JP2020167007A - Connection structure of superconductive wire and superconductive wire - Google Patents

Connection structure of superconductive wire and superconductive wire Download PDF

Info

Publication number
JP2020167007A
JP2020167007A JP2019065548A JP2019065548A JP2020167007A JP 2020167007 A JP2020167007 A JP 2020167007A JP 2019065548 A JP2019065548 A JP 2019065548A JP 2019065548 A JP2019065548 A JP 2019065548A JP 2020167007 A JP2020167007 A JP 2020167007A
Authority
JP
Japan
Prior art keywords
wire
superconducting
layer
oxide superconducting
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019065548A
Other languages
Japanese (ja)
Other versions
JP6707164B1 (en
Inventor
智 羽生
Satoshi Hanyu
智 羽生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2019065548A priority Critical patent/JP6707164B1/en
Priority to PCT/JP2020/013308 priority patent/WO2020203543A1/en
Application granted granted Critical
Publication of JP6707164B1 publication Critical patent/JP6707164B1/en
Publication of JP2020167007A publication Critical patent/JP2020167007A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B12/00Superconductive or hyperconductive conductors, cables, or transmission lines
    • H01B12/02Superconductive or hyperconductive conductors, cables, or transmission lines characterised by their form
    • H01B12/06Films or wires on bases or cores
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R4/00Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
    • H01R4/58Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation characterised by the form or material of the contacting members
    • H01R4/68Connections to or between superconductive connectors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

To provide a connection structure of superconductive wires, which can easily adjust an oxygen nonstoichiometric ratio in an oxide superconductive layer after connection and a superconductive wire therewith.SOLUTION: Provided is a connection structure of superconductive wires obtained by connecting terminals of target wires to be connected 10, 20 having oxide superconductive layers 12, 22 via a connection wire 30 having the oxide superconductive layer 32, in which an in-plane degree of orientation angle Δφ vertical to a thickness direction of the oxide superconductive layers 12, 22 of the wires to be connected 10, 20 is 4.0° or larger and smaller than 5.5°, and an in-plane degree of orientation angle Δφ vertical to a thickness direction of the oxide superconductive layer 32 of the wires to be connected 30 is larger by 0.5° or more than an in-plane degree of orientation angle Δφ of the oxide superconductive layers 12, 22 of wires to be connected 10, 20.SELECTED DRAWING: Figure 1

Description

本発明は、超電導線材の接続構造体及び超電導線材に関する。 The present invention relates to a connecting structure of a superconducting wire and a superconducting wire.

超電導線材は、電流損失が低いため、電力供給用ケーブル、磁気コイル等として使用されている。特許文献1には、金属基材上に設けられた中間層の上に酸化物超電導層を成膜し、周囲に安定化層として銅の電解めっき膜を形成した超電導線材が記載されている。
また、長尺の超電導線材を得るためには、複数本の超電導線材の端部同士を接続する必要がある。例えば特許文献2においては、超電導線材の酸化物超電導層を対向させ、酸化物超電導層間に電気的な導通を確保している。
Since superconducting wires have low current loss, they are used as power supply cables, magnetic coils, and the like. Patent Document 1 describes a superconducting wire having an oxide superconducting layer formed on an intermediate layer provided on a metal substrate and a copper electroplating film formed as a stabilizing layer around the superconducting layer.
Further, in order to obtain a long superconducting wire, it is necessary to connect the ends of a plurality of superconducting wires. For example, in Patent Document 2, the oxide superconducting layers of the superconducting wire are opposed to each other to ensure electrical conduction between the oxide superconducting layers.

特許第5634166号公報Japanese Patent No. 5634166 特開2013−235699号公報Japanese Unexamined Patent Publication No. 2013-23569

しかし、酸化物超電導層を対向させて超電導線材を接続した場合、酸化物超電導層が各超電導線材の金属基板間に挟まれた構造となる。この際、酸化物超電導層を接続する際に酸素が不足した状態で熱処理されることにより、酸化物超電導層から酸素が脱離して超電導特性が劣化する場合がある。 However, when the superconducting wires are connected so that the oxide superconducting layers face each other, the oxide superconducting layers have a structure sandwiched between the metal substrates of each superconducting wire. At this time, when the oxide superconducting layer is connected, the heat treatment is performed in a state where oxygen is insufficient, so that oxygen may be desorbed from the oxide superconducting layer and the superconducting characteristics may be deteriorated.

本発明は、上記事情に鑑みてなされたものであり、接続後の酸化物超電導層の酸素不定比性を調整することが容易な超電導線材の接続構造体及び超電導線材を提供することを課題とする。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a connection structure of a superconducting wire and a superconducting wire in which it is easy to adjust the oxygen non-stoichiometricity of the oxide superconducting layer after connection. To do.

前記課題を解決するため、本発明は、酸化物超電導層を有する接続対象線材の端部間が、酸化物超電導層を有する接続用線材を介して接続された超電導線材の接続構造体であって、前記接続対象線材の酸化物超電導層の厚さ方向に垂直な面内配向度Δφが4.0°以上5.5°未満であり、前記接続用線材の酸化物超電導層の厚さ方向に垂直な面内配向度Δφが前記接続対象線材の酸化物超電導層の面内配向度Δφよりも0.5°以上大きいことを特徴とする超電導線材の接続構造体を提供する。 In order to solve the above problems, the present invention is a connecting structure of a superconducting wire in which the ends of the connecting target wire having the oxide superconducting layer are connected via the connecting wire having the oxide superconducting layer. The in-plane orientation Δφ perpendicular to the thickness direction of the oxide superconducting layer of the connecting wire is 4.0 ° or more and less than 5.5 °, and is in the thickness direction of the oxide superconducting layer of the connecting wire. Provided is a connection structure of a superconducting wire, characterized in that the vertical in-plane orientation Δφ is 0.5 ° or more larger than the in-plane orientation Δφ of the oxide superconducting layer of the wire to be connected.

