JP2017091680A - Thin film oxide superconducting wire material and manufacturing method therefor - Google Patents

Thin film oxide superconducting wire material and manufacturing method therefor Download PDF

Info

Publication number
JP2017091680A
JP2017091680A JP2015217532A JP2015217532A JP2017091680A JP 2017091680 A JP2017091680 A JP 2017091680A JP 2015217532 A JP2015217532 A JP 2015217532A JP 2015217532 A JP2015217532 A JP 2015217532A JP 2017091680 A JP2017091680 A JP 2017091680A
Authority
JP
Japan
Prior art keywords
oxide superconducting
layer
superconducting wire
thin film
film oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015217532A
Other languages
Japanese (ja)
Inventor
昌也 小西
Masaya Konishi
昌也 小西
高史 山口
Takashi Yamaguchi
高史 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2015217532A priority Critical patent/JP2017091680A/en
Priority to CN201680064614.3A priority patent/CN108352227A/en
Priority to KR1020187011688A priority patent/KR20180080204A/en
Priority to PCT/JP2016/082488 priority patent/WO2017078027A1/en
Priority to DE112016005097.6T priority patent/DE112016005097T5/en
Priority to US15/772,182 priority patent/US20180358153A1/en
Publication of JP2017091680A publication Critical patent/JP2017091680A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a thin film oxide superconducting wire material capable of easily securing conductivity between an oxide superconducting layer and a metal substrate by a layer other than an intermediate layer instead of a stabilizing layer causing cost up or increase of wire material size and a manufacturing method therefor.SOLUTION: There is provided a manufacturing method of a thin film oxide superconducting wire material for manufacturing the thin film oxide superconducting wire material by cutting the thin film oxide superconducting wire material having a REBaCuO-based oxide superconducting layer formed on a belt-like metal substrate via an intermediate layer in a longitudinal direction, the method having a thermally cutting process for thermally cutting the thin film oxide superconducting wire material in the longitudinal direction by applying an infrared laser to cut locations, wherein, by thermally cutting the thin film oxide superconducting wire material in the thermally cutting process, a mixed layer in which a material constituting the thin film oxide superconducting wire material melted when cut is solidified is formed on both side surfaces of the cut thin film oxide superconducting wire material as a conductive layer electrically connecting the oxide superconducting layer and the metal substrate.SELECTED DRAWING: None

Description

本発明は、帯状の金属基板上に酸化物超電導体からなる超電導層が設けられた薄膜酸化物超電導線材およびその製造方法に関する。   The present invention relates to a thin-film oxide superconducting wire in which a superconducting layer made of an oxide superconductor is provided on a band-shaped metal substrate, and a method for manufacturing the same.

転移温度(Tc)が液体窒素温度以上の高温超電導体である酸化物超電導体からなる超電導層が設けられた薄膜酸化物超電導線材は、一般に、幅1〜10cm程度の金属基板上に中間層、REBaCu7−x(RE:希土類元素)系の酸化物超電導層、保護層としての銀層を順次形成した後、用途にあわせた所定の線材幅に切断加工することにより製造されている。 A thin-film oxide superconducting wire provided with a superconducting layer made of an oxide superconductor having a transition temperature (Tc) higher than the liquid nitrogen temperature is generally an intermediate layer on a metal substrate having a width of about 1 to 10 cm. It is manufactured by sequentially forming a REBa 2 Cu 3 O 7-x (RE: rare earth element) -based oxide superconducting layer and a silver layer as a protective layer, and then cutting into a predetermined wire width suitable for the application. Yes.

このとき、通電時の安定性を確保するために、通常は、切断後の薄膜酸化物超電導線材の外周を銅メッキしたり(図6参照)、酸化物超電導層の上面に銅テープを貼り付けたり(図7参照)して、安定化層を形成することが行われている(特許文献1、2)。なお、図6および図7において、51は薄膜酸化物超電導線材、2は金属基板、3は中間層、4は酸化物超電導層、5は保護層、9は安定化層である。   At this time, in order to ensure stability during energization, the outer periphery of the thin-film oxide superconducting wire after cutting is usually plated with copper (see FIG. 6), or a copper tape is attached to the upper surface of the oxide superconducting layer. (See FIG. 7), a stabilization layer is formed (Patent Documents 1 and 2). 6 and 7, 51 is a thin film oxide superconducting wire, 2 is a metal substrate, 3 is an intermediate layer, 4 is an oxide superconducting layer, 5 is a protective layer, and 9 is a stabilization layer.

また、このような安定化層の形成に替えて、酸化物超電導層と金属基板との間に導電性を持たせることにより金属基板で通電時の安定性を確保することが考えられ、具体的には、上記した中間層を導電性材料で形成することが提案されている(特許文献3〜5、非特許文献1)。   In addition, instead of forming such a stabilization layer, it is conceivable to ensure the stability when the metal substrate is energized by providing conductivity between the oxide superconducting layer and the metal substrate. Has proposed that the above-described intermediate layer be formed of a conductive material (Patent Documents 3 to 5, Non-Patent Document 1).

特開2012−156048号公報Japanese Patent Application Laid-Open No. 2012-156048 特開平07−037444号公報JP 07-037444 A 特開2005−044636号公報JP 2005-044636 A 米国特許第6617283号明細書US Pat. No. 6,617,283 米国特許第6956012号明細書US Pat. No. 6,956,010

ティー アイタグ(T.Aytug)他、導電性銅ベースのコーティングされた導電体の電磁気的特性(Electrical and magnetic properties of conductive Cu−based coated conductors)、応用物理レター(APPLIED PHYSICS LETTERS)、米国、米国物理学会(American Institute of Physics)、2003年11月10日、83巻(VOLUME 83)、19号(NUMBER 19)、3963頁〜3965頁T. Aytag et al., Electrical and Magnetic Properties of Conductive Copper-Coated Conductors, Applied Physics Letters, APPS American Institute of Physics, November 10, 2003, Volume 83 (VOLUME 83), No. 19 (NUMBER 19), pages 3963-3965

しかしながら、銅メッキ処理や銅テープの貼り付けにより安定化層を形成することは、コストアップを招くだけでなく、線材のサイズの増大化を招いてしまう。   However, forming the stabilization layer by copper plating or affixing a copper tape not only increases the cost, but also increases the size of the wire.

また、中間層を導電性材料で形成しようとした場合、中間層は、超電導層への元素拡散の防止や超電導層との格子整合という従来の役割に、さらに超電導層と金属基板との間の導電性確保という新たな役割が加わることになる。このような多岐にわたる役割を十分に果たすことができる特性を有し、かつ形成しやすい中間層材料を見出すことは容易なことではない。   When the intermediate layer is formed of a conductive material, the intermediate layer has a conventional role of preventing element diffusion into the superconducting layer and lattice matching with the superconducting layer, and further, between the superconducting layer and the metal substrate. A new role of ensuring conductivity will be added. It is not easy to find an intermediate layer material that has such characteristics that can sufficiently fulfill such various roles and is easy to form.

そこで、本発明は、コストアップや線材サイズの増大化を招く安定化層に替えて、酸化物超電導層と金属基板との間の導電性を中間層以外の層で容易に確保することができる薄膜酸化物超電導線材およびその製造方法を提供することを課題とする。   Therefore, the present invention can easily secure the conductivity between the oxide superconducting layer and the metal substrate in a layer other than the intermediate layer, instead of the stabilization layer that causes an increase in cost and an increase in wire size. It is an object to provide a thin film oxide superconducting wire and a method for manufacturing the same.

