JP2013084382A - Oxide superconductive wire, and method of manufacturing the same - Google Patents

Oxide superconductive wire, and method of manufacturing the same Download PDF

Info

Publication number
JP2013084382A
JP2013084382A JP2011222035A JP2011222035A JP2013084382A JP 2013084382 A JP2013084382 A JP 2013084382A JP 2011222035 A JP2011222035 A JP 2011222035A JP 2011222035 A JP2011222035 A JP 2011222035A JP 2013084382 A JP2013084382 A JP 2013084382A
Authority
JP
Japan
Prior art keywords
oxide superconducting
layer
conductor
laminate
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011222035A
Other languages
Japanese (ja)
Other versions
JP5775785B2 (en
Inventor
Yasunori Sudo
泰範 須藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2011222035A priority Critical patent/JP5775785B2/en
Publication of JP2013084382A publication Critical patent/JP2013084382A/en
Application granted granted Critical
Publication of JP5775785B2 publication Critical patent/JP5775785B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PROBLEM TO BE SOLVED: To provide an oxide superconductive wire formed into a sealed structure by covering an oxide superconductive layer with a base material and to provide a manufacturing method of the same.SOLUTION: An oxide superconductive laminate formed by laminating the base material, an intermediate layer, an oxide superconductive layer, and a conductive protection layer in this order is folded in two with the protection layer placed inside through a grooved portion reaching the base material from the protection layer. The folded parts of two oxide superconductive laminates are positioned at the end part sides of a beltlike conductor in the width direction thereof and the whole circumference of the conductor is surrounded by the two oxide superconductive laminates through a solder layer.

Description

本発明は、酸化物超電導線材及びその製造方法に関する。   The present invention relates to an oxide superconducting wire and a method for producing the same.

Re−123系酸化物超電導体(ReBaCu7−X:ReはYを含む希土類元素)は、液体窒素温度で超電導性を示し、電流損失が低いため、これを線材に加工して電力供給用の超電導導体あるいは超電導コイルを製造することがなされている。この酸化物超電導体を線材に加工した構造の一例として、金属テープの基材上に中間層を介し酸化物超電導層を形成した酸化物超電導線材が提供されている。 The Re-123 oxide superconductor (ReBa 2 Cu 3 O 7-X : Re is a rare earth element including Y) exhibits superconductivity at a liquid nitrogen temperature and has a low current loss. A superconducting conductor or a superconducting coil for supplying power has been manufactured. As an example of a structure obtained by processing this oxide superconductor into a wire, an oxide superconducting wire in which an oxide superconducting layer is formed on a base material of a metal tape via an intermediate layer is provided.

前記金属テープの基材は現状ではハステロイ(登録商標)と称されるNi合金製のテープ状基材が適用されており、高強度かつ柔軟性に優れた基材が提供されている。
前記中間層は金属製の基材と酸化物超電導層との間に介在されるバッファー層として機能する結晶性セラミックス薄膜が用いられており、IBAD法(イオンビームアシスト蒸着法)と称される結晶配向技術を用いた成膜法により金属製の基材上に2軸配向させた結晶配向性の良好な中間層が形成されている。この中間層の上には、キャップ層と称される中間薄膜が形成され、結晶配向性に優れるとともに、中間層や基材側からの不純物拡散を防止する目的で積層されている。
前記酸化物超電導層はReBaCu7−xに代表される酸化物超電導体からなるセラミックス薄膜として積層され、酸化物超電導層の上には主にAgからなる保護層が酸化物超電導層を水分から保護するなどの目的で設けられている。また、保護層上に、Cuからなる安定化金属層が積層され、酸化物超電導層が外乱を受けて常電導状態に転移した場合に電流のバイパスとなるように構成され、安定化金属層の上に絶縁層が設けられ、酸化物超電導線材が構成されている。
At present, a tape-shaped substrate made of Ni alloy called Hastelloy (registered trademark) is applied to the metal tape substrate, and a substrate having high strength and excellent flexibility is provided.
The intermediate layer uses a crystalline ceramic thin film that functions as a buffer layer interposed between a metal substrate and an oxide superconducting layer, and is a crystal called an IBAD method (ion beam assisted deposition method). An intermediate layer having a good crystal orientation is formed by biaxial orientation on a metal substrate by a film forming method using an orientation technique. An intermediate thin film called a cap layer is formed on the intermediate layer, and is laminated for the purpose of excellent crystal orientation and preventing impurity diffusion from the intermediate layer or the substrate side.
The oxide superconducting layer is laminated as a ceramic thin film made of an oxide superconductor typified by ReBa 2 Cu 3 O 7-x , and a protective layer mainly made of Ag is formed on the oxide superconducting layer. It is provided for the purpose of protecting the water from moisture. In addition, a stabilizing metal layer made of Cu is laminated on the protective layer, and the oxide superconducting layer is configured to be a current bypass when the oxide superconducting layer receives a disturbance and transitions to a normal conducting state. An insulating layer is provided on the oxide superconducting wire.

Re−123系酸化物超電導体の中でもY系などの酸化物超電導体は多湿環境に曝されると水分の影響を受けて結晶構造が乱れ、超電導特性が劣化することが知られている。従って酸化物超電導層を水分から保護する必要があり、このためにAgの保護層などが形成されている。
しかし、Agは高価な金属でありその使用量は少ない方が望ましいので、Agの保護層は薄く形成されるが、薄いAgの保護層では満足な耐湿性を得られないおそれがあり、このため種々の構造が提供されている。
例えば、安定化金属層をCuめっきで形成し、Agの保護層と酸化物超電導層を含めて基材の裏面側まで全周を所定厚さのCuめっき層で覆った構造の酸化物超電導導体が知られている。(特許文献1参照)
また、Agの保護層を設けた構造ではなく、密閉構造とすることを目的として、酸化物超電導層と基材を銅箔で覆い、酸化物超電導積層体と基材を覆った銅箔の端縁同士をはんだで封止した構造の酸化物超電導導体が提供されている。(特許文献2参照)
Among Re-123 oxide superconductors, it is known that oxide superconductors such as Y-based oxides are affected by moisture to disturb the crystal structure and deteriorate the superconducting properties when exposed to a humid environment. Therefore, it is necessary to protect the oxide superconducting layer from moisture, and for this purpose, an Ag protective layer or the like is formed.
However, since Ag is an expensive metal and it is desirable that the amount used be small, the protective layer of Ag is formed thin, but there is a possibility that satisfactory moisture resistance cannot be obtained with a thin protective layer of Ag. Various structures are provided.
For example, an oxide superconducting conductor having a structure in which a stabilizing metal layer is formed by Cu plating and the entire circumference including the Ag protective layer and the oxide superconducting layer is covered with a Cu plating layer having a predetermined thickness up to the back side of the substrate. It has been known. (See Patent Document 1)
In addition, the oxide superconducting layer and the base material are covered with a copper foil for the purpose of forming a sealed structure, not a structure provided with an Ag protective layer, and the end of the copper foil covering the oxide superconducting laminate and the base material. An oxide superconductor having a structure in which edges are sealed with solder is provided. (See Patent Document 2)

特開平7−335051号公報JP 7-335051 A 特許第3949960号公報Japanese Patent No. 3949960

前述の如く酸化物超電導層の表面を薄いAgの保護層で覆った構造の酸化物超電導導体は、酸化物超電導層の側面側からの水分の浸入には対応できない構造である。また、薄いAgの保護層を成膜した場合に保護層にピンホールが存在すると、その上に形成するCuめっきにムラが生じて水分が浸入しやすい構造となり、多湿環境下では超電導特性が劣化するおそれがある。
また、銅箔で酸化物超電導層と基材を覆った構造の酸化物超電導導体は、基材等を覆った銅箔の端縁どうしを重ねてはんだで接合したはんだ接合部分にピンホールが存在すると、このピンホールを介し水分が酸化物超電導層側に浸入するので、多湿環境下では超電導特性が劣化するおそれがある。
As described above, the oxide superconducting conductor having a structure in which the surface of the oxide superconducting layer is covered with a thin Ag protective layer has a structure that cannot cope with the intrusion of moisture from the side of the oxide superconducting layer. In addition, when a thin Ag protective layer is formed, if there is a pinhole in the protective layer, the Cu plating formed on the protective layer becomes uneven and the structure is easy for moisture to enter, and the superconducting characteristics deteriorate in a humid environment. There is a risk.
In addition, the oxide superconducting conductor with a structure in which the oxide superconducting layer and the base material are covered with copper foil has pinholes in the solder joint where the copper foil covering the base material is overlapped and joined with solder. Then, since moisture permeates into the oxide superconducting layer through this pinhole, the superconducting characteristics may deteriorate in a humid environment.

本発明は、以上のような従来の実情に鑑みなされたものであり、酸化物超電導層を備えた基材を折り曲げて基材により酸化物超電導層を包み込む構造として、水分の影響による酸化物超電導層の劣化を無くした酸化物超電導導体とその製造方法の提供を目的とする。   The present invention has been made in view of the conventional situation as described above, and has a structure in which a base material provided with an oxide superconducting layer is bent and the oxide superconducting layer is wrapped by the base material, and thereby the oxide superconducting effect due to the influence of moisture. An object of the present invention is to provide an oxide superconducting conductor in which deterioration of the layer is eliminated and a method for producing the same.