前記接続対象線材及び前記接続用線材は、それぞれ基板上に前記酸化物超電導層を有する超電導線材からなり、前記接続対象線材の基板と前記接続用線材の基板との間で、前記接続対象線材の酸化物超電導層と前記接続用線材の酸化物超電導層とが対向するように配置されていてもよい。
前記接続対象線材の酸化物超電導層と前記接続用線材の酸化物超電導層とが直接接するように接続されていてもよい。
前記接続用線材は、前記接続対象線材よりも短い超電導線材から構成されてもよい。
The connection target wire and the connection wire are each composed of a superconducting wire having the oxide superconducting layer on the substrate, and the connection target wire is connected between the connection target wire substrate and the connection wire substrate. The oxide superconducting layer and the oxide superconducting layer of the connecting wire may be arranged so as to face each other.
The oxide superconducting layer of the wire to be connected and the oxide superconducting layer of the connecting wire may be connected so as to be in direct contact with each other.
The connecting wire may be composed of a superconducting wire shorter than the connecting target wire.

また、本発明は、長手方向に2以上の接続対象線材が接続された超電導線材であって、前記2以上の接続対象線材の間の少なくとも1箇所が、前記超電導線材の接続構造体から構成されていることを特徴とする超電導線材を提供する。 Further, the present invention is a superconducting wire in which two or more connecting target wires are connected in the longitudinal direction, and at least one place between the two or more connecting target wires is composed of a connecting structure of the superconducting wire. Provided is a superconducting wire material characterized by being

本発明によれば、接続用線材の酸化物超電導層の厚さ方向に垂直な面内配向度Δφが相対的に大きいため、酸素拡散による酸化物超電導層の酸素不定比性の調整が容易になる。接続対象線材の酸化物超電導層の厚さ方向に垂直な面内配向度Δφが相対的に小さいため、接続対象線材の超電導特性が高く、接続された超電導線材の平均的な超電導特性の低下を抑制することができる。 According to the present invention, since the in-plane orientation Δφ perpendicular to the thickness direction of the oxide superconducting layer of the connecting wire is relatively large, it is easy to adjust the oxygen non-stoichiometricity of the oxide superconducting layer by oxygen diffusion. Become. Since the in-plane orientation Δφ perpendicular to the thickness direction of the oxide superconducting layer of the wire to be connected is relatively small, the superconducting property of the wire to be connected is high, and the average superconducting property of the connected superconducting wire is lowered. It can be suppressed.

実施形態の超電導線材の接続構造体を模式的に示す断面図である。It is sectional drawing which shows typically the connection structure of the superconducting wire material of embodiment. 酸化物超電導体における粒界の構造を概念的に示す説明図である。It is explanatory drawing which conceptually shows the structure of the grain boundary in an oxide superconductor. 酸化物超電導体における転位群の構造を概念的に示す説明図である。It is explanatory drawing which conceptually shows the structure of the dislocation group in an oxide superconductor.

以下、好適な実施形態に基づき、図面を参照して本発明を説明する。
図1に、本実施形態の超電導線材の接続構造体を示す。この断面図は、超電導線材の長手方向に沿う断面を模式的に表す。断面図の上下方向が超電導線材の厚さ方向であり、断面図の左右方向が超電導線材の長手方向である。紙面に垂直な方向が超電導線材の幅方向である。
Hereinafter, the present invention will be described with reference to the drawings based on the preferred embodiments.
FIG. 1 shows a connection structure of the superconducting wire rod of the present embodiment. This cross-sectional view schematically represents a cross section along the longitudinal direction of the superconducting wire. The vertical direction of the cross-sectional view is the thickness direction of the superconducting wire, and the horizontal direction of the cross-sectional view is the longitudinal direction of the superconducting wire. The direction perpendicular to the paper surface is the width direction of the superconducting wire.

図1に示すように、接続構造体を構成する超電導線材10,20,30は、長尺の接続対象線材10,20と、短尺の接続用線材30とから構成されている。接続対象線材10,20の端部間において、接続対象線材10,20の酸化物超電導層12,22が、接続用線材30の酸化物超電導層32を介して接続されている。各酸化物超電導層12,22,32は、それぞれ基板11,21,31上に積層されていてもよい。接続対象線材10,20の酸化物超電導層12,22上のうち、接続用線材30の酸化物超電導層32と対向していない部分には、保護層13,23が設けられてもよい。図1は、接続対象線材10,20のうち、接続用線材30と接続される側の端部付近のみを示し、その他の部分は図示を省略している。本実施形態の接続構造体は、接続対象線材10,20の一方の端部と、接続用線材30とを含む部分である。接続対象線材10,20の長手方向において、図示しない側の端部には、別の接続構造体が構成されてもよい。 As shown in FIG. 1, the superconducting wires 10, 20, and 30 constituting the connection structure are composed of a long connection target wire 10, 20 and a short connection wire 30. Between the ends of the wire rods 10 and 20, the oxide superconducting layers 12 and 22 of the wire rods 10 and 20 to be connected are connected via the oxide superconducting layer 32 of the wire rod 30 for connection. The oxide superconducting layers 12, 22, and 32 may be laminated on the substrates 11, 21, and 31, respectively. Protective layers 13 and 23 may be provided on the oxide superconducting layers 12 and 22 of the connecting wire rods 10 and 20 that do not face the oxide superconducting layer 32 of the connecting wire 30. FIG. 1 shows only the vicinity of the end portion of the connection target wires 10 and 20 on the side connected to the connection wire 30, and the other parts are not shown. The connection structure of the present embodiment is a portion including one end of the connection target wires 10 and 20 and the connection wire 30. In the longitudinal direction of the wire rods 10 and 20 to be connected, another connection structure may be formed at an end portion on a side (not shown).

接続対象線材10,20の端部を接続用線材30と接続する際には、接続対象線材10,20の酸化物超電導層12,22が、接続用線材30の酸化物超電導層32と対向するように各超電導線材10,20,30を配置し、酸化物超電導層12,22,32を互いに重ね合わせることができる。図1に示す実施形態では、接続対象線材10,20の長手方向の端面の間に隙間を介在させているが、この隙間は必須ではない。例えば長手方向に対向する接続対象線材10,20の間で端面間を突き合わせてもよい。 When connecting the ends of the connection target wires 10 and 20 to the connection wire 30, the oxide superconducting layers 12 and 22 of the connection target wires 10 and 20 face each other with the oxide superconducting layer 32 of the connection wire 30. The superconducting wires 10, 20 and 30 can be arranged as described above, and the oxide superconducting layers 12, 22 and 32 can be superposed on each other. In the embodiment shown in FIG. 1, a gap is interposed between the end faces of the wire rods 10 and 20 to be connected in the longitudinal direction, but this gap is not essential. For example, the end faces may be butted between the connecting target wires 10 and 20 facing each other in the longitudinal direction.