本発明の一態様に係る薄膜酸化物超電導線材の製造方法は、
帯状の金属基板上に中間層を介してREBaCu7−x(RE:希土類元素)系の酸化物超電導層が形成された薄膜酸化物超電導線材を、長手方向に切断して所望の幅の薄膜酸化物超電導線材を製造する薄膜酸化物超電導線材の製造方法であって、
切断箇所に赤外光レーザを照射して前記薄膜酸化物超電導線材を長手方向に熱切断する熱切断工程を備えており、
前記熱切断工程において、前記薄膜酸化物超電導線材を熱切断することにより、切断された前記薄膜酸化物超電導線材の両側面に、切断時に融解した前記薄膜酸化物超電導線材を構成する材料が固化した混合層を、前記酸化物超電導層と前記金属基板とを電気的に接続する導電層として形成する薄膜酸化物超電導線材の製造方法である。
A method for producing a thin film oxide superconducting wire according to an aspect of the present invention is as follows.
A thin-film oxide superconducting wire in which a REBa 2 Cu 3 O 7-x (RE: rare earth element) -based oxide superconducting layer is formed on a strip-shaped metal substrate via an intermediate layer is cut in the longitudinal direction to obtain a desired A manufacturing method of a thin film oxide superconducting wire for manufacturing a thin film oxide superconducting wire having a width,
It comprises a thermal cutting step of irradiating the cut portion with an infrared laser to thermally cut the thin film oxide superconducting wire in the longitudinal direction,
In the thermal cutting step, by thermally cutting the thin film oxide superconducting wire, the material constituting the thin film oxide superconducting wire melted at the time of cutting is solidified on both side surfaces of the cut thin film oxide superconducting wire. It is a manufacturing method of the thin film oxide superconducting wire which forms a mixed layer as a conductive layer which electrically connects the oxide superconducting layer and the metal substrate.

本発明の一態様に係る薄膜酸化物超電導線材は、
帯状の金属基板上に中間層を介してREBaCu7−x(RE:希土類元素)系の酸化物超電導層が形成された薄膜酸化物超電導線材であって、
両側面に、前記薄膜酸化物超電導線材を構成する材料が固化した混合層が、前記酸化物超電導層と前記金属基板とを電気的に接続する導電層として形成されている薄膜酸化物超電導線材である。
The thin film oxide superconducting wire according to one aspect of the present invention is
A thin-film oxide superconducting wire in which a REBa 2 Cu 3 O 7-x (RE: rare earth element) -based oxide superconducting layer is formed on a band-shaped metal substrate via an intermediate layer,
A thin film oxide superconducting wire in which a mixed layer in which a material constituting the thin film oxide superconducting wire is solidified is formed as a conductive layer electrically connecting the oxide superconducting layer and the metal substrate on both sides. is there.

本発明によれば、コストアップや線材サイズの増大化を招く安定化層に替えて、酸化物超電導層と金属基板との間の導電性を中間層以外の層で容易に確保することができる薄膜酸化物超電導線材およびその製造方法を提供することができる。   According to the present invention, the conductivity between the oxide superconducting layer and the metal substrate can be easily ensured by a layer other than the intermediate layer in place of the stabilization layer that causes an increase in cost and an increase in wire size. A thin-film oxide superconducting wire and a method for manufacturing the same can be provided.

第1の実施形態に係る薄膜酸化物超電導線材の構成を示す断面図である。It is sectional drawing which shows the structure of the thin film oxide superconducting wire which concerns on 1st Embodiment. 第2の実施形態に係る薄膜酸化物超電導線材の構成を示す断面図である。It is sectional drawing which shows the structure of the thin film oxide superconducting wire which concerns on 2nd Embodiment. 第3の実施形態に係る薄膜酸化物超電導線材の構成を示す断面図である。It is sectional drawing which shows the structure of the thin film oxide superconducting wire which concerns on 3rd Embodiment. 第4の実施形態に係る薄膜酸化物超電導線材の構成を示す断面図である。It is sectional drawing which shows the structure of the thin film oxide superconducting wire which concerns on 4th Embodiment. 第5の実施形態に係る薄膜酸化物超電導線材の構成を示す断面図である。It is sectional drawing which shows the structure of the thin film oxide superconducting wire which concerns on 5th Embodiment. 従来の超電導線材の構成の一例を示す断面図である。It is sectional drawing which shows an example of a structure of the conventional superconducting wire. 従来の超電導線材の構成の他の一例を示す断面図である。It is sectional drawing which shows another example of a structure of the conventional superconducting wire.

[本発明の実施態様の説明]
最初に本発明の実施態様を列記して説明する。
[Description of Embodiments of the Present Invention]
First, embodiments of the present invention will be listed and described.

(1)本発明の一態様に係る薄膜酸化物超電導線材の製造方法は、
帯状の金属基板上に中間層を介してREBaCu7−x(RE:希土類元素)系の酸化物超電導層が形成された薄膜酸化物超電導線材を、長手方向に切断して所望の幅の薄膜酸化物超電導線材を製造する薄膜酸化物超電導線材の製造方法であって、
切断箇所に赤外光レーザを照射して前記薄膜酸化物超電導線材を長手方向に熱切断する熱切断工程を備えており、
前記熱切断工程において、前記薄膜酸化物超電導線材を熱切断することにより、切断された前記薄膜酸化物超電導線材の両側面に、切断時に融解した前記薄膜酸化物超電導線材を構成する材料が固化した混合層を、前記酸化物超電導層と前記金属基板とを電気的に接続する導電層として形成する薄膜酸化物超電導線材の製造方法である。
(1) A method for producing a thin film oxide superconducting wire according to an aspect of the present invention includes:
A thin-film oxide superconducting wire in which a REBa 2 Cu 3 O 7-x (RE: rare earth element) -based oxide superconducting layer is formed on a strip-shaped metal substrate via an intermediate layer is cut in the longitudinal direction to obtain a desired A manufacturing method of a thin film oxide superconducting wire for manufacturing a thin film oxide superconducting wire having a width,
It comprises a thermal cutting step of irradiating the cut portion with an infrared laser to thermally cut the thin film oxide superconducting wire in the longitudinal direction,
In the thermal cutting step, by thermally cutting the thin film oxide superconducting wire, the material constituting the thin film oxide superconducting wire melted at the time of cutting is solidified on both side surfaces of the cut thin film oxide superconducting wire. It is a manufacturing method of the thin film oxide superconducting wire which forms a mixed layer as a conductive layer which electrically connects the oxide superconducting layer and the metal substrate.

本発明者は、上記した課題の解決について検討する中で、赤外光レーザを照射して熱切断された薄膜酸化物超電導線材の断面を観察したところ、切断面である両側面に新たな層が形成されている場合があることに気付いた。一方、スリッター等を用いて機械的に切断する方法や、紫外光レーザの照射により切断する方法の場合には、このような層は形成されていなかった。   While examining the solution of the above-mentioned problem, the present inventor observed a section of a thin-film oxide superconducting wire thermally cut by irradiating an infrared laser, and found a new layer on both side surfaces which are cut surfaces. Noticed that may have formed. On the other hand, such a layer was not formed in the case of a method of mechanically cutting using a slitter or the like or a method of cutting by irradiation with an ultraviolet laser.

そして、この層を構成している材料を分析したところ、主に、銅、銀、鉄、ニッケル、バリウム、Gd等の希土類元素等が検出され、この層は赤外光レーザを照射する熱切断時に融解した薄膜酸化物超電導線材を構成する材料、即ち、金属基板材料、酸化物超電導層材料、保護層材料が混合体として固化することにより形成された層であることが分かった。   And when the material which comprises this layer was analyzed, the rare earth elements, such as copper, silver, iron, nickel, barium, Gd, etc. were mainly detected, and this layer is the thermal cutting which irradiates an infrared laser It turned out that it was the layer formed by solidifying the material which comprises the thin-film oxide superconducting wire which melt | dissolved occasionally, ie, metal substrate material, oxide superconducting layer material, and protective layer material as a mixture.