上記課題を解決するために本発明の酸化物超電導線材は、基材と中間層と酸化物超電導層と導電性の保護層をこの順に積層してなる酸化物超電導積層体が、保護層から基材まで達する溝加工部を介し前記保護層を内側にして二つ折りに折り曲げられ、2つの酸化物超電導積層体がそれらの折り曲げ部分を帯状の導体の幅方向端部側に位置させてこれら2つの酸化物超電導積層体により前記導体の全周をはんだ層を介し囲んでなることを特徴とする。   In order to solve the above-mentioned problems, the oxide superconducting wire of the present invention has an oxide superconducting laminate formed by laminating a base material, an intermediate layer, an oxide superconducting layer, and a conductive protective layer in this order. The two oxide superconducting laminates are folded in two with the protective layer inside through the grooved portion reaching the material, and the two bent portions are positioned on the widthwise end side of the strip-shaped conductor. The entire circumference of the conductor is surrounded by an oxide superconducting laminate via a solder layer.

帯状の導体の全周を折り曲げ構造の2つの酸化物超電導積層体がはんだ層を介し取り囲むように覆っているので、酸化物超電導層の周囲を基材により取り囲んで密閉した構造の酸化物超電導線材を提供できる。即ち、基材の外側から酸化物超電導層側への水分の浸入を防止できる密閉構造の酸化物超電導線材を提供できる。
基材について溝加工部を介し溝加工部を基点として正確な位置で折り曲げられているので、導体を二つ折りの酸化物超電導積層体で取り囲む場合に導体の両端側に折り曲げ部分を正確に位置決めすることができ、二つ折り構造とした酸化物超電導積層体で導体の全周を確実に覆うことができ、酸化物超電導層を確実に密閉できる。
酸化物超電導層が溝加工部を介し区分され、溝加工部を境界として二つ折りに折り曲げられているので、溝加工部以外の部分の酸化物超電導層に対し折り曲げに伴う歪や応力の負荷を抑制でき、酸化物超電導層に対し歪や応力の負荷に起因する超電導特性の劣化を抑制できる。
The oxide superconducting wire having a structure in which the periphery of the oxide superconducting layer is surrounded by a base material and sealed since the two oxide superconducting laminates having a bent structure are surrounded by the solder layer around the entire circumference of the strip-shaped conductor Can provide. That is, it is possible to provide an oxide superconducting wire having a hermetically sealed structure that can prevent moisture from entering the oxide superconducting layer from the outside of the substrate.
Since the base material is bent at an accurate position with the grooved portion as a base point through the grooved portion, when the conductor is surrounded by a bi-fold oxide superconducting laminate, the bent portion is accurately positioned at both ends of the conductor. In addition, the entire circumference of the conductor can be reliably covered with the oxide superconducting laminate having a bi-fold structure, and the oxide superconducting layer can be reliably sealed.
Since the oxide superconducting layer is divided through the grooved part and folded in half with the grooved part as the boundary, the strain and stress load associated with the bending is applied to the oxide superconducting layer in the part other than the grooved part. It is possible to suppress the deterioration of superconducting characteristics due to strain or stress load on the oxide superconducting layer.

上記課題を解決するために本発明の酸化物超電導線材は、基材と中間層と酸化物超電導層と導電性の保護層をこの順に積層してなる酸化物超電導積層体が、保護層から基材まで達する2本の平行な溝加工部を介し前記保護層を内側にして折り曲げられ、折り曲げ部分の内側に帯状の導体をはんだ層を介し内包することで前記酸化物超電導積層体により前記導体の全周が囲まれてなることを特徴とする。   In order to solve the above-mentioned problems, the oxide superconducting wire of the present invention has an oxide superconducting laminate formed by laminating a base material, an intermediate layer, an oxide superconducting layer, and a conductive protective layer in this order. It is bent with the protective layer inside through two parallel grooved portions reaching the material, and a band-like conductor is encapsulated inside the bent portion via a solder layer, so that the conductor of the conductor is formed by the oxide superconducting laminate. The entire circumference is surrounded.

導体の全周を折り曲げ構造の酸化物超電導積層体がはんだ層を介し囲むように覆っているので、酸化物超電導層の周囲をはんだ層と基材により囲んで密閉した構造の酸化物超電導線材を提供できる。即ち、基材の外側から酸化物超電導層側への水分の浸入を防止できる密閉構造の酸化物超電導線材を提供できる。
基材について溝加工部を介し溝加工部を基点として正確な位置で折り曲げられているので、折り曲げ加工した酸化物超電導積層体で導体を囲む場合に導体の周面側に酸化物超電導積層体を正確に沿わせて位置決めすることができ、折り曲げ構造の酸化物超電導積層体で導体の全周を確実に覆うことができ、水分浸入のおそれが少ない酸化物超電導層の密閉構造を実現できる。
酸化物超電導層が溝加工部を介し区分され、溝加工部を境界として折り曲げ加工されているので、溝加工部分以外の部分の酸化物超電導層に対し折り曲げに伴う歪や応力の負荷を抑制でき、酸化物超電導層に対し歪や応力の負荷に起因する超電導特性の劣化を抑制できる。
Since the oxide superconducting laminate with a bent structure is surrounded by a solder layer around the entire circumference of the conductor, the oxide superconducting wire with a structure in which the periphery of the oxide superconducting layer is enclosed by a solder layer and a base material is sealed. Can be provided. That is, it is possible to provide an oxide superconducting wire having a hermetically sealed structure that can prevent moisture from entering the oxide superconducting layer from the outside of the substrate.
Since the base material is bent at an accurate position with the grooved portion as a base point through the grooved portion, the oxide superconducting laminate is placed on the peripheral surface side of the conductor when the conductor is surrounded by the bent oxide superconducting laminate. The oxide superconducting laminate having a folded structure can be accurately positioned along the conductor, so that the entire circumference of the conductor can be reliably covered, and a closed structure of the oxide superconducting layer with less risk of moisture intrusion can be realized.
Since the oxide superconducting layer is divided through the grooved part and bent at the grooved part, it is possible to suppress the strain and stress load associated with bending on the oxide superconducting layer other than the grooved part. In addition, it is possible to suppress deterioration of superconducting characteristics due to strain or stress load on the oxide superconducting layer.

上記課題を解決するために本発明の酸化物超電導線材は、基材と中間層と酸化物超電導層と導電性の保護層をこの順に積層してなる酸化物超電導積層体が、保護層から基材まで達する複数本の平行な溝加工部を介し前記保護層を内側にして折り曲げられ、折り曲げ部分の内側に断面多角形状の導体が該導体の外周角部と前記折り曲げ部分を位置合わせしてはんだ層を介し内包され、該はんだ層と前記酸化物超電導積層体により前記導体の全周が囲まれてなることを特徴とする。   In order to solve the above-mentioned problems, the oxide superconducting wire of the present invention has an oxide superconducting laminate formed by laminating a base material, an intermediate layer, an oxide superconducting layer, and a conductive protective layer in this order. The conductor is bent with the protective layer inside through a plurality of parallel grooved portions reaching the material, and a conductor having a polygonal cross section is aligned with the outer peripheral corner of the conductor and the bent portion inside the bent portion. It is characterized in that it is enclosed via a layer, and the entire circumference of the conductor is surrounded by the solder layer and the oxide superconducting laminate.

導体の全周を折り曲げ構造の酸化物超電導積層体がはんだ層を介し囲むように覆っているので、酸化物超電導層の周囲をはんだ層と基材により囲んで密閉した構造の酸化物超電導線材を提供できる。即ち、基材の外側から酸化物超電導層側への水分の浸入を防止できる密閉構造の酸化物超電導線材を提供できる。
折り曲げ構造の酸化物超電導積層体の内部に設けられている導体の外周角部に溝加工部が位置合わせされているので、折り曲げ構造の酸化物超電導積層体は導体の外周に沿って正確に折り曲げられ、折り曲げ構造の酸化物超電導積層体が多角形状の導体の外周に沿って正確に密着できるので、酸化物超電導層を確実に覆った密閉構造の酸化物超電導線材を提供できる。
Since the oxide superconducting laminate with a bent structure is surrounded by a solder layer around the entire circumference of the conductor, the oxide superconducting wire with a structure in which the periphery of the oxide superconducting layer is enclosed by a solder layer and a base material is sealed. Can be provided. That is, it is possible to provide an oxide superconducting wire having a hermetically sealed structure that can prevent moisture from entering the oxide superconducting layer from the outside of the substrate.
Since the grooved portion is aligned with the outer corner of the conductor provided inside the folded oxide superconducting laminate, the folded oxide superconducting laminate can be accurately folded along the outer circumference of the conductor. In addition, since the oxide superconducting laminate having a bent structure can be accurately adhered along the outer periphery of the polygonal conductor, an oxide superconducting wire having a sealed structure that reliably covers the oxide superconducting layer can be provided.

上記課題を解決するために本発明の酸化物超電導線材は、前記導体の全周を囲むように設けられている前記酸化物超電導積層体の端縁どうしの突き合わせ部分が溶接されてなることを特徴とする。
導体の全周を覆った酸化物超電導積層体の端縁どうしが溶接されることで、酸化物超電導層をはんだ層が覆って密閉する上に、端縁どうしを溶接した酸化物超電導積層体が酸化物超電導層を覆うことで更に密閉性が向上し、酸化物超電導層側に水分が浸入し難い構造を提供できる。
In order to solve the above-mentioned problems, the oxide superconducting wire according to the present invention is characterized in that the butted portions of the edges of the oxide superconducting laminate provided so as to surround the entire circumference of the conductor are welded. And
The edges of the oxide superconducting laminate covering the entire circumference of the conductor are welded together, so that the oxide superconducting layer is sealed with the solder layer, and the oxide superconducting laminate is welded between the edges. Covering the oxide superconducting layer can further improve the hermeticity and provide a structure in which moisture hardly enters the oxide superconducting layer.

