material comprises: a base material manufactured by forming intermediate layers 12a, 12b on surfaces of an orientational metal substrate 11; YBCO-based oxide superconductive layers 13a, 13b and stabilization layers 14a, 14b which are formed on both surfaces of the base material in this order; and an electrically insulating protection layer 15 covering a circumference. A material of the electrically insulating protection layer is FRP.

Description

本発明は、酸化物超電導線材に関し、詳しくは、帯状の基材の両面に酸化物超電導層が形成されている酸化物超電導線材に関する。   The present invention relates to an oxide superconducting wire, and in particular, relates to an oxide superconducting wire in which an oxide superconducting layer is formed on both surfaces of a strip-shaped substrate.

液体窒素の温度で超電導性を有する高温超電導体の発見以来、ケーブル、限流器、マグネットなどの電力機器への応用を目指した高温超電導線材の開発が活発に行われている。中でも、基板上に酸化物超電導層を形成させた酸化物超電導線材が注目されている。   Since the discovery of high-temperature superconductors that have superconductivity at the temperature of liquid nitrogen, development of high-temperature superconducting wires aimed at application to power devices such as cables, current limiters, and magnets has been actively conducted. Among these, an oxide superconducting wire in which an oxide superconducting layer is formed on a substrate has attracted attention.

このような酸化物超電導線材は、一般に、図2に示すように、配向性の金属基板21上に、中間層22としてCeO(酸化セリウム)、YSZ(イットリア安定化ジルコニア)、Y(酸化イットリウム)などの酸化物層をスパッタ法などにより形成させて基材とし、この基材上にREBCO(REBaCu7−δ:REは希土類元素)で示される酸化物超電導体などからなる酸化物超電導層23を、スパッタ法、パルスレーザ蒸着法(PLD法)等の気相法や、塗布熱分解法(MOD法)等の液相法等を用いて形成させ、さらにAg(銀)などの安定化層24を積層した後、めっき法により周囲にCu(銅)などの保護層25を形成させることにより作製されている(例えば、特許文献1、2)。 Such an oxide superconducting wire generally has CeO 2 (cerium oxide), YSZ (yttria stabilized zirconia), Y 2 O 3 as an intermediate layer 22 on an oriented metal substrate 21 as shown in FIG. An oxide layer such as (yttrium oxide) is formed by a sputtering method or the like as a base material, and an oxide superconductor represented by REBCO (REBa 2 Cu 3 O 7-δ : RE is a rare earth element) on the base material The oxide superconducting layer 23 is formed by using a vapor phase method such as a sputtering method or a pulsed laser deposition method (PLD method), a liquid phase method such as a coating pyrolysis method (MOD method), or the like. After the stabilization layer 24 such as silver) is laminated, a protective layer 25 such as Cu (copper) is formed around by a plating method (for example, Patent Documents 1 and 2).

特開2007−80780号公報JP 2007-80780 A 特開2007−311234号公報JP 2007-311234 A

近年、図3に示すように、配向性の金属基板31の両面に、それぞれ中間層32a、32bが形成された基材上に酸化物超電導層33a、33b、および安定化層34a、34bが形成され、周囲に保護層35が形成された酸化物超電導線材3が作製されるようになっている。   In recent years, as shown in FIG. 3, oxide superconducting layers 33a and 33b and stabilization layers 34a and 34b are formed on a base material on which intermediate layers 32a and 32b are formed on both surfaces of an oriented metal substrate 31, respectively. Thus, the oxide superconducting wire 3 in which the protective layer 35 is formed around is manufactured.

しかしながら、このような酸化物超電導線材の場合、2つの酸化物超電導層を同じ臨界電流値Icとなるように形成することは困難であり、通常は、2つの酸化物超電導層のIcは異なっている。このため、電流印加時、一方の酸化物超電導層にIcを超える電流が流れると、常電導層である保護層を通って他方の酸化物超電導層に電流が流れ、電流損失が発生して、充分な超電導特性を発揮させることができない。   However, in the case of such an oxide superconducting wire, it is difficult to form the two oxide superconducting layers so as to have the same critical current value Ic. Usually, the two oxide superconducting layers have different Ic. Yes. For this reason, when a current exceeding Ic flows in one oxide superconducting layer during current application, a current flows through the protective layer, which is a normal conducting layer, to the other oxide superconducting layer, and current loss occurs. Sufficient superconducting properties cannot be exhibited.