さらに、このような層が形成された薄膜酸化物超電導線材について表面の酸化物超電導層側と裏面の金属基板側との間における電気抵抗を測定したところ、線材長さ1cmあたり2Ω以下と低い値であり、十分な導電性があることが分かった。このような低い電気抵抗が得られた理由としては、上記したように、この層が薄膜酸化物超電導線材を構成する材料からできているためと推測される。   Further, when the electrical resistance between the oxide superconducting layer on the front surface side and the metal substrate side on the back surface of the thin film oxide superconducting wire formed with such a layer was measured, it was as low as 2Ω or less per 1 cm of the wire length. And was found to have sufficient electrical conductivity. The reason why such a low electric resistance is obtained is presumed that this layer is made of a material constituting the thin film oxide superconducting wire as described above.

本実施態様は、以上の知見に基づくものであり、このような導電層を形成させることにより、安定化層を設けなくても通電時の安定性を確保することができる。そして、このような導電層は、赤外光レーザを照射して熱切断する際に形成させればよいため、中間層の役割を付加する必要もなく、容易に酸化物超電導層と金属基板との間の導電性を確保することができる。   This embodiment is based on the above knowledge, and by forming such a conductive layer, it is possible to ensure stability during energization without providing a stabilization layer. Such a conductive layer may be formed at the time of thermal cutting by irradiating an infrared laser, so that it is not necessary to add a role of an intermediate layer, and an oxide superconducting layer and a metal substrate can be easily formed. Can be ensured.

そして、安定化層を設けなくてもよいため、コストの低減を図ることができると共に、薄膜酸化物超電導線材のサイズをコンパクト化することができ、薄膜酸化物超電導線材を使用した機器もコンパクト化することができる。   And since there is no need to provide a stabilizing layer, the cost can be reduced and the size of the thin film oxide superconducting wire can be made compact, and the equipment using the thin film oxide superconducting wire can also be made compact. can do.

また、酸化物超電導層と金属基板との間の導電性を確保することにより、従来のように、酸化物超電導層の上に銀層を保護層として設ける場合でも、厚みは1μm以下で十分であり設けなくてもよいようになり、この面からもコストの低減を図ることができる。   Further, by ensuring the conductivity between the oxide superconducting layer and the metal substrate, a thickness of 1 μm or less is sufficient even when a silver layer is provided as a protective layer on the oxide superconducting layer as in the prior art. There is no need to provide it, and the cost can be reduced also from this aspect.

なお、上記した導電層においては、中間層を構成する材料が含まれていてもよい。本来、中間層はセラミックであるため導電性は有しないが、厚みが薄いために導電層に含まれる量も少なく、導電性を阻害することはない。   Note that the conductive layer described above may include a material constituting the intermediate layer. Originally, since the intermediate layer is ceramic, it does not have conductivity, but since the thickness is small, the amount contained in the conductive layer is small, and the conductivity is not hindered.

(2)前記熱切断は、前記金属基板側から前記赤外光レーザを照射すると共に、前記金属基板側から切断箇所に向けてアシストガスを吹き付けて行うことが好ましい。 (2) It is preferable that the thermal cutting is performed by irradiating the infrared laser from the metal substrate side and blowing an assist gas from the metal substrate side toward the cutting portion.

金属基板側から赤外光レーザを照射することにより、先に金属基板材料が融解するため、側面に平滑な表面の導電層を形成することができる。この時、併せてアシストガスを吹き付けると、融解した各材料を均等に分散させることができ好ましい。   By irradiating the infrared laser from the metal substrate side, the metal substrate material is first melted, so that a conductive layer having a smooth surface can be formed on the side surface. At this time, it is preferable to spray the assist gas together because the melted materials can be evenly dispersed.

(3)切断後の前記薄膜酸化物超電導線材は、その後、酸素ガス雰囲気中で熱処理することが好ましい。 (3) The thin film oxide superconducting wire after cutting is preferably heat-treated in an oxygen gas atmosphere.

赤外光レーザによる熱切断の場合、切断時の温度上昇に伴い、酸化物超電導体から酸素が抜け出て超電導特性の低下を招く恐れがあるが、切断後の薄膜酸化物超電導線材を酸素ガス雰囲気中で熱処理することにより、抜け出た酸素が再び酸化物超電導体に取り込まれて、低下した超電導特性を十分に回復させることができる。   In the case of thermal cutting with an infrared laser, oxygen may escape from the oxide superconductor due to temperature rise at the time of cutting, leading to deterioration of superconducting properties. By performing the heat treatment therein, the escaped oxygen is again taken into the oxide superconductor, and the lowered superconducting characteristics can be sufficiently recovered.

(4)切断後の前記薄膜酸化物超電導線材の前記酸化物超電導層上、または、切断後の前記薄膜酸化物超電導線材の外周に、さらに保護層を形成することが好ましい。 (4) It is preferable to further form a protective layer on the oxide superconducting layer of the thin film oxide superconducting wire after cutting or on the outer periphery of the thin film oxide superconducting wire after cutting.

保護層を形成することにより、酸化物超電導層が機械的に傷ついたり、空気中の水分などによりダメージを受けたりすることを防止することができる。このとき、通電時の安定性は側面の導電層により既に確保されているため、保護層には従来の銀層のような導電性を必要としない。   By forming the protective layer, the oxide superconducting layer can be prevented from being mechanically damaged or damaged by moisture in the air. At this time, since the stability during energization is already ensured by the conductive layer on the side surface, the protective layer does not require conductivity as in the conventional silver layer.

(5)切断後の前記薄膜酸化物超電導線材の外周に、さらに絶縁層を形成することが好ましい。 (5) It is preferable to further form an insulating layer on the outer periphery of the thin film oxide superconducting wire after cutting.

絶縁層を形成することにより、薄膜酸化物超電導線材を機器に使用した際の絶縁性を十分に確保することができる。   By forming the insulating layer, sufficient insulation can be secured when the thin-film oxide superconducting wire is used in a device.

(6)本発明の一態様に係る薄膜酸化物超電導線材は、
帯状の金属基板上に中間層を介してREBaCu7−x(RE:希土類元素)系の酸化物超電導層が形成された薄膜酸化物超電導線材であって、
両側面に、前記薄膜酸化物超電導線材を構成する材料が固化した混合層が、前記酸化物超電導層と前記金属基板とを電気的に接続する導電層として形成されている薄膜酸化物超電導線材である。
(6) The thin film oxide superconducting wire according to one aspect of the present invention is
A thin-film oxide superconducting wire in which a REBa 2 Cu 3 O 7-x (RE: rare earth element) -based oxide superconducting layer is formed on a band-shaped metal substrate via an intermediate layer,
A thin film oxide superconducting wire in which a mixed layer in which a material constituting the thin film oxide superconducting wire is solidified is formed as a conductive layer electrically connecting the oxide superconducting layer and the metal substrate on both sides. is there.

前記したように、両側面に薄膜酸化物超電導線材を構成する材料が固化した混合層が、前記酸化物超電導層と前記金属基板とを電気的に接続する導電層として形成されていると、安定化層を設けなくても通電時の安定性を確保することができるため、コンパクトで超電導特性に優れた薄膜酸化物超電導線材を安価に提供することができる。   As described above, when the mixed layer in which the material constituting the thin film oxide superconducting wire is solidified on both sides is formed as a conductive layer that electrically connects the oxide superconducting layer and the metal substrate, it is stable. Since the stability at the time of energization can be ensured without providing a layer, it is possible to provide a thin-film oxide superconducting wire that is compact and excellent in superconducting properties at a low cost.

(7)前記酸化物超電導層または前記酸化物超電導層上に設けられた銀層と、前記金属基板との間の電気抵抗は、線材長さ1cmあたり2Ω以下であることが好ましい。 (7) The electrical resistance between the oxide superconducting layer or the silver layer provided on the oxide superconducting layer and the metal substrate is preferably 2Ω or less per 1 cm of wire length.

前記したように、電気抵抗が線材長さ1cmあたり2Ω以下と低い値であると、十分な導電性が確保されて、通電時の安定性が確保される。   As described above, when the electrical resistance is a low value of 2Ω or less per 1 cm of the length of the wire, sufficient electrical conductivity is ensured and stability during energization is secured.