上記課題を解決するために本発明の酸化物超電導線材の製造方法は、基材と中間層と酸化物超電導層と導電性の保護層をこの順に積層してなる酸化物超電導積層体を2つ用意し、これら酸化物超電導積層体に保護層から基材まで達する直線状の溝加工部を形成し、該溝加工部を介し2つの酸化物超電導積層体を個々に前記保護層を内側にして二つ折りとしてこれら酸化物超電導積層体の間にはんだ層と帯状の導体を挟み込み前記導体の全周を前記はんだ層と前記酸化物超電導積層体で覆うとともに、前記はんだ層を溶融後凝固させて前記導体と前記酸化物超電導積層体を接合することを特徴とする。   In order to solve the above problems, the oxide superconducting wire manufacturing method of the present invention includes two oxide superconducting laminates in which a base material, an intermediate layer, an oxide superconducting layer, and a conductive protective layer are laminated in this order. Prepare and form a straight grooved portion extending from the protective layer to the base material in these oxide superconducting laminates, with the two oxide superconducting laminates individually facing the protective layer through the grooved portion. The solder layer and the strip-shaped conductor are sandwiched between these oxide superconducting laminates as a double fold, and the entire circumference of the conductor is covered with the solder layer and the oxide superconducting laminate, and the solder layer is solidified after melting. A conductor and the oxide superconducting laminate are joined.

導体の全周を折り曲げ構造の2つの酸化物超電導積層体がはんだ層を介し囲むように覆うので、酸化物超電導層の周囲をはんだ層と基材により取り囲んで密閉した構造の酸化物超電導線材を提供できる。即ち、基材の外側から酸化物超電導層側への水分の浸入を防止できる密閉構造の酸化物超電導線材を提供できる。   The oxide superconducting wire with a structure in which the entire circumference of the conductor is covered so that two oxide superconducting laminates with a bent structure surround the solder layer, so that the periphery of the oxide superconducting layer is surrounded by the solder layer and the base material. Can be provided. That is, it is possible to provide an oxide superconducting wire having a hermetically sealed structure that can prevent moisture from entering the oxide superconducting layer from the outside of the substrate.

上記課題を解決するために本発明の酸化物超電導線材の製造方法は、基材と中間層と酸化物超電導層と導電性の保護層をこの順に積層してなる酸化物超電導積層体を用意し、この酸化物超電導積層体に保護層から基材まで達する直線状の溝加工部を平行に2本形成し、これら2本の溝加工部を介し酸化物超電導積層体を前記保護層を内側にして折り曲げてこれら折り曲げ部分の間にはんだ層と帯状の導体を挟み込み、該導体の全周を前記はんだ層と前記酸化物超電導積層体で覆うとともに、前記はんだ層を溶融後凝固させて前記導体と前記酸化物超電導積層体を接合することを特徴とする。   In order to solve the above problems, an oxide superconducting wire manufacturing method of the present invention provides an oxide superconducting laminate in which a base material, an intermediate layer, an oxide superconducting layer, and a conductive protective layer are laminated in this order. In this oxide superconducting laminate, two straight grooved portions extending in parallel from the protective layer to the substrate are formed in parallel, and the oxide superconducting laminate is placed with the protective layer inside through these two grooved portions. The solder layer and the strip-shaped conductor are sandwiched between these bent portions, the entire circumference of the conductor is covered with the solder layer and the oxide superconducting laminate, and the solder layer is melted and solidified to be solidified with the conductor. The oxide superconducting laminate is bonded.

導体の全周を折り曲げ構造の酸化物超電導積層体がはんだ層を介し囲むように覆うので、酸化物超電導層の周囲をはんだ層と基材により取り囲んで密閉した構造の酸化物超電導線材を提供できる。即ち、基材の外側から酸化物超電導層側への水分の浸入を防止できる密閉構造の酸化物超電導線材を提供できる。   Since the oxide superconducting laminate having a folded structure is surrounded by the solder layer around the entire circumference of the conductor, an oxide superconducting wire having a structure in which the periphery of the oxide superconducting layer is surrounded by the solder layer and the base material can be provided. . That is, it is possible to provide an oxide superconducting wire having a hermetically sealed structure that can prevent moisture from entering the oxide superconducting layer from the outside of the substrate.

上記課題を解決するために本発明の酸化物超電導線材の製造方法は、基材と中間層と酸化物超電導層と導電性の保護層をこの順に積層してなる酸化物超電導積層体を用意し、この酸化物超電導積層体に保護層から基材まで達する直線状の溝加工部を平行に3本以上形成し、これら3本以上の溝加工部を介し酸化物超電導積層体を前記保護層を内側にして折り曲げ、この酸化物超電導積層体の内側に帯状の導体とはんだ層を挟み込み、前記導体の全周を前記はんだ層と前記酸化物超電導積層体で覆うとともに、はんだ層を溶融後凝固させて前記導体と前記酸化物超電導積層体を接合することを特徴とする。
導体の全周を折り曲げ構造の酸化物超電導積層体がはんだ層を介し囲むように覆うので、酸化物超電導層の周囲をはんだ層と基材により取り囲んで密閉した構造の酸化物超電導線材を提供できる。即ち、基材の外側から酸化物超電導層側への水分の浸入を防止できる密閉構造の酸化物超電導線材を提供できる。
In order to solve the above problems, an oxide superconducting wire manufacturing method of the present invention provides an oxide superconducting laminate in which a base material, an intermediate layer, an oxide superconducting layer, and a conductive protective layer are laminated in this order. Three or more linear grooved portions extending from the protective layer to the base material are formed in parallel in the oxide superconducting laminate, and the oxide superconducting laminate is attached to the protective layer via the three or more grooved portions. Folded inward, sandwiched between the striped conductor and the solder layer inside the oxide superconducting laminate, covered the entire circumference of the conductor with the solder layer and the oxide superconducting laminate, and solidified after melting the solder layer The conductor and the oxide superconducting laminate are joined together.
Since the oxide superconducting laminate having a folded structure is surrounded by the solder layer around the entire circumference of the conductor, an oxide superconducting wire having a structure in which the periphery of the oxide superconducting layer is surrounded by the solder layer and the base material can be provided. . That is, it is possible to provide an oxide superconducting wire having a hermetically sealed structure that can prevent moisture from entering the oxide superconducting layer from the outside of the substrate.

上記課題を解決するために本発明の酸化物超電導線材の製造方法は、前記導体の全周を囲むように設けられている前記酸化物超電導積層体の端縁どうしの突き合わせ部分を溶接することを特徴とする。
導体の全周を覆った酸化物超電導積層体の端縁どうしを溶接することで、酸化物超電導層をはんだ層が覆って密閉する上に、溶接した密閉構造の酸化物超電導積層体が酸化物超電導層を覆うことで密閉性を高め、外部から酸化物超電導層側に水分が浸入し難い構造を提供できる。
In order to solve the above problems, the method of manufacturing an oxide superconducting wire according to the present invention includes welding the butted portions of the edges of the oxide superconducting laminate provided to surround the entire circumference of the conductor. Features.
By welding the edges of the oxide superconducting laminate covering the entire circumference of the conductor, the oxide superconducting layer is covered with a solder layer and sealed, and the welded oxide superconducting laminate is sealed with an oxide. Covering the superconducting layer can improve the hermeticity and provide a structure in which moisture hardly enters the oxide superconducting layer from the outside.

本発明によれば、酸化物超電導層の全周を折り曲げ構造の酸化物超電導積層体がはんだ層を介し取り囲むように覆っているので、酸化物超電導層を酸化物超電導積層体で密閉した構造の酸化物超電導線材を提供できる。即ち、基材の外側から酸化物超電導層側への水分の浸入を防止できる密閉構造の酸化物超電導線材を提供できる。   According to the present invention, the entire circumference of the oxide superconducting layer is covered so that the folded oxide superconducting laminate is surrounded by the solder layer, so that the oxide superconducting layer is sealed with the oxide superconducting laminate. An oxide superconducting wire can be provided. That is, it is possible to provide an oxide superconducting wire having a hermetically sealed structure that can prevent moisture from entering the oxide superconducting layer from the outside of the substrate.