酸化物超電導層12,22,32を直接接合する場合には、例えば加熱により超電導体を拡散接合してもよい。互いに対向する酸化物超電導層12,22,32の間に、銀、銀合金、半田等の金属からなる接合層(図示せず)を設けてもよい。互いに対向する基板11,21,31の間又は周囲に溶接、金属めっき等の接合部(図示せず)を設けることにより、各超電導線材10,20,30の間を固定してもよい。 When the oxide superconducting layers 12, 22 and 32 are directly bonded, the superconductor may be diffusely bonded by heating, for example. A bonding layer (not shown) made of a metal such as silver, a silver alloy, or solder may be provided between the oxide superconducting layers 12, 22, and 32 facing each other. The superconducting wires 10, 20, and 30 may be fixed by providing joints (not shown) such as welding and metal plating between or around the substrates 11, 2, and 31 facing each other.

超電導接続の電気抵抗を低減するため、接続対象線材10,20と接続用線材30とが対向する領域の少なくとも一部において、接続対象線材10,20の酸化物超電導層12,22と接続用線材30の酸化物超電導層32とが直接接するように接続されていることが好ましい。互いに対向する酸化物超電導層12,22,32の間に接合層を設ける場合は、酸素拡散を可能とするように材質、膜厚等を設定することが好ましい。接続後に酸素雰囲気下の酸素熱処理(酸素アニール)をして酸化物超電導層12,22,32の劣化を回復させることが好ましい。酸素熱処理では、酸化物超電導体の金属元素に対する酸化物の比を最適化することができる。 In order to reduce the electrical resistance of the superconducting connection, the oxide superconducting layers 12 and 22 of the connection target wires 10 and 20 and the connection wire are connected in at least a part of the region where the connection target wires 10 and 20 and the connection wire 30 face each other. It is preferable that the oxide superconducting layer 32 of 30 is connected so as to be in direct contact with it. When the bonding layer is provided between the oxide superconducting layers 12, 22 and 32 facing each other, it is preferable to set the material, film thickness and the like so as to enable oxygen diffusion. After connection, it is preferable to perform oxygen heat treatment (oxygen annealing) in an oxygen atmosphere to recover the deterioration of the oxide superconducting layers 12, 22 and 32. In the oxygen heat treatment, the ratio of the oxide to the metal element of the oxide superconductor can be optimized.

本実施形態の接続構造体の場合、接続対象線材10,20の酸化物超電導層12,22の厚さ方向(c軸方向)に垂直な方向(a軸方向又はb軸方向)の面内配向度Δφが5.5°未満であることが好ましい。これにより、接続対象線材10,20の酸化物超電導層12,22の超電導特性を良好に保つことができる。
また、接続対象線材10,20の酸化物超電導層12,22の厚さ方向(c軸方向)に垂直な方向(a軸方向又はb軸方向)の面内配向度Δφが4.0°以上であることが好ましい。これにより、超電導線材の臨界電流Icを、熱処理を施す前に比べて熱処理を施した後に上昇させることができる。
また、接続用線材30の酸化物超電導層32の厚さ方向(c軸方向)に垂直な方向(a軸方向又はb軸方向)の面内配向度Δφが接続対象線材10,20の酸化物超電導層12,22の面内配向度Δφよりも0.5°以上大きいことが好ましい。これにより、接続用線材30の酸化物超電導層32の超電導特性を良好に保つことができる。
なお、面内配向度Δφとは、酸化物超電導層のX線解析測定を行い測定される、結晶軸分散の半値全幅(FWHM)の値である。面内配向度Δφの数値が小さいほど、結晶配向性が良好であることを示す。
酸化物超電導層の厚さ方向に垂直な方向の面内配向度Δφを、これ以降、単に面内配向度Δφという。
In the case of the connection structure of the present embodiment, the in-plane orientation in the direction (a-axis direction or b-axis direction) perpendicular to the thickness direction (c-axis direction) of the oxide superconducting layers 12 and 22 of the wire rods 10 and 20 to be connected. The degree Δφ is preferably less than 5.5 °. As a result, the superconducting characteristics of the oxide superconducting layers 12 and 22 of the wire rods 10 and 20 to be connected can be kept good.
Further, the in-plane orientation Δφ in the direction (a-axis direction or b-axis direction) perpendicular to the thickness direction (c-axis direction) of the oxide superconducting layers 12 and 22 of the wire rods 10 and 20 to be connected is 4.0 ° or more. Is preferable. As a result, the critical current Ic of the superconducting wire can be increased after the heat treatment as compared with the case before the heat treatment.
Further, the in-plane orientation Δφ in the direction (a-axis direction or b-axis direction) perpendicular to the thickness direction (c-axis direction) of the oxide superconducting layer 32 of the connecting wire 30 is the oxide of the connecting wires 10 and 20. It is preferable that the superconducting layers 12 and 22 are 0.5 ° or more larger than the in-plane orientation Δφ. As a result, the superconducting characteristics of the oxide superconducting layer 32 of the connecting wire 30 can be kept good.
The in-plane orientation Δφ is the value of the full width at half maximum (FWHM) of the crystal axis dispersion measured by performing X-ray analysis measurement of the oxide superconducting layer. The smaller the value of the in-plane orientation Δφ, the better the crystal orientation.
The in-plane orientation Δφ in the direction perpendicular to the thickness direction of the oxide superconducting layer is hereinafter simply referred to as the in-plane orientation Δφ.