(8)前記金属基板は、少なくとも長手方向に連続した良導体部を有していることが好ましい。 (8) It is preferable that the metal substrate has at least a good conductor portion continuous in the longitudinal direction.

このように良導体部を有している金属基板を用いることにより、側面の導電層から金属基板に過電流を効率的に流すことができ、金属基板に安定化層の役割を適切に担わせることができる。このような金属基板としては、ニッケルやNi−W合金などの配向金属基板、ハステロイなどのNi基耐熱合金基板、銅層を配向層としたクラッド基板、SUSなどが挙げられるが、この内でも、クラッド基板は金属基板内に電気抵抗が小さな銅層を有しているため、安定化の効果を顕著に発揮する。   By using a metal substrate having a good conductor in this way, an overcurrent can be efficiently passed from the side conductive layer to the metal substrate, and the role of the stabilizing layer can be appropriately assigned to the metal substrate. Can do. Examples of such metal substrates include oriented metal substrates such as nickel and Ni-W alloys, Ni-based heat-resistant alloy substrates such as Hastelloy, clad substrates having a copper layer as an orientation layer, and SUS. Since the clad substrate has a copper layer having a small electric resistance in the metal substrate, the effect of stabilization is remarkably exhibited.

(9)前記薄膜酸化物超電導線材は、前記金属基板を挟んで、両面に中間層を介して酸化物超電導層が形成されていることが好ましい。 (9) It is preferable that the thin film oxide superconducting wire has an oxide superconducting layer formed on both sides with an intermediate layer sandwiched between the metal substrates.

金属基板の両面に酸化物超電導層が形成されていることにより、薄膜超電導線材の性能を向上させることができ、より高Icで超電導特性に優れた薄膜酸化物超電導線材を提供することができる。   By forming the oxide superconducting layers on both surfaces of the metal substrate, the performance of the thin film superconducting wire can be improved, and a thin film oxide superconducting wire excellent in superconducting characteristics with higher Ic can be provided.

[本発明の実施形態の詳細]
本発明の実施形態に係る薄膜酸化物超電導線材およびその製造方法を、以下に図面を参照しつつ説明する。なお、本発明はこれらの例示に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
[Details of the embodiment of the present invention]
A thin film oxide superconducting wire according to an embodiment of the present invention and a manufacturing method thereof will be described below with reference to the drawings. In addition, this invention is not limited to these illustrations, is shown by the claim, and intends that all the changes within the meaning and range equivalent to a claim are included.

(第1の実施形態)
[1]薄膜酸化物超電導線材
1.薄膜酸化物超電導線材の構成
はじめに、第1の実施形態に係る薄膜酸化物超電導線材の構成について説明する。図1は第1の実施形態に係る薄膜酸化物超電導線材の構成を示す断面図である。
(First embodiment)
[1] Thin-film oxide superconducting wire Configuration of Thin-Film Oxide Superconducting Wire First, the configuration of the thin-film oxide superconducting wire according to the first embodiment will be described. FIG. 1 is a cross-sectional view showing the configuration of the thin film oxide superconducting wire according to the first embodiment.

図1に示す薄膜酸化物超電導線材1においては、金属基板2上に、中間層3、酸化物超電導層4、酸化物超電導層4および保護層5がこの順に形成されている。   In the thin film oxide superconducting wire 1 shown in FIG. 1, an intermediate layer 3, an oxide superconducting layer 4, an oxide superconducting layer 4 and a protective layer 5 are formed on a metal substrate 2 in this order.

そして、薄膜酸化物超電導線材1の側面には、熱切断に際して熱で融解した金属基板2、中間層3、REBaCu7−x(RE:希土類元素)の酸化物超電導層4、保護層5(銀層)が冷えて固化した導電層7が形成されている。従って、導電層7は、金属基板2の材料、中間層3の材料、酸化物超電導層4の材料および銀が混在した材料から形成されて、十分な導電性を有している。そして、この導電層7は、図1に示すように、保護層5および酸化物超電導層4と金属基板2を電気的に接続している。 On the side surface of the thin film oxide superconducting wire 1, a metal substrate 2 melted by heat at the time of thermal cutting, an intermediate layer 3, an oxide superconducting layer 4 of REBa 2 Cu 3 O 7-x (RE: rare earth element), protection A conductive layer 7 in which the layer 5 (silver layer) is cooled and solidified is formed. Therefore, the conductive layer 7 is formed from the material of the metal substrate 2, the material of the intermediate layer 3, the material of the oxide superconducting layer 4, and the material in which silver is mixed, and has sufficient conductivity. The conductive layer 7 electrically connects the protective layer 5 and the oxide superconducting layer 4 to the metal substrate 2 as shown in FIG.

2.薄膜酸化物超電導線材の製造方法
上記の構成の薄膜酸化物超電導線材は、以下の手順に従って製造される。
2. Method for Producing Thin Film Oxide Superconducting Wire The thin film oxide superconducting wire having the above structure is produced according to the following procedure.

(1)切断前の薄膜酸化物超電導線材の製造
最初に、切断前の薄膜酸化物超電導線材を公知の方法によって製造する。
(1) Production of thin-film oxide superconducting wire before cutting First, a thin-film oxide superconducting wire before cutting is produced by a known method.

(a)超電導層形成用下地の準備
最初に、超電導層形成用下地として、所定の幅に切断加工された帯状の金属基板上に金属基板からの元素拡散を抑制するための中間層が形成された下地を準備する。このとき、少なくともその最表面は、超電導層に配向性を与えるために2軸配向していることが必要である。好ましい超電導層形成用下地の一例として、ステンレステープ上に2軸配向した銅層、その銅層の配向を引き継いで形成されたニッケル層が積層されたクラッド基板上に、さらに配向を引き継いだセラミックス層(CeO、YSZなどの安定化ジルコニア、Y等)が中間層として形成されたテープを挙げることができる。
(A) Preparation of a superconducting layer formation base First, as a superconducting layer formation base, an intermediate layer for suppressing element diffusion from a metal substrate is formed on a band-shaped metal substrate cut into a predetermined width. Prepare the groundwork. At this time, at least the outermost surface needs to be biaxially oriented in order to give orientation to the superconducting layer. As an example of a preferred base for forming a superconducting layer, a ceramic layer in which orientation is further inherited on a clad substrate in which a copper layer biaxially oriented on a stainless tape and a nickel layer formed by inheriting the orientation of the copper layer are laminated. There may be mentioned a tape in which (stabilized zirconia such as CeO 2 or YSZ, Y 2 O 3 or the like) is formed as an intermediate layer.

(b)酸化物超電導層の形成
次に、中間層上に、パルスレーザデポジション(PLD)法や塗布熱分解法(MOD法)などの公知の方法を用いて、REBaCu7−x系の酸化物超電導層を形成する。ここで、REは希土類元素であり、イットリウム(Y)、イッテルビウム(Yb)、ガドリウム(Gd)、サマリウム(Sm)、ネオジウム(Nd)、エルビウム(Er)、ユーロピウム(Eu)、ホルミウム(Ho)、ジスプロシウム(Dy)から適宜選択される。
(B) Formation of oxide superconducting layer Next, on the intermediate layer, a known method such as a pulse laser deposition (PLD) method or a coating pyrolysis method (MOD method) is used to make REBa 2 Cu 3 O 7- An x- based oxide superconducting layer is formed. Here, RE is a rare earth element and includes yttrium (Y), ytterbium (Yb), gadolinium (Gd), samarium (Sm), neodymium (Nd), erbium (Er), europium (Eu), holmium (Ho), It is appropriately selected from dysprosium (Dy).