本発明に係る酸化物超電導線材の第1実施形態を示す斜視図。The perspective view which shows 1st Embodiment of the oxide superconducting wire which concerns on this invention. 図1に示す酸化物超電導線材に適用されている酸化物超電導積層体の一例を示す構成図。The block diagram which shows an example of the oxide superconducting laminated body applied to the oxide superconducting wire shown in FIG. 図1に示す酸化物超電導線材を製造する工程を示すもので、図3(a)は2つの酸化物超電導積層体に溝加工部を形成している状態を示す斜視図、図3(b)は溝加工した2つの酸化物超電導積層体にはんだ層を形成した状態を示す斜視図、図3(c)ははんだ層の上に帯状の導体を設置した状態を示す斜視図、図3(d)は溝加工部を介し2つの酸化物超電導積層体を折り曲げ加工している状態を示す斜視図、図3(e)は得られた酸化物超電導線材の一例を示す斜視図。FIG. 3A shows a process of manufacturing the oxide superconducting wire shown in FIG. 1, and FIG. 3A is a perspective view showing a state in which a groove processed portion is formed in two oxide superconducting laminates, FIG. FIG. 3C is a perspective view showing a state in which a solder layer is formed on two grooved oxide superconducting laminates, FIG. 3C is a perspective view showing a state in which a strip conductor is installed on the solder layer, and FIG. ) Is a perspective view showing a state in which two oxide superconducting laminates are bent through a grooved portion, and FIG. 3E is a perspective view showing an example of the obtained oxide superconducting wire. 図1に示す酸化物超電導線材を製造する装置の一例を示す構成図。The block diagram which shows an example of the apparatus which manufactures the oxide superconducting wire shown in FIG. 本発明に係る第2実施形態の酸化物超電導線材を示す斜視図。The perspective view which shows the oxide superconducting wire of 2nd Embodiment which concerns on this invention. 本発明に係る第2実施形態の酸化物超電導線材を製造する工程を示すもので、図6(a)は2本の酸化物超電導積層体に溝加工部を形成している状態を示す斜視図、図6(b)は溝加工した2本の酸化物超電導積層体にはんだ層を形成した状態を示す斜視図、図6(c)ははんだ層の上に帯状の導体を設置した状態を示す斜視図、図6(d)は溝加工部を介して2つの酸化物超電導積層体を折り曲げ加工している状態を示す斜視図、図6(e)は得られた酸化物超電導線材の一例を示す斜視図。FIG. 6A is a perspective view showing a state in which a grooved portion is formed in two oxide superconducting laminates, showing a process of manufacturing the oxide superconducting wire according to the second embodiment of the present invention. FIG. 6B is a perspective view showing a state in which a solder layer is formed on two grooved oxide superconducting laminates, and FIG. 6C shows a state in which a strip-shaped conductor is installed on the solder layer. A perspective view, FIG.6 (d) is a perspective view which shows the state which is bending the two oxide superconducting laminated bodies through a groove process part, FIG.6 (e) is an example of the obtained oxide superconducting wire. FIG. 本発明に係る酸化物超電導線材の第3実施形態を示す斜視図。The perspective view which shows 3rd Embodiment of the oxide superconducting wire which concerns on this invention. 本発明に係る酸化物超電導線材の第4実施形態を示す斜視図。The perspective view which shows 4th Embodiment of the oxide superconducting wire which concerns on this invention. 本発明に係る酸化物超電導線材の第5実施形態を示す斜視図。The perspective view which shows 5th Embodiment of the oxide superconducting wire which concerns on this invention. 本発明に係る第1実施形態の酸化物超電導線材を相互接続する場合の構成を示す斜視図。The perspective view which shows the structure in the case of interconnecting the oxide superconducting wire of 1st Embodiment which concerns on this invention.

以下、本発明に係る酸化物超電導線材について、図面に基づいて説明する。
図1は、本発明に係る第1実施形態の酸化物超電導線材の一部を断面とした斜視図であり、この実施形態の酸化物超電導線材Aは、溝加工部1を介し二つ折りに折り曲げ加工された酸化物超電導積層体2、2の内側に酸化物超電導層3を内包した構造とされている。
図2は、図1に示す酸化物超電導線材Aに組み込まれている二つ折り形状の酸化物超電導積層体2の基となる酸化物超電導積層体本体5を示す一部断面斜視図である。図2に示す酸化物超電導積層体本体5は、テープ状の基材4の上に中間層6と酸化物超電導層3と保護層7が順次積層されている。この構造の酸化物超電導積層体本体5を用いて溝加工部1を介し横断面U字状に二つ折りに折り曲げ加工して図1に示す酸化物超電導積層体2が形成され、2つの酸化物超電導積層体2、2の間に安定化材とするための帯状の導体(安定化導体)8をはんだ層9で囲んだ状態で内包することで酸化物超電導線材Aが構成されている。
Hereinafter, an oxide superconducting wire according to the present invention will be described with reference to the drawings.
FIG. 1 is a perspective view in which a part of the oxide superconducting wire according to the first embodiment of the present invention is shown in cross section, and the oxide superconducting wire A according to this embodiment is folded in two via a grooved portion 1. The processed oxide superconducting laminates 2 and 2 have an oxide superconducting layer 3 inside.
FIG. 2 is a partial cross-sectional perspective view showing the oxide superconducting laminate body 5 that is the basis of the double-folded oxide superconducting laminate 2 incorporated in the oxide superconducting wire A shown in FIG. In the oxide superconducting laminate body 5 shown in FIG. 2, an intermediate layer 6, an oxide superconducting layer 3, and a protective layer 7 are sequentially laminated on a tape-like substrate 4. Using the oxide superconducting laminate body 5 having this structure, the oxide superconducting laminate 2 shown in FIG. The oxide superconducting wire A is configured by enclosing a strip-shaped conductor (stabilizing conductor) 8 between the superconducting laminates 2 and 2 in a state surrounded by a solder layer 9.

前記横断面U字状に二つ折り形状とされた酸化物超電導積層体2、2は互いの幅方向端縁4aを突き合わせて一体化され、導体8の全周をはんだ層9を介し囲むように配置されている。酸化物超電導積層体2、2の端縁4aの突き合わせ部分が溶接されて一体化されていることが好ましく、酸化物超電導積層体2、2の内側に設けられている酸化物超電導層3はその全周(外周)を、中間層6と基材4に取り囲まれて密閉されている。   The oxide superconducting laminates 2 and 2 that are folded in a U-shaped cross section are integrated by abutting each other in the width direction edge 4a so that the entire circumference of the conductor 8 is surrounded by the solder layer 9. Has been placed. The butted portions of the end edges 4a of the oxide superconducting laminates 2 and 2 are preferably welded and integrated, and the oxide superconducting layer 3 provided inside the oxide superconducting laminates 2 and 2 is The entire circumference (outer circumference) is surrounded and sealed by the intermediate layer 6 and the substrate 4.

図2に示す酸化物超電導積層体本体5に適用される基材4は、長尺の線材とするためにテープ状やシート状あるいは薄板状であることが好ましく、耐熱性の金属からなるものが好ましい。各種耐熱性金属の中でも、ニッケル合金からなることが好ましい。なかでも、市販品であれば、ハステロイ(米国ヘインズ社製商品名)が好適である。基材4の厚さは、通常は、10〜500μmである。また、基材4として、ニッケル合金に集合組織を導入した配向Ni−W合金テープ基材等を適用することもできる。   The base material 4 applied to the oxide superconducting laminate body 5 shown in FIG. 2 is preferably in the form of a tape, a sheet or a thin plate in order to make a long wire, and is made of a heat-resistant metal. preferable. Among various refractory metals, a nickel alloy is preferable. Especially, if it is a commercial item, Hastelloy (US Haynes Corporation brand name) is suitable. The thickness of the base material 4 is usually 10 to 500 μm. Moreover, as the base material 4, an oriented Ni—W alloy tape base material in which a texture is introduced into a nickel alloy can also be applied.

中間層6は、基材4と酸化物超電導層3の間において結晶構造を整え、基材構成元素の元素拡散を防止するなどの目的で設けられ、一例として下地層と配向層とキャップ層とから構成される。
下地層は、以下に説明する拡散防止層とベッド層の複層構造あるいは、これらのうちどちらか1層からなる構造とすることができる。
下地層として拡散防止層を設ける場合、窒化ケイ素(Si)、酸化アルミニウム(Al、「アルミナ」とも呼ぶ)、あるいは、GZO(GdZr)等から構成される単層構造あるいは複層構造の層が望ましく、厚さは例えば10〜400nmである。
下地層としてベッド層を設ける場合、ベッド層は、耐熱性が高く、界面反応性を低減し、その上に配される膜の配向性を得るために用いる。このようなベッド層は、例えば、イットリア(Y)などの希土類酸化物であり、より具体的には、Er、CeO、Dy3、Er、Eu、Ho、La等を例示することができ、これらの材料からなる単層構造あるいは複層構造を採用できる。ベッド層の厚さは例えば10〜100nmである。また、拡散防止層とベッド層の結晶性は特に問われないので、通常のスパッタ法等の成膜法により形成すれば良い。
The intermediate layer 6 is provided for the purpose of adjusting the crystal structure between the substrate 4 and the oxide superconducting layer 3 and preventing element diffusion of the constituent elements of the substrate. As an example, the intermediate layer 6 includes an underlayer, an alignment layer, a cap layer, Consists of
The underlayer can have a multi-layer structure of a diffusion prevention layer and a bed layer, which will be described below, or a structure composed of one of these layers.
In the case of providing a diffusion prevention layer as an underlayer, it is composed of silicon nitride (Si 3 N 4 ), aluminum oxide (Al 2 O 3 , also referred to as “alumina”), GZO (Gd 2 Zr 2 O 7 ), or the like. A single layer structure or a multilayer structure is desirable, and the thickness is, for example, 10 to 400 nm.
When a bed layer is provided as an underlayer, the bed layer has high heat resistance, reduces interfacial reactivity, and is used for obtaining the orientation of a film disposed thereon. Such a bed layer is, for example, a rare earth oxide such as yttria (Y 2 O 3 ), and more specifically, Er 2 O 3 , CeO 2 , Dy 2 O 3, Er 2 O 3 , Eu 2. O 3 , Ho 2 O 3 , La 2 O 3 and the like can be exemplified, and a single layer structure or a multilayer structure made of these materials can be adopted. The thickness of the bed layer is, for example, 10 to 100 nm. Further, the crystallinity of the diffusion preventing layer and the bed layer is not particularly limited, and may be formed by a film forming method such as a normal sputtering method.