接続対象線材10,20の端部において酸化物超電導層12,22上に接続用線材30の酸化物超電導層32が対向し、酸化物超電導層12,22,32が互いに重なり合っていても、酸化物超電導層32の面内配向度Δφが相対的に大きいため、酸化物超電導層32の酸素拡散速度が速くなる。これにより、酸素拡散による酸化物超電導層12,22,32の酸素不定比性の調整が容易になる。また、接続対象線材10,20の酸化物超電導層12,22の面内配向度Δφが相対的に小さく、長尺の接続対象線材10,20の超電導特性が高いため、接続された超電導線材10,20,30の平均的な超電導特性の低下を抑制することができる。 Even if the oxide superconducting layer 32 of the connecting wire 30 faces the oxide superconducting layers 12 and 22 at the ends of the connecting wire rods 10 and 20, and the oxide superconducting layers 12, 22 and 32 overlap each other, oxidation occurs. Since the in-plane orientation Δφ of the physical superconducting layer 32 is relatively large, the oxygen diffusion rate of the oxide superconducting layer 32 becomes high. This facilitates the adjustment of the oxygen non-stoichiometric properties of the oxide superconducting layers 12, 22, and 32 by oxygen diffusion. Further, since the in-plane orientation Δφ of the oxide superconducting layers 12 and 22 of the connecting target wires 10 and 20 is relatively small and the superconducting characteristics of the long connecting target wires 10 and 20 are high, the connected superconducting wires 10 , 20, 30 can suppress the deterioration of the average superconducting characteristics.

面内配向度Δφが大きい酸化物超電導層32の酸素拡散速度が速くなる理由としては、例えば次のように考えられる。図2に示すように、結晶中で隣接する局所的な領域間で結晶方位41,42,43の差が大きいと粒界47ができ、各領域は粒界47で囲まれた結晶粒44,45,46となる。また、図3に示すように、結晶中で隣接する局所的な領域間で結晶方位41,42の差が小さいと粒界にならず、転位群48になる。すなわち、結晶の面内配向度Δφが大きい場合は、結晶中に結晶方位が異なる領域が増加し、酸素が拡散し得る粒界47、転位群48等の欠陥構造が増加するため、酸素拡散に有利になると考えられる。なお、図2では結晶粒44,45,46を簡略に六角形で図示しているが、これは粒子の形状を意図したものではない。 The reason why the oxygen diffusion rate of the oxide superconducting layer 32 having a large in-plane orientation Δφ is considered to be high is as follows. As shown in FIG. 2, when the difference in crystal orientations 41, 42, 43 between adjacent local regions in the crystal is large, grain boundaries 47 are formed, and each region is a crystal grain 44 surrounded by grain boundaries 47. It becomes 45,46. Further, as shown in FIG. 3, if the difference between the crystal orientations 41 and 42 between the adjacent local regions in the crystal is small, the grain boundary is not formed and the dislocation group 48 is formed. That is, when the in-plane orientation Δφ of the crystal is large, the regions having different crystal orientations increase in the crystal, and the defect structures such as the grain boundaries 47 and the dislocation group 48 where oxygen can diffuse increase, so that oxygen diffusion occurs. It is considered to be advantageous. In FIG. 2, the crystal grains 44, 45, and 46 are simply shown as hexagons, but this is not intended for the shape of the particles.

酸素熱処理は、接続対象線材10,20を接続用線材30と接続する前、または接続した後のいずれかに、少なくとも1回行うことが好ましい。接続後に酸化物超電導層12,22が露出されている場合は、少なくとも露出されている酸化物超電導層12,22の上に、銀等の保護層13,23を積層することが好ましい。保護層13,23を厚さ方向に2層以上積層することも可能である。例えば、酸素熱処理前には、高温条件下で酸素を透過可能な銀または銀合金を積層し、酸素熱処理後に、銀または銀合金の上に銅等を積層してもよい。保護層13,23が接続対象線材10,20の全長にわたり形成された接続対象線材10,20を用意して、接続用線材30と接続する前に接続対象線材10,20の端部から保護層13,23の一部をエッチング等で除去してもよい。 The oxygen heat treatment is preferably performed at least once before or after connecting the connecting wires 10 and 20 to the connecting wires 30. When the oxide superconducting layers 12 and 22 are exposed after the connection, it is preferable to laminate the protective layers 13 and 23 such as silver on at least the exposed oxide superconducting layers 12 and 22. It is also possible to stack two or more protective layers 13 and 23 in the thickness direction. For example, silver or a silver alloy that can permeate oxygen under high temperature conditions may be laminated before the oxygen heat treatment, and copper or the like may be laminated on the silver or the silver alloy after the oxygen heat treatment. The connection target wires 10 and 20 in which the protective layers 13 and 23 are formed over the entire length of the connection target wires 10 and 20 are prepared, and the protective layer is formed from the end of the connection target wires 10 and 20 before being connected to the connection wire 30. A part of 13 and 23 may be removed by etching or the like.

酸化物超電導層12,22,32は、例えば希土類元素を含む酸化物超電導体から構成される。酸化物超電導体としては、例えば一般式REBaCu7−x(RE123)等で表されるRE−Ba−Cu−O系酸化物超電導体が挙げられる。希土類元素REとしては、Y、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Luのうちの1種又は2種以上が挙げられる。酸化物超電導層12,22,32の厚さは、例えば0.5〜5μm程度である。 The oxide superconducting layers 12, 22, and 32 are composed of, for example, an oxide superconductor containing a rare earth element. Examples of the oxide superconductor include a RE-Ba-Cu-O-based oxide superconductor represented by the general formula REBa 2 Cu 3 O 7-x (RE123) and the like. Examples of the rare earth element RE include one or more of Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu. The thickness of the oxide superconducting layers 12, 22, and 32 is, for example, about 0.5 to 5 μm.

酸化物超電導層12,22,32には、人工的な結晶欠陥として、異種材料による人工ピンなどが導入されてもよい。酸化物超電導層12,22,32に人工ピンを導入するために用いられる異種材料としては、例えば、BaSnO(BSO)、BaZrO(BZO)、BaHfO(BHO)、BaTiO(BTO)、SnO、TiO、ZrO、LaMnO、ZnO等の少なくとも1種以上が挙げられる。 Artificial pins made of different materials may be introduced into the oxide superconducting layers 12, 22, and 32 as artificial crystal defects. Examples of dissimilar materials used for introducing artificial pins into the oxide superconducting layers 12, 22, and 32 include BaSnO 3 (BSO), BaZrO 3 (BZO), BaHfO 3 (BHO), and BaTIO 3 (BTO). At least one or more of SnO 2 , TiO 2 , ZrO 2 , LaMnO 3 , ZnO and the like can be mentioned.