(c)銀層の形成
次に、必要に応じて、DCスパッタ法などの蒸着法を用いて、酸化物超電導層上に保護層としての銀層を形成する。なお、この銀層は、通常の切断しない薄膜酸化物超電導線材の場合には、酸化物超電導層の保護と電流の安定化のために数μmから数十μmの厚さで形成されるが、本実施形態において銀層は酸化物超電導層の保護のみのために形成され電流を安定化させる必要がないため、銀層の厚みは1μm以下と薄くすることができる。
(C) Formation of Silver Layer Next, if necessary, a silver layer as a protective layer is formed on the oxide superconducting layer by using a vapor deposition method such as a DC sputtering method. In addition, in the case of the thin oxide superconducting wire which is not cut normally, this silver layer is formed with a thickness of several μm to several tens of μm in order to protect the oxide superconducting layer and stabilize the current. In this embodiment, since the silver layer is formed only for protecting the oxide superconducting layer and does not need to stabilize the current, the thickness of the silver layer can be reduced to 1 μm or less.

(d)酸素アニール(酸化物超電導層への酸素導入)
次に、酸素雰囲気中で加熱処理して酸化物超電導層へ酸素を導入する。以上により、切断前の薄膜酸化物超電導線材の製造を完了する。
(D) Oxygen annealing (introducing oxygen into the oxide superconducting layer)
Next, heat treatment is performed in an oxygen atmosphere to introduce oxygen into the oxide superconducting layer. Thus, the production of the thin film oxide superconducting wire before cutting is completed.

(2)熱切断工程
上記において製造された切断前の薄膜酸化物超電導線材を、赤外光レーザを用いて所定の幅で長手方向に熱切断する。このとき、赤外光レーザが照射された箇所は熱で融解し、金属基板、中間層、酸化物超電導層、銀層(上記したように、銀層は形成されていない場合もある)の材料が混在する融液が生成する。融液は熱切断によって生成した薄膜酸化物超電導線材の側面を覆うように付着した後、冷却されて固化する。これにより、図1に示すように、両側面にそれぞれ厚みが0.01mm程度の導電層7が形成され、酸化物超電導層4と金属基板2間が薄膜酸化物超電導線材長さ1cmあたり2Ω以下の電気抵抗で電気的に接続される。
(2) Thermal cutting process The thin-film oxide superconducting wire before cutting produced in the above is thermally cut in the longitudinal direction with a predetermined width using an infrared laser. At this time, the portion irradiated with the infrared laser is melted by heat, and the material of the metal substrate, the intermediate layer, the oxide superconducting layer, and the silver layer (as described above, the silver layer may not be formed) A melt with a mixture of is produced. The melt adheres so as to cover the side surface of the thin-film oxide superconducting wire generated by thermal cutting, and is then cooled and solidified. As a result, as shown in FIG. 1, conductive layers 7 each having a thickness of about 0.01 mm are formed on both side surfaces, and the distance between the oxide superconducting layer 4 and the metal substrate 2 is 2Ω or less per 1 cm length of the thin film oxide superconducting wire. The electrical resistance is electrically connected.

熱切断に用いる赤外光レーザとしては、波長1.0〜1.1μm程度の赤外光が可能なファイバーレーザやYAGレーザが好ましい。そして、連続発振レーザでもパルスレーザでもよいが、極短パルスレーザの場合には熱切断加工ではなく非熱切断のアブレーション加工となり導電層の形成が行われないため好ましくない。また、紫外光レーザについても同様にアブレーション加工であるため好ましくない。   As the infrared laser used for thermal cutting, a fiber laser or YAG laser capable of infrared light having a wavelength of about 1.0 to 1.1 μm is preferable. A continuous wave laser or a pulsed laser may be used. However, in the case of an ultrashort pulse laser, a non-thermal cutting ablation process is performed instead of a thermal cutting process, and a conductive layer is not formed. Also, an ultraviolet laser is not preferable because it is similarly ablated.

この切断に際しては、金属基板2側から酸化物超電導層4の方向に赤外光レーザを照射すると共に、切断箇所に向けてアシストガスを吹き付けることが好ましい。具体的なアシストガスとしては、例えば、窒素(N)ガスを挙げることができる。 At the time of this cutting, it is preferable to irradiate an infrared laser in the direction of the oxide superconducting layer 4 from the metal substrate 2 side and to spray an assist gas toward the cutting portion. Specific examples of the assist gas include nitrogen (N 2 ) gas.

なお、上記した波長以外の赤外光レーザの照射条件は、出力50W以上、集光径50μm以下であることが好ましい。このような照射条件の下、熱切断加工することにより、切断と同時に確実に導電層7を形成することができる。   In addition, it is preferable that the irradiation conditions of the infrared laser other than the above-described wavelength are an output of 50 W or more and a focused diameter of 50 μm or less. By conducting a thermal cutting process under such irradiation conditions, the conductive layer 7 can be reliably formed simultaneously with the cutting.

(3)酸素中熱処理工程
次に、赤外光レーザにより切断加工された薄膜酸化物超電導線材に対して酸素ガス雰囲気中で熱処理を施す。これにより、切断時、酸化物超電導体から抜け出た酸素が再び取り込まれて、低下した超電導特性が回復し、酸化物超電導層と金属基板との間の電気抵抗がさらに低下して好ましい。
(3) Oxygen heat treatment step Next, the thin film oxide superconducting wire cut by an infrared laser is subjected to heat treatment in an oxygen gas atmosphere. Thereby, oxygen cut out from the oxide superconductor is taken in again at the time of cutting, and the reduced superconducting characteristics are recovered, and the electrical resistance between the oxide superconducting layer and the metal substrate is further reduced, which is preferable.

この酸素中熱処理は、通常、1気圧の純酸素中で行うが、加圧下で行ってもよい。処理温度としては800℃以下であればよいが、低い場合には長時間の処理が必要となり、高い場合には効果が飽和するため、最高温度としては400〜550℃程度が好ましい。   This heat treatment in oxygen is usually performed in pure oxygen at 1 atm, but may be performed under pressure. The treatment temperature may be 800 ° C. or lower. However, when the temperature is low, a long time treatment is required, and when the temperature is high, the effect is saturated. Therefore, the maximum temperature is preferably about 400 to 550 ° C.

具体的には、上記の処理温度まで加熱して所定時間保持した後、徐冷する。徐冷は通常炉冷で行うが、徐冷に掛ける時間はREの種類によって異なり適宜設定する。例えば、REとしてYが使用されている酸化物超電導体の場合には数分で室温まで冷却しても問題ないが、Gdの場合には200℃まで少なくとも2時間以上掛けて徐冷した方がIcの回復度合いが良くなることを本発明者は確認している。   Specifically, after heating to the above treatment temperature and holding for a predetermined time, it is gradually cooled. Slow cooling is usually performed by furnace cooling, but the time required for slow cooling varies depending on the type of RE and is appropriately set. For example, in the case of an oxide superconductor in which Y is used as RE, there is no problem even if it is cooled to room temperature in a few minutes, but in the case of Gd, it is preferable to slowly cool to 200 ° C. over at least 2 hours. The present inventor has confirmed that the degree of recovery of Ic is improved.

なお、薄膜酸化物超電導線材1の幅は、1mm以下の場合、Ic回復効果が顕著に発揮される。また、可撓性に富み、曲げやねじり加工に好適な薄膜酸化物超電導線材が得られる。   In addition, when the width | variety of the thin film oxide superconducting wire 1 is 1 mm or less, an Ic recovery effect is exhibited notably. Moreover, a thin film oxide superconducting wire which is rich in flexibility and suitable for bending and twisting can be obtained.

(第2の実施形態)
次に、第2の実施形態について説明する。
(Second Embodiment)
Next, a second embodiment will be described.

図2は第2の実施形態に係る薄膜酸化物超電導線材の構成を示す断面図である。   FIG. 2 is a cross-sectional view showing the configuration of the thin film oxide superconducting wire according to the second embodiment.

第2の実施形態に係る薄膜酸化物超電導線材11は、第1の実施形態に係る薄膜酸化物超電導線材1に形成されていた保護層5を設けない点で第1の実施形態に係る薄膜酸化物超電導線材1と相違している。   The thin film oxide superconducting wire 11 according to the second embodiment is a thin film oxide according to the first embodiment in that the protective layer 5 formed on the thin film oxide superconducting wire 1 according to the first embodiment is not provided. This is different from the superconducting wire 1.