配向層は、酸化物超電導層3の結晶配向性を制御するバッファー層として機能し、酸化物超電導層と格子整合性の良い金属酸化物からなり、IBAD法(イオンビームアシスト蒸着法)により形成された配向性の良好な膜であることが好ましい。配向層の好ましい材質として具体的には、GdZr、MgO、ZrO−Y(YSZ)、SrTiO、CeO、Y、Al、Gd、Zr、Ho、Nd等の金属酸化物を例示できる。配向層は、単層でも良いし、複層構造でも良い。 The alignment layer functions as a buffer layer for controlling the crystal orientation of the oxide superconducting layer 3 and is made of a metal oxide having good lattice matching with the oxide superconducting layer, and is formed by the IBAD method (ion beam assisted deposition method). It is preferable that the film has a good orientation. Specifically, preferred materials for the alignment layer include Gd 2 Zr 2 O 7 , MgO, ZrO 2 —Y 2 O 3 (YSZ), SrTiO 3 , CeO 2 , Y 2 O 3 , Al 2 O 3 , Gd 2 O. 3 , metal oxides such as Zr 2 O 3 , Ho 2 O 3 and Nd 2 O 3 can be exemplified. The alignment layer may be a single layer or a multilayer structure.

キャップ層は、前記配向層の表面に対してエピタキシャル成長し、その後、結晶粒が面内方向に選択成長するという過程を経て形成されたものが好ましい。このようなキャップ層は、前記配向層よりも高い面内配向度が得られる可能性がある。
キャップ層の材質は、上記機能を発現し得るものであれば特に限定されないが、好ましいものとして具体的には、CeO、Y、Al、Gd、Zr、Ho、Nd等が例示できる。キャップ層の材質がCeOである場合、キャップ層は、Ceの一部が他の金属原子又は金属イオンで置換されたCe−M−O系酸化物を含んでいても良い。
キャップ層は、PLD法(パルスレーザ蒸着法)、スパッタリング法等で成膜することができる。CeOのキャップ層の膜厚は、50nm以上であればよいが、十分な配向性を得るには100nm以上が好ましい。但し、厚すぎると結晶配向性が悪くなるので、50〜5000nmの範囲とすることができる。
The cap layer is preferably formed through a process of epitaxially growing on the surface of the alignment layer and then selectively growing crystal grains in the in-plane direction. Such a cap layer may have a higher in-plane orientation degree than the orientation layer.
The material of the cap layer is not particularly limited as long as it can exhibit the above functions, but specifically, preferred examples include CeO 2 , Y 2 O 3 , Al 2 O 3 , Gd 2 O 3 , and Zr 2 O. 3 , Ho 2 O 3 , Nd 2 O 3 and the like. When the material of the cap layer is CeO 2 , the cap layer may contain a Ce—M—O-based oxide in which part of Ce is substituted with another metal atom or metal ion.
The cap layer can be formed by a PLD method (pulse laser deposition method), a sputtering method, or the like. The thickness of the CeO 2 cap layer may be 50 nm or more, but is preferably 100 nm or more in order to obtain sufficient orientation. However, if it is too thick, the crystal orientation deteriorates, so the thickness can be in the range of 50 to 5000 nm.

酸化物超電導層3は通常知られている組成の酸化物超電導体からなるものを広く適用することができ、ReBaCu7−x(ReはY、La、Nd、Sm、Er、Gd等の希土類元素を表す)なる材質のもの、具体的には、Y123(YBaCu7−x)又はGd123(GdBaCu7−x)を例示することができる。また、その他の酸化物超電導体、例えば、BiSrCan−1Cu4+2n+δなる組成等に代表される臨界温度の高い他の酸化物超電導体からなるものを用いても良いのは勿論である。酸化物超電導層3の厚みは、0.5〜5μm程度であって、均一な厚みであることが好ましい。
酸化物超電導層3の上面を覆うように形成されている保護層7は、Agからなり、DCスパッタ装置やRFスパッタ装置などの通常のスパッタ装置により成膜されており、その厚さが1〜30μm程度とされている。
The oxide superconducting layer 3 can be widely applied to an oxide superconductor having a generally known composition. ReBa 2 Cu 3 O 7-x (Re is Y, La, Nd, Sm, Er, Gd For example, Y123 (YBa 2 Cu 3 O 7-x ) or Gd123 (GdBa 2 Cu 3 O 7-x ) can be exemplified. Further, other oxide superconductors, for example, Bi 2 Sr 2 Ca n- 1 Cu n for O 4 + 2n + δ becomes may be used in compositions such as those made of other oxide superconductors having high critical temperatures representative Of course. The oxide superconducting layer 3 has a thickness of about 0.5 to 5 μm and preferably a uniform thickness.
The protective layer 7 formed so as to cover the upper surface of the oxide superconducting layer 3 is made of Ag, and is formed by a normal sputtering apparatus such as a DC sputtering apparatus or an RF sputtering apparatus. It is about 30 μm.

二つ折りに加工された酸化物超電導積層体2、2に内包されている帯状の導体8は、良導電性の金属材料からなり、酸化物超電導層3が超電導状態から常電導状態に転移した時に、保護層7とともに、電流を転流するバイパスとして機能する。導体8を構成する金属材料としては、良導電性を有するものであればよく、特に限定されないが、銅、黄銅(Cu−Zn合金)、Cu−Ni合金等の銅合金、Al、Cu−Al合金等の比較的安価な材質からなるものを用いることが好ましく、中でも高い導電性を有し、安価であることがら銅からなることが好ましい。なお、酸化物超電導線材を超電導限流器用途に使用する場合、導体8は高抵抗金属材料より構成され、例えば、Ni−Cr等のNi系合金などからなる。導体8の厚さは特に限定されず、適宜調整可能であるが、50〜300μmとすることが好ましい。
この例の酸化物超電導線材Aはその外周に絶縁テープを巻回するなどの手段により絶縁被覆された状態で超電導コイルの巻線用途などに使用される。
The band-like conductor 8 included in the oxide superconducting laminates 2 and 2 processed into two folds is made of a highly conductive metal material, and the oxide superconducting layer 3 is changed from the superconducting state to the normal conducting state. Together with the protective layer 7, it functions as a bypass for commutating current. The metal material constituting the conductor 8 is not particularly limited as long as it has good conductivity, but is not limited to copper alloy such as copper, brass (Cu—Zn alloy), Cu—Ni alloy, Al, Cu—Al. It is preferable to use a material made of a relatively inexpensive material such as an alloy. Among them, it is preferable that the material is made of copper because it has high conductivity and is inexpensive. When the oxide superconducting wire is used for a superconducting fault current limiter, the conductor 8 is made of a high resistance metal material, and is made of, for example, a Ni-based alloy such as Ni—Cr. The thickness of the conductor 8 is not particularly limited and can be adjusted as appropriate, but is preferably 50 to 300 μm.
The oxide superconducting wire A in this example is used for winding a superconducting coil in a state where the outer periphery of the oxide superconducting wire A is insulated and coated by means such as winding an insulating tape.

図1に示す構造の酸化物超電導線材Aを製造するには、図2に示す積層構造のテープ状の酸化物超電導積層体本体5を作製する。
酸化物超電導積層体本体5を製造する方法の一例として、基材4上にスパッタ法で拡散防止層とベッド層を形成した後、このベッド層の上にIBAD法で配向層を形成し、さらにPLD法でキャップ層を形成して中間層6を形成し、更にその上に酸化物超電導層3をPLD法で形成し、次に、酸化物超電導層3の上面にスパッタ法によりAgの保護層7を形成して図2に示す構造の酸化物超電導積層体本体5を作製することができる。Agの保護層7として厚さは1〜30μm程度の範囲に形成される。Agの保護層7を形成後、酸化物超電導積層体本体5については酸素雰囲気中において500℃程度に加熱するアニール処理を施しておき、酸化物超電導層3の結晶に酸素を供給してその結晶構造を整えておく。
In order to manufacture the oxide superconducting wire A having the structure shown in FIG. 1, a tape-shaped oxide superconducting laminate body 5 having the laminated structure shown in FIG. 2 is produced.
As an example of a method for manufacturing the oxide superconducting laminate body 5, after forming a diffusion prevention layer and a bed layer on the substrate 4 by a sputtering method, an alignment layer is formed on the bed layer by an IBAD method, A cap layer is formed by the PLD method to form the intermediate layer 6, and the oxide superconducting layer 3 is further formed thereon by the PLD method. Next, an Ag protective layer is formed on the upper surface of the oxide superconducting layer 3 by sputtering. 7 can be formed to produce the oxide superconducting laminate body 5 having the structure shown in FIG. The thickness of the Ag protective layer 7 is in the range of about 1 to 30 μm. After forming the protective layer 7 of Ag, the oxide superconducting laminate body 5 is subjected to an annealing process of heating to about 500 ° C. in an oxygen atmosphere, and oxygen is supplied to the crystal of the oxide superconducting layer 3 and the crystal Arrange the structure.