そこで、本発明は、上記問題に鑑みて、電流印加時、一方の酸化物超電導層から他方の酸化物超電導層へ電流が流れて電流損失が発生することがなく、充分な超電導特性を発揮することができる酸化物超電導線材を提供することを課題とする。   Therefore, in view of the above problems, the present invention exhibits sufficient superconducting characteristics without causing a current loss due to current flowing from one oxide superconducting layer to the other oxide superconducting layer when a current is applied. It is an object to provide an oxide superconducting wire that can be used.

本発明者は、鋭意検討の結果、以下に記載の発明により、上記課題が解決できることを見出し本発明を完成させるに至った。   As a result of intensive studies, the present inventor has found that the above problems can be solved by the invention described below, and has completed the present invention.

請求項1に記載の発明は、
配向性の金属基板表面のそれぞれに中間層が形成された基材の両面に、
酸化物超電導層、安定化層が順に形成されており、
周囲に電気絶縁性の保護層が形成されている
ことを特徴とする酸化物超電導線材である。
The invention described in claim 1
On both sides of the base material on which the intermediate layer is formed on each of the oriented metal substrate surfaces,
An oxide superconducting layer and a stabilizing layer are formed in this order,
An oxide superconducting wire characterized in that an electrically insulating protective layer is formed around it.

本発明者は、上記課題の解決につき、種々の実験と検討を行った結果、安定化層を厚くすることで、保護層の材質を銅のような導電性のものにしなくてもIcを超える電流(過電流)に対する余裕度を充分に確保することができ、保護層の材質を電気絶縁性のものにすることで2つの酸化物超電導層間の電気的接続が発生しないようにすることにより、電流損失の発生を防止できることが分かった。   As a result of various experiments and studies for solving the above problems, the present inventor exceeds Ic even if the material of the protective layer is not made conductive such as copper by thickening the stabilization layer. A sufficient margin for current (overcurrent) can be secured, and by making the protective layer material electrically insulative, electrical connection between the two oxide superconducting layers does not occur. It was found that current loss can be prevented.

即ち、本請求項の発明においては、酸化物超電導層が基材の両面のそれぞれに形成されており、さらに周囲が電気絶縁性の保護層により被覆されているため、電流印加時、一方の酸化物超電導層にIcを超える電流が流れた場合でも、他方の酸化物超電導層に電流が流れることがなく、電流損失の発生を防止して大きなIcを維持することができる。この結果、効率的な電流輸送を行うことができ、充分な超電導特性を発揮させることができる。   That is, in the invention of this claim, the oxide superconducting layer is formed on each of both surfaces of the base material, and the periphery is covered with an electrically insulating protective layer. Even when a current exceeding Ic flows in the physical superconducting layer, current does not flow in the other oxide superconducting layer, and current loss can be prevented and large Ic can be maintained. As a result, efficient current transport can be performed, and sufficient superconducting characteristics can be exhibited.

そして、このように周囲が電気絶縁性の保護層により被覆された酸化物超電導線材は、コイルの作製に際して、従来の酸化物超電導線材の場合と異なり、線材間に絶縁テープなどを挟み込む必要がないため、コイルの作製工程を簡素化することができる。   Unlike the conventional oxide superconducting wire, the oxide superconducting wire whose periphery is covered with the electrically insulating protective layer does not need to sandwich an insulating tape or the like between the wires, unlike the conventional oxide superconducting wire. Therefore, the coil manufacturing process can be simplified.

請求項2に記載の発明は、
前記電気絶縁性の保護層の材質が、FRPであることを特徴とする請求項1に記載の酸化物超電導線材である。
The invention described in claim 2
2. The oxide superconducting wire according to claim 1, wherein a material of the electrically insulating protective layer is FRP.