接続対象線材10,20の酸化物超電導層12,22の面内配向度Δφは、特に限定されないが、例えば、4.0°、4.2°、4.5°、4.8°、5.0°、5.3°、5.4°あるいはこれらの中間又は付近の値が挙げられる。ここで、酸化物超電導層12の面内配向度Δφと酸化物超電導層22の面内配向度Δφとは同程度でもよく、異なってもよい。
接続用線材30の酸化物超電導層32の面内配向度Δφは、特に限定されないが、例えば、4.5°、4.8°、5.0°、5.3°、5.4°、5.5°、6.0°、6.2°、7.0°、7.5°、8.0°、あるいはこれらの中間又は付近、さらにはそれ以上の値が挙げられる。
酸化物超電導層32の面内配向度Δφと酸化物超電導層12,22の面内配向度Δφとの差は、特に限定されないが、例えば、0.5°、0.6°、0.8°、1.0°、1.2°、1.5°、1.8°、2.0°、3.0°、5.0°、あるいはこれらの中間又は付近、さらにはそれ以上の値が挙げられる。ここで、酸化物超電導層32の面内配向度Δφと酸化物超電導層12の面内配向度Δφとの差、及び酸化物超電導層32の面内配向度Δφと酸化物超電導層22の面内配向度Δφとの差のうち、少なくとも一方が、上述の差(例えば0.5°以上の差)を有することが好ましい。
The in-plane orientation Δφ of the oxide superconducting layers 12 and 22 of the wire rods 10 and 20 to be connected is not particularly limited, but is, for example, 4.0 °, 4.2 °, 4.5 °, 4.8 °, 5 Values of 0.0 °, 5.3 °, 5.4 ° or intermediate or near these can be mentioned. Here, the in-plane orientation Δφ of the oxide superconducting layer 12 and the in-plane orientation Δφ of the oxide superconducting layer 22 may be about the same or different.
The in-plane orientation Δφ of the oxide superconducting layer 32 of the connecting wire 30 is not particularly limited, but is, for example, 4.5 °, 4.8 °, 5.0 °, 5.3 °, 5.4 °, and the like. Values of 5.5 °, 6.0 °, 6.2 °, 7.0 °, 7.5 °, 8.0 °, or intermediate or near these, and even higher can be mentioned.
The difference between the in-plane orientation Δφ of the oxide superconducting layer 32 and the in-plane orientation Δφ of the oxide superconducting layers 12 and 22 is not particularly limited, but is, for example, 0.5 °, 0.6 °, 0.8. °, 1.0 °, 1.2 °, 1.5 °, 1.8 °, 2.0 °, 3.0 °, 5.0 °, or intermediate or near these, or even higher Can be mentioned. Here, the difference between the in-plane orientation Δφ of the oxide superconducting layer 32 and the in-plane orientation Δφ of the oxide superconducting layer 12, and the in-plane orientation Δφ of the oxide superconducting layer 32 and the surface of the oxide superconducting layer 22. It is preferable that at least one of the differences from the internal orientation degree Δφ has the above-mentioned difference (for example, a difference of 0.5 ° or more).

保護層13,23は、事故時に発生する過電流をバイパスしたり、酸化物超電導層12,22と保護層13,23の上に設けられる層との間で起こる化学反応を抑制したりする等の機能を有する。保護層13,23としては、銀(Ag)層又はAgを含む層(例えばAg合金層)が挙げられる。Ag合金は、モル比又は重量比で50%以上の銀を含むことが好ましい。保護層13,23の厚さは、例えば1〜30μm程度が好ましく、保護層13,23を薄くする場合は、10μm以下、5μm以下、2μm以下等でもよい。さらに超電導線材10,20,30の周囲には、銅めっき層等の安定化層(図示せず)が設けられてもよい。 The protective layers 13 and 23 bypass the overcurrent generated at the time of an accident, suppress the chemical reaction occurring between the oxide superconducting layers 12 and 22 and the layers provided on the protective layers 13 and 23, and the like. Has the function of. Examples of the protective layers 13 and 23 include a silver (Ag) layer or a layer containing Ag (for example, an Ag alloy layer). The Ag alloy preferably contains 50% or more of silver in terms of molar ratio or weight ratio. The thickness of the protective layers 13 and 23 is preferably about 1 to 30 μm, and when the protective layers 13 and 23 are thinned, the thickness may be 10 μm or less, 5 μm or less, 2 μm or less, or the like. Further, a stabilizing layer (not shown) such as a copper plating layer may be provided around the superconducting wires 10, 20, and 30.

超電導線材10,20,30の幅は特に限定されないが、例えば1〜20mmが挙げられる。接続対象線材10,20の長さは特に限定されないが、例えば1m以上であり、10m以上、100m以上、200m以上、500m以上、1km以上が挙げられる。複数本の超電導線材を接続して、より長尺の線材を構成することも可能である。接続用線材30の長さは、例えば1m以下の短尺でもよい。接続用線材30に対する接続対象線材10,20の長さの比は、例えば10倍以上、100倍以上、あるいは1000倍以上でもよい。接続対象線材10,20と接続用線材30との間で酸化物超電導層12,22,32が重なり合う長さは、特に限定されないが、例えば5mm以上、10mm以上、20mm以上等が挙げられる。 The widths of the superconducting wires 10, 20, and 30 are not particularly limited, and examples thereof include 1 to 20 mm. The lengths of the wire rods 10 and 20 to be connected are not particularly limited, and examples thereof include 1 m or more, 10 m or more, 100 m or more, 200 m or more, 500 m or more, and 1 km or more. It is also possible to connect a plurality of superconducting wires to form a longer wire. The length of the connecting wire 30 may be as short as 1 m or less, for example. The ratio of the lengths of the connecting wire rods 10 and 20 to the connecting wire rod 30 may be, for example, 10 times or more, 100 times or more, or 1000 times or more. The length at which the oxide superconducting layers 12, 22 and 32 overlap between the connection target wires 10 and 20 and the connection wire 30 is not particularly limited, and examples thereof include 5 mm or more, 10 mm or more, and 20 mm or more.