次に、酸化物超電導積層体本体5の保護層7を上にして、酸化物超電導積層体本体5の幅方向の中間部から長手方向に沿って保護層7から基材4に達するように溝加工して直線状の溝加工部11を形成する。溝加工部11の形成方法は特に限定されず従来公知の方法を適用できるが、レーザー照射又は回転刃による溝加工などの方法で形成できる。図3に示すように、レーザー加工機(レーザー照射装置)13を用いる場合には、加工時に酸化物超電導積層体本体5が応力や圧力により変形するおそれがない。レーザーの出力や回転刃の厚さを調整することで容易に溝加工部11の幅及び深さを調整できる。
溝加工部11の幅は、20〜100μm程度とされ、溝加工部11の深さは、基材4の厚さの1/3〜1/2程度の深さに形成される。
Next, with the protective layer 7 of the oxide superconducting laminate body 5 facing upward, the groove is formed so as to reach the base material 4 from the protective layer 7 along the longitudinal direction from the intermediate portion in the width direction of the oxide superconducting laminate body 5. The straight groove processing portion 11 is formed by processing. The formation method of the groove processing part 11 is not particularly limited, and a conventionally known method can be applied, but it can be formed by a method such as laser irradiation or groove processing with a rotary blade. As shown in FIG. 3, when using a laser processing machine (laser irradiation apparatus) 13, there is no possibility that the oxide superconducting laminate body 5 is deformed by stress or pressure during processing. The width and depth of the grooved portion 11 can be easily adjusted by adjusting the laser output and the thickness of the rotary blade.
The width of the groove processing portion 11 is set to about 20 to 100 μm, and the depth of the groove processing portion 11 is formed to a depth of about 1/3 to 1/2 of the thickness of the base material 4.

次に、溝加工部11を形成した酸化物超電導積層体本体5を図3(b)に示すように2つ隣接させて水平に配置し、2つ隣接配置した酸化物超電導積層体本体5の保護層7側の上面全部にはんだテープなどを沿わせてはんだ層12を形成する。はんだ層12の厚さは、20〜30μm程度とされる。はんだ層は、はんだテープを被着させたもの、はんだ層を塗布したものなどのいずれであっても良い。また、はんだ層12の材料として錫、錫−銀系合金や錫−ビスマス系合金等を適宜用いることができる。   Next, as shown in FIG. 3 (b), two oxide superconducting laminate bodies 5 in which the grooved portions 11 are formed are horizontally arranged adjacent to each other, and two oxide superconducting laminate bodies 5 are arranged adjacent to each other. A solder layer 12 is formed along the entire upper surface of the protective layer 7 with a solder tape or the like. The thickness of the solder layer 12 is about 20 to 30 μm. The solder layer may be either a solder tape applied or a solder layer applied. Further, as the material of the solder layer 12, tin, a tin-silver alloy, a tin-bismuth alloy, or the like can be used as appropriate.

次に、2つ隣接配置した酸化物超電導積層体本体5に対し、図3(c)に示すように1つの酸化物超電導積層体本体5の幅と同等幅の帯状の金属テープからなる導体8を2つの酸化物超電導積層体本体5、5に均等に跨るように設置する。図3(c)に示すように導体8を設置すると、導体8の幅方向両端縁の下方に溝加工部11、11が位置合わせされる。
次いで、両方の酸化物超電導積層体本体5について溝加工部11を介し2つ折りとする折り曲げ加工を各酸化物超電導積層体本体5の長さ方向全長に図3(d)に示すように順次行う。なお、この折り曲げ加工時の加工性を良好とするための観点から、前述の如く基材4の厚さの1/3〜1/2程度の深さに達するように溝加工部11を設けることが好ましい。
Next, with respect to the two oxide superconducting laminate bodies 5 arranged adjacent to each other, as shown in FIG. 3C, a conductor 8 made of a strip-shaped metal tape having a width equal to the width of one oxide superconducting laminate body 5 is used. Are placed evenly across the two oxide superconducting laminate bodies 5 and 5. When the conductor 8 is installed as shown in FIG. 3 (c), the grooved portions 11, 11 are aligned below the both ends of the conductor 8 in the width direction.
Next, the two oxide superconducting laminate bodies 5 are sequentially folded in half along the longitudinal direction of each oxide superconducting laminate body 5 as shown in FIG. . In addition, from the viewpoint of improving the workability at the time of bending, the grooved portion 11 is provided so as to reach a depth of about 1/3 to 1/2 of the thickness of the base material 4 as described above. Is preferred.

各酸化物超電導積層体本体5の長さ方向全長に渡り基材4、4を折り曲げ加工すると、図3(e)に示す構造とすることができるので、この後、はんだの融点温度まで全体を加熱すると、はんだ層12を溶融させることができ、次いで常温まで冷却して溶融はんだを凝固させることで導体8の周囲に二つ折り構造とした酸化物超電導積層体2をろう付けした構造の酸化物超電導線材Aが得られる。はんだは、錫はんだ、錫−銀系合金のはんだ、錫−ビスマス系合金のはんだを用いることができる。
この後、必要に応じて基材4、4の幅方向両端縁4aの突き合わせ部分を溶接して一体化することにより、密閉構造を更に強固にすることができる。
When the base materials 4 and 4 are bent over the entire length in the length direction of each oxide superconducting laminate body 5, the structure shown in FIG. 3 (e) can be obtained. When heated, the solder layer 12 can be melted, and then cooled to room temperature to solidify the molten solder so that the oxide superconducting laminate 2 brazed around the conductor 8 is brazed. Superconducting wire A is obtained. As the solder, tin solder, tin-silver alloy solder, or tin-bismuth alloy solder can be used.
Thereafter, the sealing structure can be further strengthened by welding and integrating the butted portions of the width direction end edges 4a of the substrates 4 and 4 as necessary.

なお、前記製造工程において、仮に溝加工部11を設けることなく基材4を二つ折りに加工すると、酸化物超電導層3の折り曲げ部分に応力が集中し、結果として酸化物超電導層3に不定形のクラックを多数発生させてしまうので、酸化物超電導線材Aの超電導特性が大幅に劣化するおそれが高い。一方、溝加工部11を設けることにより、酸化物超電導積層体本体5を二つ折りに加工する際、折り曲げ部分周囲の酸化物超電導層3に不要な応力を負荷するおそれがなく、酸化物超電導層3にクラックを別途生じさせるおそれも少ないので、クラックの発生や応力負荷に伴う超電導特性の劣化を生じていない優れた超電導特性の酸化物超電導線材Aを得ることができる。
前述の酸化物超電導層3は結晶性セラミックス薄膜であり、曲げ負荷や物理的衝撃には特に弱いので、溝加工部11を形成し、これを境界として折り曲げることが超電導特性の劣化防止に特に有効である。
In the manufacturing process, if the base material 4 is processed in half without providing the groove processing portion 11, stress concentrates on the bent portion of the oxide superconducting layer 3, and as a result, the oxide superconducting layer 3 has an indefinite shape. Therefore, there is a high possibility that the superconducting characteristics of the oxide superconducting wire A will be greatly deteriorated. On the other hand, when the oxide superconducting laminate body 5 is processed in two by providing the groove processing portion 11, there is no possibility of applying unnecessary stress to the oxide superconducting layer 3 around the bent portion, and the oxide superconducting layer. Therefore, it is possible to obtain an oxide superconducting wire A having excellent superconducting characteristics which does not cause deterioration of superconducting characteristics due to generation of cracks or stress load.
The oxide superconducting layer 3 is a crystalline ceramic thin film and is particularly vulnerable to bending loads and physical impacts. Therefore, it is particularly effective to prevent the deterioration of the superconducting characteristics by forming the grooved portion 11 and bending it at the boundary. It is.

次に、本実施形態の酸化物超電導線材Aの製造方法について、図4に示す構成の製造装置30を用いて行う場合について説明する。
図4に示すように、製造装置30は、酸化物超電導積層体本体5を溝加工するレーザー加工機(レーザー照射装置)13、13と、酸化物超電導積層体本体5にはんだテープ20を沿わせてはんだ層12を積層形成するはんだ沿わせ機構50と、前記はんだテープ20上に安定化材となるテープ状の導体21を沿わせる導体沿わせ機構52と、前記導体21を2本の酸化物超電導積層体本体5上に位置決めして仮固定する貼り合わせ機構53と、酸化物超電導積層体本体5を溝加工部を介し二つ折りに加工する折り曲げ機構40と、折り曲げられた酸化物超電導積層体本体5を固定する固定機構60とを備えている。
Next, the case where the manufacturing method of the oxide superconducting wire A of the present embodiment is performed using the manufacturing apparatus 30 having the configuration shown in FIG. 4 will be described.
As shown in FIG. 4, the manufacturing apparatus 30 includes laser processing machines (laser irradiation apparatuses) 13 and 13 for grooving the oxide superconducting laminate body 5, and the solder tape 20 along the oxide superconducting laminate body 5. A solder alignment mechanism 50 for laminating and forming the solder layer 12, a conductor alignment mechanism 52 for aligning the tape-like conductor 21 serving as a stabilizing material on the solder tape 20, and the conductor 21 for two oxides. A laminating mechanism 53 for positioning and temporarily fixing the superconducting laminate body 5, a folding mechanism 40 for processing the oxide superconducting laminate body 5 into two folds through a groove processing portion, and a folded oxide superconducting laminate And a fixing mechanism 60 for fixing the main body 5.