導電層7が酸化物超電導層4と金属基板2とを電気的に接続するため、酸化物超電導層4上に導電性のある材料を設けることが不要となり、高価な銀を用いた銀層を設けることを省略することができる。これにより、薄膜酸化物超電導線材11を製造するコストをさらに低減することができる。   Since the conductive layer 7 electrically connects the oxide superconducting layer 4 and the metal substrate 2, it is not necessary to provide a conductive material on the oxide superconducting layer 4, and a silver layer using expensive silver is not required. The provision can be omitted. Thereby, the cost which manufactures the thin film oxide superconducting wire 11 can further be reduced.

(第3の実施形態)
次に、第3の実施形態について説明する。
(Third embodiment)
Next, a third embodiment will be described.

図3は第3の実施形態に係る薄膜酸化物超電導線材の構成を示す断面図である。   FIG. 3 is a cross-sectional view showing the configuration of the thin film oxide superconducting wire according to the third embodiment.

第3の実施形態に係る薄膜酸化物超電導線材21は、第2の実施の形態に係る薄膜酸化物超電導線材11の金属基板としてクラッドタイプの金属基板を用いる点で第2の実施形態に係る薄膜酸化物超電導線材1と相違している。   The thin film oxide superconducting wire 21 according to the third embodiment is a thin film according to the second embodiment in that a clad type metal substrate is used as the metal substrate of the thin film oxide superconducting wire 11 according to the second embodiment. This is different from the oxide superconducting wire 1.

クラッドタイプの金属基板は、SUS等をベース金属とした基体2a上に導電性に優れた銅層6が配向層として設けられて構成されているため、導電層7による薄膜酸化物超電導線材21の通電時の過電流対策の効果をさらに向上させることができる。   Since the clad type metal substrate is formed by providing a copper layer 6 having excellent conductivity as an alignment layer on a base 2a made of SUS or the like as a base metal, the thin film oxide superconducting wire 21 of the conductive layer 7 is formed. The effect of overcurrent countermeasures during energization can be further improved.

(第4の実施形態)
次に、第4の実施形態について説明する。
(Fourth embodiment)
Next, a fourth embodiment will be described.

図4は第4の実施形態に係る薄膜酸化物超電導線材の構成を示す断面図である。   FIG. 4 is a cross-sectional view showing the configuration of the thin film oxide superconducting wire according to the fourth embodiment.

第4の実施形態に係る薄膜酸化物超電導線材31は、第3の実施形態に係る薄膜酸化物超電導線材21の酸化物超電導層4上に絶縁性の保護層8を設けた点で第3の実施形態に係る薄膜酸化物超電導線材21と相違している。   The thin film oxide superconducting wire 31 according to the fourth embodiment is the third point in that an insulating protective layer 8 is provided on the oxide superconducting layer 4 of the thin film oxide superconducting wire 21 according to the third embodiment. This is different from the thin film oxide superconducting wire 21 according to the embodiment.

酸化物超電導層4上に絶縁性の保護層8を設けることにより、超電導層が機械的に傷ついたり、空気中の水分などによりダメージを受けたりすることを防止することができる。このとき導電層7が形成されているため、薄膜酸化物超電導線材31の通電時の過電流対策を行うことができるため、保護層8の導電性は不要であり銀のような高価な材料ではなく保護層8として絶縁性の材料を使用することも可能になり、薄膜酸化物超電導線材31の製造コストを低減することができる。   By providing the insulating protective layer 8 on the oxide superconducting layer 4, it is possible to prevent the superconducting layer from being mechanically damaged or damaged by moisture in the air. Since the conductive layer 7 is formed at this time, it is possible to take measures against overcurrent when the thin-film oxide superconducting wire 31 is energized. Therefore, the conductivity of the protective layer 8 is unnecessary, and an expensive material such as silver is used. It is also possible to use an insulating material as the protective layer 8, and the manufacturing cost of the thin film oxide superconducting wire 31 can be reduced.

(第5の実施形態)
次に、第5の実施形態について説明する。
(Fifth embodiment)
Next, a fifth embodiment will be described.

図5は第5の実施形態に係る薄膜酸化物超電導線材の構成を示す断面図である。   FIG. 5 is a cross-sectional view showing a configuration of a thin film oxide superconducting wire according to the fifth embodiment.

第5の実施形態に係る薄膜酸化物超電導線材41は、第3の実施形態に係る薄膜酸化物超電導線材21の周囲を絶縁層10により覆う点で第3の実施形態に係る薄膜酸化物超電導線材21と相違している。   The thin film oxide superconducting wire 41 according to the fifth embodiment is a thin film oxide superconducting wire according to the third embodiment in that the periphery of the thin film oxide superconducting wire 21 according to the third embodiment is covered with the insulating layer 10. 21.

薄膜酸化物超電導線材41を機器に使用する場合には、薄膜酸化物超電導線材41の周囲を絶縁する場合が多いが、酸化物超電導層4や導電層7を直接絶縁層10により覆った場合、製造コストをさらに低減することができる。   When the thin-film oxide superconducting wire 41 is used in equipment, the periphery of the thin-film oxide superconducting wire 41 is often insulated, but when the oxide superconducting layer 4 or the conductive layer 7 is directly covered by the insulating layer 10, The manufacturing cost can be further reduced.

絶縁層10には、一般的に広く用いられているエナメル、ポリアミド樹脂等が好適である。   The insulating layer 10 is preferably made of enamel, polyamide resin or the like that is generally widely used.

[実験例]
次に実験例に基づき、本発明をより具体的に説明する。
[Experimental example]
Next, the present invention will be described more specifically based on experimental examples.

以下では、薄膜酸化物超電導線材を、異なる切断方法、具体的には、赤外光レーザによる切断、紫外光レーザによる切断を用いて切断し、酸素中熱処理の有り無しで実験例1〜4の薄膜酸化物超電導線材を作製し、作製したそれぞれの薄膜酸化物超電導線材のIcを測定すると共に、表面の酸化物超電導層側と裏面の金属基板側との間における電気抵抗を導電層で測定した。   In the following, the thin film oxide superconducting wire is cut using different cutting methods, specifically, cutting with an infrared laser, and cutting with an ultraviolet laser, and in the cases of Experimental Examples 1 to 4 with and without heat treatment in oxygen. A thin-film oxide superconducting wire was prepared, and the Ic of each thin-film oxide superconducting wire was measured, and the electrical resistance between the surface oxide superconducting layer side and the back metal substrate side was measured with a conductive layer. .

(1)切断前の薄膜酸化物超電導線材の作製
金属基板として、SUS基材上に配向Cu層、配向Ni層を積層させたクラッド板を準備し、この金属基板上に、Y、YSZ、CeOが積層された中間層を形成した。そして、この中間層上に酸化物超電導層としてGdBaCu7−x酸化物超電導層を形成し、さらに、酸化物超電導層の上に保護層となる銀層を形成して、幅10mmの薄膜酸化物超電導線材を作製した。
(1) Preparation of thin-film oxide superconducting wire before cutting A clad plate in which an oriented Cu layer and an oriented Ni layer are laminated on a SUS base material is prepared as a metal substrate, and Y 2 O 3 , An intermediate layer in which YSZ and CeO 2 were laminated was formed. Then, a GdBa 2 Cu 3 O 7-x oxide superconducting layer is formed on the intermediate layer as an oxide superconducting layer, and a silver layer serving as a protective layer is formed on the oxide superconducting layer. A thin film oxide superconducting wire was prepared.

(2)切断条件
作製した10mm幅の薄膜酸化物超電導線材を、実験例1、2では赤外光レーザを用いて熱切断し、実験例3、4では紫外光レーザを用いて非熱切断を行った。
(2) Cutting conditions The produced thin-film oxide superconducting wire having a width of 10 mm is thermally cut using an infrared laser in Experimental Examples 1 and 2, and non-thermal cutting is performed using an ultraviolet laser in Experimental Examples 3 and 4. went.