基板11,21,31は、例えば、厚さ方向の両側に、それぞれ主面を有するテープ状の基板である。基板11,21,31は、例えば金属基板及び中間層から構成されてもよい。金属基板を構成する金属の具体例として、ハステロイ(登録商標)に代表されるニッケル合金、ステンレス鋼、ニッケル合金に集合組織を導入した配向Ni−W合金などが挙げられる。中間層は、金属基板に酸化物超電導層を成膜する側の主面に成膜される。金属の結晶の並びを揃えて配向させた配向基板を基板11,21,31として用いる場合、中間層を形成せずに、基板11,21,31上に直接、酸化物超電導層12,22,32を形成することができる。金属基板の厚さは、目的に応じて適宜調整すれば良く、例えば10〜1000μmの範囲である。 The substrates 11, 21, 31 are, for example, tape-shaped substrates having main surfaces on both sides in the thickness direction. The substrates 11, 21, 31 may be composed of, for example, a metal substrate and an intermediate layer. Specific examples of the metal constituting the metal substrate include nickel alloys typified by Hastelloy (registered trademark), stainless steel, and oriented NiW alloys in which a texture is introduced into the nickel alloy. The intermediate layer is formed on the main surface on the side where the oxide superconducting layer is formed on the metal substrate. When an oriented substrate in which the arrangement of metal crystals is aligned and oriented is used as the substrates 11,21,31, the oxide superconducting layers 12, 22, directly on the substrates 11,21,31 without forming an intermediate layer, 32 can be formed. The thickness of the metal substrate may be appropriately adjusted according to the intended purpose, and is, for example, in the range of 10 to 1000 μm.

中間層は、多層構成でもよく、例えば金属基板側から酸化物超電導層側に向かう順で、拡散防止層、ベッド層、配向層、キャップ層等を有してもよい。これらの層は必ずしも1層ずつ設けられるとは限らず、一部の層を省略する場合や、同種の層を2以上繰り返し積層する場合もある。中間層は、金属酸化物であってもよい。配向性に優れた中間層の上に酸化物超電導層を成膜することにより、配向性に優れた酸化物超電導層を得ることが容易になる。 The intermediate layer may have a multi-layer structure, and may have a diffusion prevention layer, a bed layer, an alignment layer, a cap layer, and the like in the order from the metal substrate side to the oxide superconducting layer side, for example. These layers are not always provided one by one, and some layers may be omitted, or two or more layers of the same type may be repeatedly laminated. The intermediate layer may be a metal oxide. By forming the oxide superconducting layer on the intermediate layer having excellent orientation, it becomes easy to obtain the oxide superconducting layer having excellent orientation.

酸化物超電導層又は中間層の面内配向度Δφの制御は、例えばイオンビームアシスト成膜(IBAD)法におけるデポジション:エッチング比の変更、温度、周波数等の変更など、成膜条件の変更により行うことができる。例えば、IBAD法では、蒸着面に対して所定の角度でアルゴン(Ar)等のイオンビームを照射することにより、結晶軸を配向させる。この際、例えば蒸着粒子とアシストイオンビームのバランス等を変更することにより、面内配向度Δφを制御することができる。また、酸化物超電導層の下に設けられる中間層などの層の面内配向度Δφを制御することにより、酸化物超電導層の面内配向度Δφを制御することができる。 The in-plane orientation Δφ of the oxide superconducting layer or the intermediate layer can be controlled by changing the film forming conditions such as the deposition in the ion beam assisted film formation (IBAD) method: changing the etching ratio, changing the temperature, frequency, etc. It can be carried out. For example, in the IBAD method, the crystal axis is oriented by irradiating the vapor-deposited surface with an ion beam such as argon (Ar) at a predetermined angle. At this time, the in-plane orientation degree Δφ can be controlled by, for example, changing the balance between the vapor-deposited particles and the assist ion beam. Further, by controlling the in-plane orientation Δφ of a layer such as an intermediate layer provided under the oxide superconducting layer, the in-plane orientation Δφ of the oxide superconducting layer can be controlled.

中間層及び酸化物超電導層の成膜法は、金属酸化物の組成に応じて適宜の成膜が可能であれば特に限定されない。成膜法としては、例えばスパッタ法、蒸着法、イオンビームアシスト成膜法(IBAD法)等の乾式成膜法、ゾルゲル法等の湿式成膜法が挙げられる。蒸着法としては、電子ビーム蒸着法、パルスレーザ蒸着法(PLD法)、化学気相蒸着法(CVD法)等が挙げられる。 The method for forming the intermediate layer and the oxide superconducting layer is not particularly limited as long as an appropriate film formation can be performed according to the composition of the metal oxide. Examples of the film forming method include a dry film forming method such as a sputtering method, a vapor deposition method, an ion beam assisted film forming method (IBAD method), and a wet film forming method such as a sol-gel method. Examples of the vapor deposition method include an electron beam vapor deposition method, a pulse laser vapor deposition method (PLD method), and a chemical vapor deposition method (CVD method).

本実施形態により接続された超電導線材は、超電導接続部の少なくとも1箇所が上述の実施形態による接続構造体から構成されている。超電導接続部を介して長手方向に直列に2以上の接続対象線材が接続された超電導線材を得る場合、長手方向に離れて存在する超電導接続部がそれぞれ同一の構成でもよく、異なる構成の超電導接続部が併用されてもよい。 In the superconducting wire material connected by the present embodiment, at least one of the superconducting connecting portions is composed of the connecting structure according to the above-described embodiment. When obtaining a superconducting wire in which two or more connecting target wires are connected in series in the longitudinal direction via a superconducting connecting portion, the superconducting connecting portions existing apart from each other in the longitudinal direction may have the same configuration, and the superconducting connections having different configurations may be obtained. The parts may be used together.