保護層を形成する電気絶縁性材料としては、特に限定されず、FRPなどの電気絶縁性樹脂を挙げることができる。なお、形成される保護層の厚さとしては、20〜100μm程度が好ましい。   The electrically insulating material for forming the protective layer is not particularly limited, and examples thereof include electrically insulating resins such as FRP. In addition, as thickness of the protective layer formed, about 20-100 micrometers is preferable.

本発明によれば、電流印加時、一方の酸化物超電導層から他方の酸化物超電導層へ電流が流れて電流損失が発生することがなく、充分な超電導特性を発揮することができる酸化物超電導線材を提供することができる。   According to the present invention, when current is applied, current does not flow from one oxide superconducting layer to the other oxide superconducting layer and current loss does not occur, and oxide superconductivity can exhibit sufficient superconducting characteristics. A wire rod can be provided.

本発明の一実施の形態の酸化物超電導線材の構造を模式的に示す断面図である。It is sectional drawing which shows typically the structure of the oxide superconducting wire of one embodiment of this invention. 従来の酸化物超電導線材の構造を模式的に示す断面図である。It is sectional drawing which shows typically the structure of the conventional oxide superconducting wire. 基材両面に酸化物超電導層が設けられた酸化物超電導線材の構造の一例を模式的に示す断面図である。It is sectional drawing which shows typically an example of the structure of the oxide superconducting wire in which the oxide superconducting layer was provided in both surfaces of the base material.

以下、本発明を実施の形態に基づき、図面を用いて説明する。   Hereinafter, the present invention will be described with reference to the drawings based on embodiments.

(実施の形態)
1.酸化物超電導線材の構造
図1は、本実施の形態の酸化物超電導線材1の構造を模式的に示す断面図である。図1において、1は酸化物超電導線材、11は金属基板、12a、12bは中間層、13a、13bは酸化物超電導層、14a、14bは安定化層、15は保護層である。
(Embodiment)
1. Structure of Oxide Superconducting Wire FIG. 1 is a cross-sectional view schematically showing the structure of an oxide superconducting wire 1 of the present embodiment. In FIG. 1, 1 is an oxide superconducting wire, 11 is a metal substrate, 12a and 12b are intermediate layers, 13a and 13b are oxide superconducting layers, 14a and 14b are stabilization layers, and 15 is a protective layer.

(1)配向金属基板
金属基板11としては、配向金属基板を用いることが好ましく、具体的な配向金属基板としては、IBAD基板、Ni−W合金基板、SUS等をベース金属としたクラッドタイプの金属基板を挙げることができる。そして、コイルに巻回するためには、10〜100m程度に長尺化されていることが好ましい。
(1) Oriented metal substrate It is preferable to use an oriented metal substrate as the metal substrate 11, and specific examples of the oriented metal substrate include an IBAD substrate, a Ni-W alloy substrate, and a clad type metal based on SUS. A substrate can be mentioned. And in order to wind around a coil, it is preferable that it is lengthened to about 10-100 m.

(2)中間層
元素拡散を防止する目的、酸化物超電導層との格子整合を良くする目的で、金属基板11の両面に中間層12a、12bが形成される。具体的にはYSZ、CeO、CeO/YSZ/CeO3層構造のセラミックなどが用いられる。
(2) Intermediate layer Intermediate layers 12 a and 12 b are formed on both surfaces of the metal substrate 11 for the purpose of preventing element diffusion and improving the lattice matching with the oxide superconducting layer. Specifically, YSZ, CeO 2 , CeO 2 / YSZ / CeO 2 three-layer ceramic, or the like is used.

中間層12a、12bの形成には種々の手段が用いられるが、長尺にわたり、配向性を維持するため、スパッタ法が好ましい。中間層12a、12bの厚さは必要に応じて適宜適切な厚さに設定され、380〜780nm程度が好ましい。   Various means are used for forming the intermediate layers 12a and 12b, but a sputtering method is preferable in order to maintain the orientation over a long length. The thicknesses of the intermediate layers 12a and 12b are appropriately set as necessary, and are preferably about 380 to 780 nm.