上記した赤外光レーザによる切断条件は以下のように設定した。なお、切断幅は、端から1.5mm、4mm、2mm、1mm、1.5mmとし、その後の測定には4mmに切断された薄膜酸化物超電導線材を使用した。   The cutting conditions using the above-described infrared laser were set as follows. Note that the cut width was 1.5 mm, 4 mm, 2 mm, 1 mm, and 1.5 mm from the end, and a thin film oxide superconducting wire cut to 4 mm was used for subsequent measurements.

レーザ :ファイバーレーザ
波長 :1.064μm
出力 :300W
アシストガス:N
加工速度 :50m/min
Laser: Fiber laser Wavelength: 1.064 μm
Output: 300W
Assist gas: N 2
Processing speed: 50 m / min

また、紫外光レーザによる切断条件は以下のように設定した。なお、切断幅は、端から3mm、4mm、3mmとし、その後の測定には4mmに切断された薄膜酸化物超電導線材を使用した。   Moreover, the cutting conditions by the ultraviolet laser were set as follows. The cut width was 3 mm, 4 mm, and 3 mm from the end, and a thin film oxide superconducting wire cut to 4 mm was used for the subsequent measurement.

レーザ :YAGレーザ3倍波
波長 :0.355μm
出力 :4W
アシストガス:なし
加工速度 :6mm/min
Laser: YAG laser triple wave Wavelength: 0.355 μm
Output: 4W
Assist gas: None Processing speed: 6 mm / min

(3)酸素中熱処理
幅4mmに切断後の薄膜酸化物超電導線材から2本の線材サンプルを切り出して、その内の1本(実験例1、3)を1気圧の純酸素ガス雰囲気中、550℃まで昇温させた後30分保持し、その後、炉冷により徐冷する酸素中熱処理を行った。
(3) Heat treatment in oxygen Two wire samples were cut out from the thin film oxide superconducting wire after cutting to a width of 4 mm, and one of them (Experimental Examples 1 and 3) was 550 in a pure oxygen gas atmosphere at 1 atmosphere. After raising the temperature to 0 ° C., the temperature was maintained for 30 minutes, and then a heat treatment in oxygen was performed by gradually cooling by furnace cooling.

(4)電気抵抗の測定
上記の赤外光レーザにより熱切断した線材サンプル(実験例1)の断面を観察したところ、側面に0.01mm程度の層で覆われていた。この層からは主にCu、Ag、Fe、Ni、Ba、Gd等が検出された。この結果より、赤外光レーザによる熱切断の際に、熱で融解した金属基板の材料、酸化物超電導層の材料、銀層の銀が混在することによりこの層が形成されたことが分かった。
(4) Measurement of electric resistance When the cross section of the wire sample (Experimental Example 1) thermally cut by the infrared laser was observed, the side surface was covered with a layer of about 0.01 mm. From this layer, mainly Cu, Ag, Fe, Ni, Ba, Gd and the like were detected. From this result, it was found that this layer was formed by the mixture of the material of the metal substrate melted by heat, the material of the oxide superconducting layer, and the silver of the silver layer during thermal cutting with an infrared laser. .

そして、この線材サンプルの表面側と裏面側の電気抵抗を測定したところ、酸素中熱処理無し(実験例1)では線材長さ1cmあたり1.1Ω、有り(実験例2)では線材長さ1cmあたり0.4Ωであり、この層が十分な導電性を有していることが確認できた。一方、このような層が形成されなかった紫外光レーザにより熱切断した線材サンプル(実験例3)では線材長さ1cmあたり1200Ωと大きな抵抗を示すことが確認できた。   And when the electrical resistance of the front surface side and the back surface side of this wire sample was measured, it was 1.1Ω per 1 cm of wire length without heat treatment in oxygen (Experimental Example 1), and per 1 cm of wire length when there was (Experimental Example 2). It was 0.4Ω, and it was confirmed that this layer had sufficient conductivity. On the other hand, it was confirmed that a wire sample (Experimental Example 3) thermally cut by an ultraviolet laser in which such a layer was not formed showed a large resistance of 1200Ω per 1 cm of the wire length.

(5)Icの測定
各線材サンプルの臨界電流(Ic)を液体窒素中で四端子法を用いて測定した。また、測定結果に基づいて、各実験例について規格化Ic(A/cm)を算出した。結果を表1に示す。
(5) Measurement of Ic The critical current (Ic) of each wire sample was measured in liquid nitrogen using a four-terminal method. Moreover, normalized Ic (A / cm) was calculated for each experimental example based on the measurement results. The results are shown in Table 1.

Figure 2017091680
Figure 2017091680

表1より、赤外光レーザにより熱切断した線材サンプルでは、酸素中熱処理を行うことにより低下したIcが回復して、高いIcが得られて、この高いIcにより前記した電気抵抗の低さを生じていることが確認できた。   From Table 1, in the wire sample thermally cut by the infrared laser, the Ic lowered by the heat treatment in oxygen is recovered, and a high Ic is obtained. The low Ic is reduced by this high Ic. It was confirmed that this occurred.

本発明の薄膜酸化物超電導線材およびその製造方法は、安定化層を形成するコストを低減でき、過電流対策がなされており、容易に製造することができる効果を有し、酸化物超電導層が設けられた薄膜酸化物超電導線材およびその製造方法に有用である。   The thin-film oxide superconducting wire of the present invention and the manufacturing method thereof can reduce the cost of forming the stabilization layer, have an overcurrent countermeasure, and can be easily manufactured. It is useful for the provided thin film oxide superconducting wire and its manufacturing method.

1、11、21、31、41、51 薄膜酸化物超電導線材
2 金属基板
2a 基体
3 中間層
4 酸化物超電導層
5、8 保護層
6 銅層
7 導電層
9 安定化層
10 絶縁層
1, 11, 21, 31, 41, 51 Thin-film oxide superconducting wire 2 Metal substrate 2a Base 3 Intermediate layer 4 Oxide superconducting layer 5, 8 Protective layer 6 Copper layer 7 Conductive layer 9 Stabilizing layer 10 Insulating layer

Claims (9)