製造装置30の導入側には、テープ状の酸化物超電導積層体本体5が巻き付けられていて、酸化物超電導積層体本体5を送り出し可能な2基の第1リール装置31と、はんだテープ20が巻き付けられていて、はんだテープ20を送り出し可能な第2リール装置32と、テープ状の導体21が巻き付けられていて、導体21を送り出し可能な第3リール装置33が設けられている。また、送り出された2本の超電導積層体本体5をはんだ沿わせ機構50に並列に案内する搬送ローラ51と、固定機構60により形成された酸化物超電導線材Aを巻き取る巻き取り装置34が設けられている。   A tape-shaped oxide superconducting laminate body 5 is wound around the introduction side of the manufacturing apparatus 30, and two first reel devices 31 capable of feeding the oxide superconducting laminate body 5 and a solder tape 20 are provided. A second reel device 32 that is wound and capable of feeding the solder tape 20 and a third reel device 33 around which the tape-like conductor 21 is wound and capable of feeding the conductor 21 are provided. Further, a conveying roller 51 for guiding the two superconducting laminate bodies 5 sent out in parallel with the solder 50 and a winding device 34 for winding up the oxide superconducting wire A formed by the fixing mechanism 60 are provided. It has been.

図4に示すように、固定機構60は、はんだ層が積層され、二つ折りにされた酸化物超電導積層体をはんだ層の融点以上の温度に加熱する本加熱機構(加熱部)61と、二つ折りにされた酸化物超電導積層体を固定するようにこれらを加圧しながら徐々に冷却する一対の加圧ロール62を有している。
二つ折りに折り曲げ加工された2本の酸化物超電導積層体は、本加熱機構61内を挿通することにより所定の温度に加熱される。加圧ロール62は、不図示のヒータ、および加圧ロール62の外周面上に取付けられた不図示のブラシを有している。
As shown in FIG. 4, the fixing mechanism 60 includes a main heating mechanism (heating unit) 61 that heats the oxide superconducting laminate in which the solder layers are laminated and folded in half to a temperature equal to or higher than the melting point of the solder layers, A pair of pressure rolls 62 are provided for gradually cooling while pressing the folded oxide superconducting laminate so as to fix them.
The two oxide superconducting laminates that have been folded in two are heated to a predetermined temperature by passing through the heating mechanism 61. The pressure roll 62 has a heater (not shown) and a brush (not shown) attached on the outer peripheral surface of the pressure roll 62.

以上構成の製造装置30において、第1リール装置31、31から酸化物超電導積層体本体5、5をはんだ沿わせ機構50と導体沿わせ機構52に供給し、はんだテープ20と導体21とを順次沿わせ、導体沿わせ機構52に供給し、貼り合わせ機構53において導体21を位置決めして仮固定した後、折り曲げ機構40により酸化物超電導積層体本体5、5を溝加工部11を介して折り曲げ、本加熱機構61と加圧ローラ62により加熱し加圧することで酸化物超電導線材Aを連続的に製造することができ、巻き取り装置34に巻き取ることができる。   In the manufacturing apparatus 30 configured as described above, the oxide superconducting laminate main bodies 5 and 5 are supplied from the first reel apparatuses 31 and 31 to the solder alignment mechanism 50 and the conductor alignment mechanism 52, and the solder tape 20 and the conductor 21 are sequentially supplied. Then, the conductor 21 is supplied to the conductor alignment mechanism 52, and the conductor 21 is positioned and temporarily fixed by the bonding mechanism 53, and then the oxide superconducting laminate body 5, 5 is bent via the groove processing portion 11 by the bending mechanism 40. The oxide superconducting wire A can be continuously manufactured by being heated and pressurized by the heating mechanism 61 and the pressure roller 62 and can be wound around the winding device 34.

図5は、本発明に係る第2実施形態の酸化物超電導線材の一部を断面とした斜視図である。図5に示すように、第2実施形態の酸化物超電導線材Bは、幅方向両側に配置した溝加工部1を介し両端を折り畳み加工した酸化物超電導積層体16の内側に酸化物超電導層3が内包された構造とされている。
図5に示す構造の酸化物超電導線材Bは、図2に示す酸化物超電導積層体本体5と同等構造の積層体本体を用いるが、先に説明した第1実施形態の酸化物超電導積層体本体5よりも幅が2倍程度広い積層体本体を用いる。この積層体本体を横断面C字状になるように両端折り畳み加工して酸化物超電導積層体16が適用されている。
FIG. 5 is a perspective view in which a part of the oxide superconducting wire according to the second embodiment of the present invention is shown in cross section. As shown in FIG. 5, the oxide superconducting wire B of the second embodiment has an oxide superconducting layer 3 on the inner side of an oxide superconducting laminate 16 in which both ends are folded through groove processing portions 1 arranged on both sides in the width direction. The structure is embedded.
The oxide superconducting wire B having the structure shown in FIG. 5 uses a laminate body having the same structure as the oxide superconducting laminate body 5 shown in FIG. 2, but the oxide superconducting laminate body of the first embodiment described above. A laminate body that is about twice as wide as 5 is used. The oxide superconducting laminate 16 is applied by folding both ends of the laminate body so as to have a C-shaped cross section.

第2実施形態の酸化物超電導線材Bを製造するには、図6(a)に示すように幅の広い酸化物超電導積層体本体17を用い、この積層体本体17の上面にレーザー加工機13、13を用いて2本の平行な溝加工部11を形成する。2本の平行な溝加工部11の間隔は後に用いる導体8と同等幅とする。
溝加工後、図6(b)に示すようにはんだ層12を先の図3(b)を基に説明した場合と同様に形成し、次いで図6(c)に示すように導体8を先の図3(c)を基に説明した場合と同様に形成し、次いで酸化物超電導積層体本体17を先の図3(d)を基に説明した場合と同様に図6(d)に示すように折り曲げ、次いではんだ層12を溶融させ冷却することで図6(e)に示す構造の酸化物超電導線材Bを得ることができる。
なお、酸化物超電導積層体16の端縁16aの突き合わせ部分を溶接しておくならば、接合構造としてより密閉性の良好な構造にすることができる。
To manufacture the oxide superconducting wire B of the second embodiment, a wide oxide superconducting laminate body 17 is used as shown in FIG. 6A, and the laser processing machine 13 is formed on the upper surface of the laminate body 17. , 13 are used to form two parallel grooved portions 11. The interval between the two parallel grooved portions 11 is the same width as the conductor 8 used later.
After the groove processing, as shown in FIG. 6B, the solder layer 12 is formed in the same manner as described with reference to FIG. 3B, and then the conductor 8 is formed as shown in FIG. 6C. 3 (c), and the oxide superconducting laminate main body 17 is shown in FIG. 6 (d) as in the case described with reference to FIG. 3 (d). The oxide superconducting wire B having the structure shown in FIG. 6 (e) can be obtained by bending in this manner and then melting and cooling the solder layer 12.
In addition, if the butt portion of the edge 16a of the oxide superconducting laminate 16 is welded, a structure with better sealing property can be obtained as a joint structure.

第2実施形態の酸化物超電導線材Bは先の第1実施形態の酸化物超電導線材Aと同等の作用効果を得ることができるが、1つの酸化物超電導積層体本体17から酸化物超電導線材Bを得ることができる利点を有する。   The oxide superconducting wire B of the second embodiment can obtain the same effects as the oxide superconducting wire A of the first embodiment, but from one oxide superconducting laminate body 17 to the oxide superconducting wire B. Has the advantage that can be obtained.

図7は、本発明に係る第3実施形態の酸化物超電導線材の一部を断面とした斜視図である。図7に示すように、第3実施形態の酸化物超電導線材Cは、溝加工部1Aを介し二つ折りに加工された酸化物超電導積層体22、22の内側に酸化物超電導層3が内包された構造とされている。
図7に示す構造の酸化物超電導線材Cは、図2に示す酸化物超電導積層体本体5に対し保護層7の上に安定化材となるべきCuなどの金属からなる安定化層28を被覆した酸化物超電導積層体本体を用い、この積層体本体を横断面U字状になるように二つ折りに折り曲げ加工した酸化物超電導積層体22が適用されている。
そして、2つの酸化物超電導積層体22、22の間に金属からなる帯状の導体(安定化導体)8をはんだ層29で囲んだ状態で内包することで酸化物超電導線材Cが構成されている。なお、酸化物超電導積層体22の端縁22aの突き合わせ部分を溶接しておくならば、接合構造としてより密閉性の良好な構造にすることができる。
FIG. 7 is a perspective view, partly in section, of an oxide superconducting wire according to a third embodiment of the present invention. As shown in FIG. 7, in the oxide superconducting wire C of the third embodiment, the oxide superconducting layer 3 is encapsulated inside the oxide superconducting laminates 22 and 22 processed in a folded manner via the groove processing portion 1A. Structure.
The oxide superconducting wire C having the structure shown in FIG. 7 covers the oxide superconducting laminate body 5 shown in FIG. 2 with a stabilizing layer 28 made of a metal such as Cu to be a stabilizing material on the protective layer 7. The oxide superconducting laminate 22 is applied by using the above-described oxide superconducting laminate body and folding the laminate body into two in a U-shaped cross section.
And the oxide superconducting wire C is comprised by enclosing the strip | belt-shaped conductor (stabilizing conductor) 8 which consists of metals between the two oxide superconducting laminated bodies 22 and 22 in the state enclosed by the solder layer 29. FIG. . Note that if the butt portion of the end edge 22a of the oxide superconducting laminate 22 is welded, a structure with better sealing properties can be obtained as a joint structure.