(3)酸化物超電導層の形成
酸化物超電導層13a、13bを形成する酸化物超電導体としては、REBCO系酸化物超電導体が好ましく、REにはイットリウム(Y)、プラセオジウム(Pr)、ネオジウム(Nd)、サマリウム(Sm)、ユウロピウム(Eu)、ガドリニウム(Gd)、ホルミウム(Ho)、イッテルビウム(Yb)等が挙げられる。
(3) Formation of Oxide Superconducting Layer As the oxide superconductor for forming the oxide superconducting layers 13a and 13b, REBCO-based oxide superconductor is preferable, and RE includes yttrium (Y), praseodymium (Pr), neodymium ( Nd), samarium (Sm), europium (Eu), gadolinium (Gd), holmium (Ho), ytterbium (Yb) and the like.

酸化物超電導層13a、13bは中間層12a、12b上に酸化物超電導体をエピタキシャル成長させることにより形成されるが、形成方法は両面で同じである必要はなく、例えば、片面をPLD法、他の片面をMOD法により形成してもよい。   The oxide superconducting layers 13a and 13b are formed by epitaxially growing an oxide superconductor on the intermediate layers 12a and 12b. However, the formation method is not necessarily the same on both sides. One side may be formed by the MOD method.

酸化物超電導層13a、13bの厚さは、良好な結晶配向性が得られること、要求される性能などを考慮して適宜適切な厚さに設定され、100〜3000nm程度が好ましい。   The thickness of the oxide superconducting layers 13a and 13b is appropriately set in consideration of obtaining good crystal orientation and required performance, and is preferably about 100 to 3000 nm.

(4)安定化層の形成
電流がIcに達した途端に超電導状態が破壊することがないよう、電流値に余裕度を持たせるため酸化物超電導層13a、13bの表面に安定化層14a、14bが形成される。安定化層には銀または銅が好ましく、銀がより好ましい。
(4) Formation of Stabilization Layer Stabilization layer 14a is formed on the surface of oxide superconducting layers 13a and 13b in order to provide a margin for the current value so that the superconducting state does not break as soon as the current reaches Ic. 14b are formed. Silver or copper is preferred for the stabilizing layer, and silver is more preferred.

安定化層14a、14bの形成手段は特に限定されず、例えばスパッタ法が用いられる。安定化層14a、14bの厚さは必要に応じて適宜適切な厚さに設定される。   The means for forming the stabilization layers 14a and 14b is not particularly limited, and for example, a sputtering method is used. The thicknesses of the stabilizing layers 14a and 14b are appropriately set as appropriate as required.

(5)保護層の形成
最後に、全周に亘って電気絶縁性の保護層15が形成されるが、形成手段は特に限定されず、例えば、ディップコートなどの方法を用いることができる。保護層15を形成する材料としては、前記したとおり、FRPなどを用いることができる。また、厚さは、酸化物超電導層の厚さや使用される保護材の種類などを考慮して適宜適切な厚さに設定される。
(5) Formation of protective layer Finally, the electrically insulating protective layer 15 is formed over the entire circumference, but the forming means is not particularly limited, and for example, a method such as dip coating can be used. As described above, FRP or the like can be used as a material for forming the protective layer 15. Further, the thickness is appropriately set in consideration of the thickness of the oxide superconducting layer, the type of protective material used, and the like.

次に、実施例に基づき、本発明をより具体的に説明する。   Next, based on an Example, this invention is demonstrated more concretely.

1.酸化物超電導線材の作製
(実施例)
(1)基材の作製
SUS/Cu/Niのクラッド材からなる幅30mm、長さ10m、厚さ120μmの金属テープの両面に、厚さ580nmのY/YSZ/CeO3層構造からなる中間層を形成し基材とした。
1. Preparation of oxide superconducting wire
(Example)
(1) Fabrication of base material Y 2 O 3 / YSZ / CeO 2 three-layer structure having a thickness of 580 nm on both sides of a metal tape having a width of 30 mm, a length of 10 m, and a thickness of 120 μm made of a SUS / Cu / Ni clad material An intermediate layer made of was used as a base material.