帯状の金属基板上に中間層を介してREBaCu7−x(RE:希土類元素)系の酸化物超電導層が形成された薄膜酸化物超電導線材を、長手方向に切断して所望の幅の薄膜酸化物超電導線材を製造する薄膜酸化物超電導線材の製造方法であって、
切断箇所に赤外光レーザを照射して前記薄膜酸化物超電導線材を長手方向に熱切断する熱切断工程を備えており、
前記熱切断工程において、前記薄膜酸化物超電導線材を熱切断することにより、切断された前記薄膜酸化物超電導線材の両側面に、切断時に融解した前記薄膜酸化物超電導線材を構成する材料が固化した混合層を、前記酸化物超電導層と前記金属基板とを電気的に接続する導電層として形成する薄膜酸化物超電導線材の製造方法。
A thin-film oxide superconducting wire in which a REBa 2 Cu 3 O 7-x (RE: rare earth element) -based oxide superconducting layer is formed on a strip-shaped metal substrate via an intermediate layer is cut in the longitudinal direction to obtain a desired A manufacturing method of a thin film oxide superconducting wire for manufacturing a thin film oxide superconducting wire having a width,
It comprises a thermal cutting step of irradiating the cut portion with an infrared laser to thermally cut the thin film oxide superconducting wire in the longitudinal direction,
In the thermal cutting step, by thermally cutting the thin film oxide superconducting wire, the material constituting the thin film oxide superconducting wire melted at the time of cutting is solidified on both side surfaces of the cut thin film oxide superconducting wire. The manufacturing method of the thin film oxide superconducting wire which forms a mixed layer as a conductive layer which electrically connects the said oxide superconducting layer and the said metal substrate.
前記熱切断を、前記金属基板側から前記赤外光レーザを照射すると共に、前記金属基板側から切断箇所に向けてアシストガスを吹き付けて行う請求項1に記載の薄膜酸化物超電導線材の製造方法。   2. The method of manufacturing a thin film oxide superconducting wire according to claim 1, wherein the thermal cutting is performed by irradiating the infrared laser from the metal substrate side and spraying an assist gas from the metal substrate side toward a cutting portion. . 切断後の前記薄膜酸化物超電導線材を、その後、酸素ガス雰囲気中で熱処理する請求項1または請求項2に記載の薄膜酸化物超電導線材の製造方法。   The method for producing a thin-film oxide superconducting wire according to claim 1 or 2, wherein the thin-film oxide superconducting wire after cutting is then heat-treated in an oxygen gas atmosphere. 切断後の前記薄膜酸化物超電導線材の前記酸化物超電導層上、または、切断後の前記薄膜酸化物超電導線材の外周に、さらに保護層を形成する請求項1〜請求項3のいずれか1項に記載の薄膜酸化物超電導線材の製造方法。   4. The protective layer is further formed on the oxide superconducting layer of the thin-film oxide superconducting wire after cutting, or on the outer periphery of the thin-film oxide superconducting wire after cutting. The manufacturing method of the thin film oxide superconducting wire described in 1. 切断後の前記薄膜酸化物超電導線材の外周に、さらに絶縁層を形成する請求項1〜請求項4のいずれか1項に記載の薄膜酸化物超電導線材の製造方法。   The manufacturing method of the thin film oxide superconducting wire according to any one of claims 1 to 4, wherein an insulating layer is further formed on the outer periphery of the thin film oxide superconducting wire after cutting. 帯状の金属基板上に中間層を介してREBaCu7−x(RE:希土類元素)系の酸化物超電導層が形成された薄膜酸化物超電導線材であって、
両側面に、前記薄膜酸化物超電導線材を構成する材料が固化した混合層が、前記酸化物超電導層と前記金属基板とを電気的に接続する導電層として形成されている薄膜酸化物超電導線材。
A thin-film oxide superconducting wire in which a REBa 2 Cu 3 O 7-x (RE: rare earth element) -based oxide superconducting layer is formed on a band-shaped metal substrate via an intermediate layer,
A thin film oxide superconducting wire in which a mixed layer in which a material constituting the thin film oxide superconducting wire is solidified is formed on both sides as a conductive layer that electrically connects the oxide superconducting layer and the metal substrate.
前記酸化物超電導層または前記酸化物超電導層上に設けられた銀層と、前記金属基板との間の電気抵抗が、線材長さ1cmあたり2Ω以下である請求項6に記載の薄膜酸化物超電導線材。   The thin film oxide superconductor according to claim 6, wherein an electrical resistance between the oxide superconducting layer or the silver layer provided on the oxide superconducting layer and the metal substrate is 2 Ω or less per 1 cm of wire length. wire. 前記金属基板が、少なくとも長手方向に連続した良導体部を有している請求項6または請求項7に記載の薄膜酸化物超電導線材。   The thin film oxide superconducting wire according to claim 6 or 7, wherein the metal substrate has at least a good conductor portion continuous in a longitudinal direction. 前記金属基板を挟んで、両面に中間層を介して酸化物超電導層が形成されている請求項6〜請求項8のいずれか1項に記載の薄膜酸化物超電導線材。   The thin film oxide superconducting wire according to any one of claims 6 to 8, wherein an oxide superconducting layer is formed on both surfaces via an intermediate layer with the metal substrate interposed therebetween.
JP2015217532A 2015-11-05 2015-11-05 Thin film oxide superconducting wire material and manufacturing method therefor Pending JP2017091680A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2015217532A JP2017091680A (en) 2015-11-05 2015-11-05 Thin film oxide superconducting wire material and manufacturing method therefor
CN201680064614.3A CN108352227A (en) 2015-11-05 2016-11-01 Thin-films Oxygen compound superconducting wire and its manufacturing method
KR1020187011688A KR20180080204A (en) 2015-11-05 2016-11-01 Thin-film oxide superconducting wire and manufacturing method thereof
PCT/JP2016/082488 WO2017078027A1 (en) 2015-11-05 2016-11-01 Thin-film oxide superconducting wire and method for manufacturing same
DE112016005097.6T DE112016005097T5 (en) 2015-11-05 2016-11-01 Superconducting oxide thin film wire and process for its production
US15/772,182 US20180358153A1 (en) 2015-11-05 2016-11-01 Oxide superconducting thin film wire and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015217532A JP2017091680A (en) 2015-11-05 2015-11-05 Thin film oxide superconducting wire material and manufacturing method therefor

Publications (1)

Publication Number Publication Date
JP2017091680A true JP2017091680A (en) 2017-05-25

Family

ID=58768238

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015217532A Pending JP2017091680A (en) 2015-11-05 2015-11-05 Thin film oxide superconducting wire material and manufacturing method therefor

Country Status (1)

Country Link
JP (1) JP2017091680A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012169057A (en) * 2011-02-10 2012-09-06 Sumitomo Electric Ind Ltd Processing method of superconducting wire material
JP2012181933A (en) * 2011-02-28 2012-09-20 Fujikura Ltd Oxide superconductive wire and production method therefor
JP2013122822A (en) * 2011-12-09 2013-06-20 Sumitomo Electric Ind Ltd Oxide superconductive wiring material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012169057A (en) * 2011-02-10 2012-09-06 Sumitomo Electric Ind Ltd Processing method of superconducting wire material
JP2012181933A (en) * 2011-02-28 2012-09-20 Fujikura Ltd Oxide superconductive wire and production method therefor
JP2013122822A (en) * 2011-12-09 2013-06-20 Sumitomo Electric Ind Ltd Oxide superconductive wiring material

Similar Documents

Publication Publication Date Title
JP4777749B2 (en) Method for producing low AC loss oxide superconducting conductor
JP2007141688A6 (en) Low AC loss oxide superconducting conductor and method of manufacturing the same
JP5994026B2 (en) Oxide superconducting conductor and manufacturing method thereof
WO2017078027A1 (en) Thin-film oxide superconducting wire and method for manufacturing same
JP2012156047A (en) Method of producing oxide superconductive wire material and oxide superconductive wire material
JP2015198009A (en) Oxide superconductive wire rod and production method thereof
JP6274975B2 (en) Oxide superconducting wire connecting structure manufacturing method and oxide superconducting wire connecting structure
JP2017091680A (en) Thin film oxide superconducting wire material and manufacturing method therefor
JP6069269B2 (en) Oxide superconducting wire, superconducting equipment, and oxide superconducting wire manufacturing method
JP6459150B2 (en) Thin film oxide superconducting wire and method for producing the same
JP2013122822A (en) Oxide superconductive wiring material
JP6459149B2 (en) Thin-film oxide superconducting wire manufacturing method
EP2940699A1 (en) Oxide superconductor wire
JP5695431B2 (en) Manufacturing method of oxide superconducting wire
JP5701281B2 (en) Oxide superconducting wire
CN111183493A (en) Connection structure of oxide superconducting wire
JP6311209B2 (en) Oxide superconducting thin film wire
JP5865426B2 (en) Manufacturing method of oxide superconducting wire
EP3089172B1 (en) Oxide superconducting wire material and oxide superconducting wire material manufacturing method
JP5597516B2 (en) Superconducting wire manufacturing method
JP2016100272A (en) Oxide superconducting wire and method of manufacturing oxide superconducting wire
US20200194155A1 (en) Superconducting wire and superconducting coil
JP2019139883A (en) Superconducting wire rod, superconducting cable, and method for manufacturing superconducting wire rod
KR20120136252A (en) Method of forming silver stabilizer of rebco coated conductors using electroplating and rebco coated conductors manufactured by the method
JP2020167007A (en) Connection structure of superconductive wire and superconductive wire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190701

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190823

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200203