超電導線材の外周には、超電導線材の周囲に対する電気絶縁を確保するため、ポリイミド等の絶縁テープを巻きつけたり、樹脂層を形成したりしてもよい。なお、絶縁テープや樹脂層等の絶縁被覆層は必須ではなく、超電導線材の用途に応じて絶縁被覆層を適宜設けてもよく、あるいは絶縁被覆層を有しない構成とすることもできる。
超電導線材を使用して超電導コイルを作製するには、例えば超電導線材を巻き枠の外周面に沿って必要な層数巻き付けてコイル形状の多層巻きコイルを構成した後、巻き付けた超電導線材を覆うようにエポキシ樹脂等の樹脂を含浸させて、超電導線材を固定することができる。
In order to secure electrical insulation from the periphery of the superconducting wire, an insulating tape such as polyimide may be wrapped around the outer circumference of the superconducting wire, or a resin layer may be formed. An insulating coating layer such as an insulating tape or a resin layer is not indispensable, and an insulating coating layer may be appropriately provided depending on the use of the superconducting wire, or a configuration without an insulating coating layer may be provided.
To manufacture a superconducting coil using a superconducting wire, for example, the superconducting wire is wound along the outer peripheral surface of the winding frame in the required number of layers to form a coil-shaped multi-layered coil, and then the wound superconducting wire is covered. Can be impregnated with a resin such as an epoxy resin to fix the superconducting wire.

以上、本発明を好適な実施形態に基づいて説明してきたが、本発明は上述の実施形態に限定されず、本発明の要旨を逸脱しない範囲で種々の改変が可能である。改変としては、各実施形態における構成要素の追加、置換、省略、その他の変更が挙げられる。また、2以上の実施形態に用いられた構成要素を適宜組み合わせることも可能である。 Although the present invention has been described above based on preferred embodiments, the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the gist of the present invention. Modifications include addition, replacement, omission, and other changes of components in each embodiment. It is also possible to appropriately combine the components used in the two or more embodiments.

以下、実施例をもって本発明を具体的に説明する。 Hereinafter, the present invention will be specifically described with reference to Examples.

金属基板上にCeOを含む中間層を成膜した後、中間層の上に酸化物超電導層を成膜する方法で、酸化物超電導層の面内配向度Δφが異なる超電導線材を作製し、それぞれの超電導線材に対して温度300℃、30分、酸素(O)雰囲気中で熱処理を施した。熱処理を施す前と、熱処理を施した後で、各超電導線材を液体窒素温度に冷却して臨界電流Icを測定した。熱処理を施す前のIcに比べて熱処理を施した後のIcが上昇した比率をIc上昇率として求めた。すなわち、熱処理を施す前のIcをIc0とし、熱処理を施した後のIcをIc1とするとき、Ic上昇率は、Ic1/Ic0の比率である。 By forming an intermediate layer containing CeO 2 on a metal substrate and then forming an oxide superconducting layer on the intermediate layer, superconducting wires having different in-plane orientation Δφ of the oxide superconducting layer are produced. Each superconducting wire was heat-treated at a temperature of 300 ° C. for 30 minutes in an oxygen (O 2 ) atmosphere. Before the heat treatment and after the heat treatment, each superconducting wire was cooled to a liquid nitrogen temperature and the critical current Ic was measured. The ratio of the increase in Ic after the heat treatment as compared with the Ic before the heat treatment was determined as the Ic increase rate. That is, when Ic before the heat treatment is Ic0 and Ic after the heat treatment is Ic1, the rate of increase in Ic is the ratio of Ic1 / Ic0.

Figure 2020167007
Figure 2020167007

表1に示すように、面内配向度Δφが小さいときはIc上昇率が低かったが、面内配向度Δφが大きいほどIc上昇率が高く、酸素拡散速度が速いことが確認された。したがって、接続された超電導線材の本線となる接続対象線材の端部間を接続する接続用線材としては、面内配向度Δφが大きい酸化物超電導層を有する超電導線材を用いることにより、接続前または接続後の酸素熱処理を有利に行うことができる。具体例としては、超電導線材の本線となる接続対象線材の酸化物超電導層の面内配向度Δφとしては4.2°、接続用線材の酸化物超電導層の面内配向度Δφとしては5.3°が挙げられる。さらに、酸化物超電導層の面内配向度Δφを4.0°以上とした場合、熱処理を施す前に比べて熱処理を施した後にIcを上昇させることができる。なお、酸素熱処理の条件は本実施例の例示に限られず、例えばより高温で又はより長時間にわたり実施してもよい。 As shown in Table 1, it was confirmed that the Ic increase rate was low when the in-plane orientation Δφ was small, but the Ic increase rate was high and the oxygen diffusion rate was high as the in-plane orientation Δφ was large. Therefore, by using a superconducting wire having an oxide superconducting layer having a large in-plane orientation Δφ as the connecting wire for connecting the ends of the connecting target wire which is the main wire of the connected superconducting wire, before connection or Oxygen heat treatment after connection can be advantageously performed. As a specific example, the in-plane orientation Δφ of the oxide superconducting layer of the connecting target wire, which is the main wire of the superconducting wire, is 4.2 °, and the in-plane orientation Δφ of the oxide superconducting layer of the connecting wire is 5. 3 ° can be mentioned. Further, when the in-plane orientation Δφ of the oxide superconducting layer is set to 4.0 ° or more, Ic can be increased after the heat treatment as compared with before the heat treatment. The conditions of the oxygen heat treatment are not limited to the examples of this example, and may be performed at a higher temperature or for a longer period of time, for example.

10,20…接続対象線材(超電導線材)、11,21…接続対象線材の基板、12,22…接続対象線材の酸化物超電導層、13,23…接続対象線材の保護層、30…接続用線材(超電導線材)、31…接続用線材の基板、32…接続用線材の酸化物超電導層、41,42,43…結晶方位、44,45,46…結晶粒、47…粒界、48…転位群。 10, 20 ... Connection target wire (superconducting wire) 11,21 ... Connection target wire substrate, 12, 22 ... Connection target wire oxide superconducting layer, 13, 23 ... Connection target wire protection layer, 30 ... Connection Wire rod (superconducting wire), 31 ... Connection wire substrate, 32 ... Oxide superconducting layer of connecting wire, 41, 42, 43 ... Crystal orientation, 44, 45, 46 ... Crystal grain, 47 ... Grain boundary, 48 ... Dislocation group.