(2)酸化物超電導層の形成
次に、基材の両面にMOD法を用いてYBCO(YBaCu7−δ)の酸化物超電導層を形成した。具体的には、Y、Ba、Cuの各アセチルアセトナート錯体を、Y:Ba:Cuのモル比が1:2:3となるように調整して溶媒に溶解させてMOD溶液を作製し、基板上に塗布・乾燥後、大気雰囲気下505℃で、3.5時間保持して仮焼し、厚さ1μmの仮焼膜を形成した。次に、酸素濃度100ppmのアルゴン/酸素混合ガス雰囲気下、800℃で90分間保持して本焼した後、酸素濃度100%の雰囲気下で冷却し、厚さ0.8μmの酸化物超電導層を形成した。
(2) Formation of Oxide Superconducting Layer Next, an oxide superconducting layer of YBCO (YBa 2 Cu 3 O 7-δ ) was formed on both surfaces of the base material using the MOD method. Specifically, each acetylacetonate complex of Y, Ba, and Cu is adjusted so that the molar ratio of Y: Ba: Cu is 1: 2: 3 and dissolved in a solvent to prepare a MOD solution. After coating and drying on the substrate, the substrate was calcined by holding at 505 ° C. for 3.5 hours in an air atmosphere to form a calcined film having a thickness of 1 μm. Next, after firing for 90 minutes at 800 ° C. in an argon / oxygen mixed gas atmosphere with an oxygen concentration of 100 ppm, cooling is performed in an atmosphere with an oxygen concentration of 100% to form an oxide superconducting layer with a thickness of 0.8 μm. Formed.

(3)安定化層の形成
次に、スパッタ法により、酸化物超電導層の表面に銀からなる厚さ10μmの安定化層を形成した。
(3) Formation of Stabilizing Layer Next, a stabilizing layer made of silver and having a thickness of 10 μm was formed on the surface of the oxide superconducting layer by sputtering.

(4)保護層の形成
最後に、FRP樹脂をディップコートの方法により、周囲に厚さ50μmの保護層を形成し、実施例の酸化物超電導線材を作製した。
(4) Formation of Protective Layer Finally, a protective layer having a thickness of 50 μm was formed around the FRP resin by a dip coating method to produce the oxide superconducting wire of the example.

(比較例)
保護層として、めっき法を用いて厚さ50μmの銅保護層を形成したこと以外は実施例と同じ方法で比較例の酸化物超電導線材を作製した。
(Comparative example)
As a protective layer, an oxide superconducting wire of a comparative example was produced in the same manner as in the example except that a copper protective layer having a thickness of 50 μm was formed using a plating method.

2.酸化物超電導線材のコイル加工
(1)保護層にFRPを用いた酸化物超電導線材(実施例)のコイル加工
実施例の酸化物超電導線材について、長さ10mの酸化物超電導線材を用いて内径50mm、巻き数30のシングルパンケーキコイルを作製した。
2. Coil processing of oxide superconducting wire (1) Coil processing of oxide superconducting wire (Example) using FRP for protective layer About the oxide superconducting wire of Example, inner diameter 50mm using oxide superconducting wire of length 10m A single pancake coil with 30 turns was produced.

(2)保護層に銅を用いた酸化物超電導線材(比較例)のコイル加工
比較例の酸化物超電導線材について、長さ10mの酸化物超電導線材を用いて、片面に厚さ50μmのテープ状のFRPを貼り合わせながら、内径50mm、巻き数30のシングルパンケーキコイルを作製した。
(2) Coil processing of oxide superconducting wire (comparative example) using copper as protective layer About the oxide superconducting wire of the comparative example, using a 10 m long oxide superconducting wire, tape-like with a thickness of 50 μm on one side A single pancake coil having an inner diameter of 50 mm and a winding number of 30 was produced while bonding the FRP.

3.酸化物超電導線材とシングルパンケーキコイルの評価
(1)評価項目
作製された各酸化物超電導線材のシングルパンケーキコイルについて、電流損失の発生を測定すると共に、短尺試料にてIc(77.3K)を測定した。
3. Evaluation of oxide superconducting wire and single pancake coil (1) Evaluation items For the single pancake coil of each oxide superconducting wire produced, the occurrence of current loss was measured and Ic (77.3K) was measured using a short sample. Was measured.

(2)測定方法
(a)電流損失の測定
各酸化物超電導線材のシングルパンケーキコイルについて、通電時の液体窒素の蒸発量を測定することにより電流損失を測定した。
(2) Measurement method (a) Measurement of current loss About the single pancake coil of each oxide superconducting wire, the current loss was measured by measuring the evaporation amount of liquid nitrogen at the time of electricity supply.

(b)Icの測定
各酸化物超電導線材の短尺試料について、77.3Kの温度下、4端子法によりIcを測定した。
(B) Measurement of Ic Ic was measured by a four-terminal method for a short sample of each oxide superconducting wire at a temperature of 77.3K.

(2)評価結果
実施例では電流損失が0J、Icが150Aであったのに対して、比較例では電流損失が207J、Icが75Aであり、電気絶縁性の保護層を設けることにより、電流損失が低減されて、大きなIcが維持されることが確認できた。
(2) Evaluation results In the examples, the current loss was 0 J and Ic was 150 A, whereas in the comparative example, the current loss was 207 J and Ic was 75 A. By providing an electrically insulating protective layer, the current loss was It was confirmed that the loss was reduced and a large Ic was maintained.

また、各酸化物超電導線材をシングルパンケーキコイルに加工する際、実施例は、酸化物超電導線材にのみテンションをかけながら治具に巻き付けることにより、シングルパンケーキコイルを作製できた。これに対して、比較例は、酸化物超電導線材と厚さ50μmのテープ状のFRPの両方にテンションをかけ、酸化物超電導線材と厚さ50μmのテープ状のFRPを貼り合わせるようにして治具に巻き付け、治具に巻き付けている時にずれが生じないよう注意しなければならなかった。この結果、電気絶縁性の保護層を有する酸化物超電導線材の方が、コイル加工が容易であることが確認できた。   In addition, when each oxide superconducting wire was processed into a single pancake coil, the example was able to produce a single pancake coil by winding it around a jig while applying tension only to the oxide superconducting wire. On the other hand, in the comparative example, a tension is applied to both the oxide superconducting wire and the tape-shaped FRP having a thickness of 50 μm, and the oxide superconducting wire and the tape-shaped FRP having a thickness of 50 μm are bonded together. It was necessary to be careful not to cause a slippage when winding on the jig. As a result, it was confirmed that the oxide superconducting wire having the electrically insulating protective layer was easier to process the coil.

以上、本発明を実施の形態に基づいて説明したが、本発明は上記の実施の形態に限定されるものではない。本発明と同一および均等の範囲内において、上記の実施の形態に対して種々の変更を加えることができる。   While the present invention has been described based on the embodiments, the present invention is not limited to the above embodiments. Various modifications can be made to the above-described embodiments within the same and equivalent scope as the present invention.

1、2、3 酸化物超電導線材
11、21、31 金属基板
12a、12b、22、32a、32b 中間層
13a、13b、23、33a、33b 酸化物超電導層
14a、14b、24、34a、34b 安定化層
15、25、35、 保護層
1, 2, 3 Oxide superconducting wires 11, 21, 31 Metal substrates 12a, 12b, 22, 32a, 32b Intermediate layers 13a, 13b, 23, 33a, 33b Oxide superconducting layers 14a, 14b, 24, 34a, 34b Stable Layer 15, 25, 35, protective layer

Claims (2)

配向性の金属基板表面のそれぞれに中間層が形成された基材の両面に、
酸化物超電導層、安定化層が順に形成されており、
周囲に電気絶縁性の保護層が形成されている
ことを特徴とする酸化物超電導線材。
On both sides of the base material on which the intermediate layer is formed on each of the oriented metal substrate surfaces,
An oxide superconducting layer and a stabilizing layer are formed in this order,
An oxide superconducting wire characterized in that an electrically insulating protective layer is formed around it.
前記電気絶縁性の保護層の材質が、FRPであることを特徴とする請求項1に記載の酸化物超電導線材。   2. The oxide superconducting wire according to claim 1, wherein a material of the electrically insulating protective layer is FRP.
JP2011269848A 2011-12-09 2011-12-09 Oxide superconductive wiring material Pending JP2013122822A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011269848A JP2013122822A (en) 2011-12-09 2011-12-09 Oxide superconductive wiring material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011269848A JP2013122822A (en) 2011-12-09 2011-12-09 Oxide superconductive wiring material