Claims (5)

酸化物超電導層を有する接続対象線材の端部間が、酸化物超電導層を有する接続用線材を介して接続された超電導線材の接続構造体であって、
前記接続対象線材の酸化物超電導層の厚さ方向に垂直な面内配向度Δφが4.0°以上5.5°未満であり、
前記接続用線材の酸化物超電導層の厚さ方向に垂直な面内配向度Δφが前記接続対象線材の酸化物超電導層の面内配向度Δφよりも0.5°以上大きいことを特徴とする超電導線材の接続構造体。
A connection structure of a superconducting wire whose connection target wire having an oxide superconducting layer is connected via a connecting wire having an oxide superconducting layer.
The in-plane orientation Δφ perpendicular to the thickness direction of the oxide superconducting layer of the wire to be connected is 4.0 ° or more and less than 5.5 °.
The in-plane orientation Δφ perpendicular to the thickness direction of the oxide superconducting layer of the connecting wire is 0.5 ° or more larger than the in-plane orientation Δφ of the oxide superconducting layer of the connecting wire. Connection structure of superconducting wire.
前記接続対象線材及び前記接続用線材は、それぞれ基板上に前記酸化物超電導層を有する超電導線材からなり、
前記接続対象線材の基板と前記接続用線材の基板との間で、前記接続対象線材の酸化物超電導層と前記接続用線材の酸化物超電導層とが対向するように配置されていることを特徴とする請求項1に記載の超電導線材の接続構造体。
The connection target wire and the connection wire are each composed of a superconducting wire having the oxide superconducting layer on the substrate.
It is characterized in that the oxide superconducting layer of the connecting wire and the oxide superconducting layer of the connecting wire are arranged so as to face each other between the substrate of the connecting wire and the substrate of the connecting wire. The connection structure of the superconducting wire according to claim 1.
前記接続対象線材の酸化物超電導層と前記接続用線材の酸化物超電導層とが直接接するように接続されていることを特徴とする請求項1又は2に記載の超電導線材の接続構造体。 The connection structure for a superconducting wire according to claim 1 or 2, wherein the oxide superconducting layer of the wire to be connected and the oxide superconducting layer of the connecting wire are connected so as to be in direct contact with each other. 前記接続用線材は、前記接続対象線材よりも短い超電導線材から構成されていることを特徴とする請求項1〜3のいずれか1項に記載の電導線材の接続構造体。 The connection structure for a conductive wire according to any one of claims 1 to 3, wherein the connecting wire is composed of a superconducting wire shorter than the connection target wire. 長手方向に2以上の接続対象線材が接続された超電導線材であって、
前記2以上の接続対象線材の間の少なくとも1箇所が、請求項1〜4のいずれか1項に記載の超電導線材の接続構造体から構成されていることを特徴とする超電導線材。
A superconducting wire in which two or more wire to be connected are connected in the longitudinal direction.
A superconducting wire rod, characterized in that at least one place between the two or more connecting wire rods is composed of a connecting structure of the superconducting wire rod according to any one of claims 1 to 4.
JP2019065548A 2019-03-29 2019-03-29 Superconducting wire connection structure and superconducting wire Active JP6707164B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019065548A JP6707164B1 (en) 2019-03-29 2019-03-29 Superconducting wire connection structure and superconducting wire
PCT/JP2020/013308 WO2020203543A1 (en) 2019-03-29 2020-03-25 Superconducting wire connecting structure, and superconducting wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019065548A JP6707164B1 (en) 2019-03-29 2019-03-29 Superconducting wire connection structure and superconducting wire

Publications (2)

Publication Number Publication Date
JP6707164B1 JP6707164B1 (en) 2020-06-10
JP2020167007A true JP2020167007A (en) 2020-10-08

Family

ID=70976331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019065548A Active JP6707164B1 (en) 2019-03-29 2019-03-29 Superconducting wire connection structure and superconducting wire

Country Status (2)

Country Link
JP (1) JP6707164B1 (en)
WO (1) WO2020203543A1 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011201712A (en) * 2010-03-24 2011-10-13 Toshiba Corp Method for producing oriented oxide film, oriented oxide film, and oxide superconductor
JP6244142B2 (en) * 2013-09-04 2017-12-06 東洋鋼鈑株式会社 Superconducting wire substrate, manufacturing method thereof, and superconducting wire

Also Published As

Publication number Publication date
WO2020203543A1 (en) 2020-10-08
JP6707164B1 (en) 2020-06-10

Similar Documents

Publication Publication Date Title
JP5568361B2 (en) Superconducting wire electrode joint structure, superconducting wire, and superconducting coil
US9362026B2 (en) Oxide superconductor wire, connection structure thereof, and superconductor equipment
JP6178779B2 (en) Superconducting wire connection structure and manufacturing method of superconducting wire connection structure
JP2014154320A (en) Connection structure of oxide superconductive wire rod and superconductive apparatus
JP6101490B2 (en) Oxide superconducting wire connection structure and superconducting equipment
JP5675232B2 (en) Superconducting current lead
JP2011040176A (en) Superconducting tape wire and superconducting coil using the same
WO2020203543A1 (en) Superconducting wire connecting structure, and superconducting wire
JP2013084382A (en) Oxide superconductive wire, and method of manufacturing the same
JP2012064495A (en) Method of producing coated superconducting wire rod, electrodeposition method of superconducting wire rod, and coated superconducting wire rod
JP5405069B2 (en) Tape-shaped oxide superconductor and substrate used therefor
WO2020196035A1 (en) Oxide superconducting wire
WO2012039444A1 (en) Oxide superconductor wire material and method for producing same
JP6904875B2 (en) Connection structure of oxide superconducting wire and connection method of oxide superconducting wire
JP6349439B1 (en) Superconducting coil
JP2012064323A (en) Superconductive current lead
WO2018207727A1 (en) Superconducting wire and superconducting coil
JP6724125B2 (en) Oxide superconducting wire and method for producing the same
WO2020195996A1 (en) Oxide superconducting wire
JP2013030317A (en) Oxide superconducting laminated body, oxide superconducting wire material, and manufacturing method of oxide superconducting wire material
JP6869868B2 (en) Connection structure of oxide superconducting wire
JP6318284B1 (en) Superconducting wire
WO2019172432A1 (en) Connection structure for superconducting wire rod, and method for manufacturing connection structure for superconducting wire rod
JP6404556B2 (en) Oxide superconducting conductor and manufacturing method thereof
JP2012209189A (en) Oxide superconducting wire material and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191225

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20191225

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20200217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200410

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200512

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200519

R151 Written notification of patent or utility model registration

Ref document number: 6707164

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250