Publications (1)

Publication Number Publication Date
JP2013122822A true JP2013122822A (en) 2013-06-20

Family

ID=48774684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011269848A Pending JP2013122822A (en) 2011-12-09 2011-12-09 Oxide superconductive wiring material

Country Status (1)

Country Link
JP (1) JP2013122822A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017091680A (en) * 2015-11-05 2017-05-25 住友電気工業株式会社 Thin film oxide superconducting wire material and manufacturing method therefor
JP2017091679A (en) * 2015-11-05 2017-05-25 住友電気工業株式会社 Manufacturing method of thin film oxide superconducting wire material
JP2017091681A (en) * 2015-11-05 2017-05-25 住友電気工業株式会社 Thin film oxide superconducting wire material and manufacturing method therefor
RU2638968C2 (en) * 2013-07-24 2017-12-19 Брукер Хтс Гмбх Band superconducting element with improved own protection in transition from superconducting state to normal one

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2638968C2 (en) * 2013-07-24 2017-12-19 Брукер Хтс Гмбх Band superconducting element with improved own protection in transition from superconducting state to normal one
JP2017091680A (en) * 2015-11-05 2017-05-25 住友電気工業株式会社 Thin film oxide superconducting wire material and manufacturing method therefor
JP2017091679A (en) * 2015-11-05 2017-05-25 住友電気工業株式会社 Manufacturing method of thin film oxide superconducting wire material
JP2017091681A (en) * 2015-11-05 2017-05-25 住友電気工業株式会社 Thin film oxide superconducting wire material and manufacturing method therefor

Similar Documents

Publication Publication Date Title
CA2622384C (en) High temperature superconducting wires and coils
JP5806302B2 (en) Multifilament superconductor with reduced AC loss and its formation method
US8993485B2 (en) Methods of splicing 2G rebco high temperature superconductors using partial micro-melting diffusion pressurized splicing by direct face-to-face contact of high temperature superconducting layers and recovering superconductivity by oxygenation annealing
US11289640B2 (en) Second generation superconducting filaments and cable
US11488746B2 (en) Superconductor with improved flux pinning at low temperatures
KR20100136464A (en) Method of forming an hts article
JP2013122822A (en) Oxide superconductive wiring material
JP6104757B2 (en) Oxide superconducting wire and method for producing the same
JP5675232B2 (en) Superconducting current lead
JP2016522534A5 (en)
US8260387B2 (en) Superconducting articles and methods of fabrication thereof with reduced AC magnetic field losses
JP2009016253A (en) Connection structure of superconducting wire rod as well as connecting method of superconductive apparatus and superconducting wire rod
KR101535844B1 (en) METHOD OF SPLICING AND REINFORCING OF SPLICING PART FOR PERSISTENT CURRENT MODE OF 2G ReBCO HIGH TEMPERATURE SUPERCONDUCTORS
WO2011004842A1 (en) Substrate, process for production of substrate, electrically super-conductive wire material, and process for production of electrically super-conductive wire material
KR20040036628A (en) Superconducting cable conductor with REBCO-coated conductor elements
JP2012064323A (en) Superconductive current lead
US9570215B2 (en) Method for manufacturing precursor, method for manufacturing superconducting wire, precursor, and superconducting wire
JP5865426B2 (en) Manufacturing method of oxide superconducting wire
CN110494935A (en) Superconducting wire and superconducting coil
JP2015035425A (en) Oxide superconductive wire and production method thereof
JP2011165625A (en) Oxide superconductive wire material
Dey et al. Effect of magnetic field, thermal cycling and bending strain on critical current density of multifilamentary Bi-2223/Ag tape and fabrication of a pancake coil
NZ745190B2 (en) Second generation superconducting filaments and cable
JP2014022228A (en) Oxide superconductive conductor and production method of oxide superconductive conductor, and superconduction device using the same