図7に示す第3実施形態の酸化物超電導線材Cは、先に説明した第1実施形態の酸化物超電導線材Aの製造方法と同等の製造方法で製造することができる。第1実施形態の酸化物超電導線材Aは図2に示す構造の酸化物超電導積層体本体5を用いて図3に示す工程に従い製造したが、酸化物超電導積層体本体を上述した安定化層28付きの酸化物超電導積層体本体として図3に示す工程に従い製造することにより、第3実施形態の酸化物超電導線材Cを得ることができる。
第3実施形態の酸化物超電導線材Cは先の第1実施形態の酸化物超電導線材Aと同等の作用効果を得ることができるが、この形態の酸化物超電導線材Cにおいては、導体8と安定化層28とからなる2層構造の安定化材を備えた構造を実現できる。
The oxide superconducting wire C of the third embodiment shown in FIG. 7 can be manufactured by a manufacturing method equivalent to the manufacturing method of the oxide superconducting wire A of the first embodiment described above. The oxide superconducting wire A according to the first embodiment is manufactured in accordance with the process shown in FIG. 3 using the oxide superconducting laminate body 5 having the structure shown in FIG. 2, but the oxide superconducting laminate body is the stabilizing layer 28 described above. By manufacturing according to the process shown in FIG. 3 as an attached oxide superconducting laminate body, the oxide superconducting wire C of the third embodiment can be obtained.
Although the oxide superconducting wire C of the third embodiment can obtain the same effects as the oxide superconducting wire A of the first embodiment, the oxide superconducting wire C of this embodiment is stable with the conductor 8. It is possible to realize a structure including a stabilizing material having a two-layer structure composed of the stabilizing layer 28.

図8は、本発明に係る第4実施形態の酸化物超電導線材の一部を断面とした斜視図である。図8に示すように、第4実施形態の酸化物超電導線材Dは、溝加工部1Bを介し横断面J字状に二つ折りに加工した酸化物超電導積層体42、42の内側に酸化物超電導層3が内包された構造とされている。二つ折りされた酸化物超電導積層体42、42は、はんだ層9により一体化されている。また、酸化物超電導積層体42、2について、それらの幅方向両端縁42a、42aを突き合わせて溶接することで一体化されていることがより好ましく、これらにより酸化物超電導層3の全周が酸化物超電導積層体42、42で取り囲まれて密閉された構造が適用されている。   FIG. 8 is a perspective view with a cross section of a part of the oxide superconducting wire according to the fourth embodiment of the present invention. As shown in FIG. 8, the oxide superconducting wire D according to the fourth embodiment has oxide superconducting materials inside the oxide superconducting laminates 42 and 42 processed into a J-shaped cross section through the grooved portion 1B. The layer 3 is included. The folded oxide superconducting laminates 42 and 42 are integrated by the solder layer 9. Further, it is more preferable that the oxide superconducting laminates 42 and 2 are integrated by abutting and welding the both end edges 42a and 42a in the width direction, so that the entire circumference of the oxide superconducting layer 3 is oxidized. A structure surrounded and sealed by the superconducting laminates 42 and 42 is applied.

図2に示す前述の積層構造の酸化物超電導積層体本体5を二つ折りに折り曲げ加工する場合、基材4の幅に対し横断面U字状になるように均等に二つ折りに折り曲げ加工する場合の他に、図8に示すように基材4の幅に対し横断面J字状になるように均等ではない幅で折り曲げ加工しても良い。本実施形態において、要は、酸化物超電導積層体42、42の折り曲げ構造により酸化物超電導層3の全周を取り囲むことができる形状に折り曲げ加工されていれば良い。   When the oxide superconducting laminate main body 5 having the above-described laminated structure shown in FIG. 2 is folded in half, when it is equally folded in half so as to have a U-shaped cross section with respect to the width of the base material 4 In addition, as shown in FIG. 8, it may be bent with a non-uniform width so as to have a J-shaped cross section with respect to the width of the substrate 4. In the present embodiment, the main point is that the oxide superconducting laminates 42 and 42 need only be bent into a shape that can surround the entire periphery of the oxide superconducting layer 3.

図9は、本発明に係る第5実施形態の酸化物超電導線材の一部を断面とした斜視図である。図9に示すように、第5実施形態の酸化物超電導線材Eは、4つの溝加工部1Cを介し横断面C字状に加工した酸化物超電導積層体45の内側に酸化物超電導層3が内包され、中心部に横断面矩形状の厚い導体38が配置された構造とされている。酸化物超電導積層体45とその中心の導体38ははんだ層39により一体化されている。
また、C字状に加工された酸化物超電導積層体45はそれらの幅方向両端縁45a、45aを突き合わせ溶接することで一体化されていることがより好ましく、この構造により酸化物超電導層3の全周が基材4により更に強固に囲まれた密閉構造が提供される。
FIG. 9 is a perspective view, partly in section, of an oxide superconducting wire according to the fifth embodiment of the present invention. As shown in FIG. 9, the oxide superconducting wire E of the fifth embodiment has an oxide superconducting layer 3 inside an oxide superconducting laminate 45 processed into a C-shaped cross section through four grooved portions 1C. It has a structure in which a thick conductor 38 having a rectangular cross section is disposed in the center. The oxide superconducting laminate 45 and the conductor 38 at the center thereof are integrated by a solder layer 39.
Further, it is more preferable that the oxide superconducting laminate 45 processed into a C-shape is integrated by butt-welding both end edges 45a and 45a in the width direction. With this structure, the oxide superconducting layer 3 is integrated. A sealed structure in which the entire periphery is more firmly surrounded by the base material 4 is provided.

本実施形態に適用されている酸化物超電導積層体45の積層構造は先に図2を基に説明した酸化物超電導積層体本体5と同等構造であるが、本実施形態では溝加工部1Cが平行に所定の間隔をあけて4本形成されている点が異なる。
本実施形態では、酸化物超電導線材Cの中心部に先の図1に示す第1実施形態の導体8よりも厚い帯状の導体38が設けられた場合の実施形態である。中心部に配置する導体38が厚く、酸化物超電導積層体本体に形成する溝加工部が2本のみでは対応できない場合に、断面長方形状の導体38の外周角部の外側に位置するように4本の溝加工部1Cを配置する構造を採用できる。
この構造により、酸化物超電導積層体45の酸化物超電導層3に歪み等の負荷をかけるおそれを少なくした状態で酸化物超電導積層体45を厚い導体38の外周部に密着させて配置することができる。
The laminated structure of the oxide superconducting laminate 45 applied to the present embodiment is the same structure as the oxide superconducting laminate body 5 described above with reference to FIG. The difference is that four lines are formed at predetermined intervals in parallel.
This embodiment is an embodiment in which a strip-like conductor 38 thicker than the conductor 8 of the first embodiment shown in FIG. 1 is provided at the center of the oxide superconducting wire C. When the conductor 38 disposed in the center is thick and the groove processed portion formed in the oxide superconducting laminate main body cannot be handled by only two, the conductor 38 is positioned outside the outer peripheral corner of the conductor 38 having a rectangular cross section. A structure in which the groove processing portions 1C of the book are arranged can be adopted.
With this structure, the oxide superconducting laminate 45 can be disposed in close contact with the outer periphery of the thick conductor 38 in a state where the risk of applying a load such as strain to the oxide superconducting layer 3 of the oxide superconducting laminate 45 is reduced. it can.

この実施形態の如く中心に配置する導体38は横断面長方形状に限らず、断面3角形、5角形、6角形などの多角形状とすることも可能であり、それらいずれの形状である場合であっても、酸化物超電導積層体45に必要な数の溝加工部を形成して導体38の周囲に沿わせて密着してからはんだ層を溶融させ、その後に冷却して導体38に酸化物超電導積層体45を密閉構造として一体化することができる。   The conductor 38 disposed at the center as in this embodiment is not limited to a rectangular cross section, but may be a polygonal shape such as a triangular, pentagonal, hexagonal cross section, and any of these shapes. However, the oxide superconducting laminate 45 is formed with a necessary number of grooved portions and closely adhered along the periphery of the conductor 38, and then the solder layer is melted, and then cooled to the oxide 38 in the conductor 38. The laminated body 45 can be integrated as a sealed structure.

図9に示すように1つの酸化物超電導積層体45でもって多角形状の導体に対応させて複数の溝加工部1Cを設けることで酸化物超電導層3を内包して密閉する構造とした酸化物超電導線材Eを提供することができる。   As shown in FIG. 9, an oxide having a structure in which the oxide superconducting layer 3 is enclosed and sealed by providing a plurality of grooved portions 1 </ b> C corresponding to a polygonal conductor with one oxide superconducting laminate 45. Superconducting wire E can be provided.

図10は、図1に示す構造の酸化物超電導線材Aを2本接合する場合に好適な構造を説明するための斜視図である。
酸化物超電導線材Aを2本接合する場合、一方の酸化物超電導線材Aの端末部において基材4、4を所定の長さ除去して導体8を所定の長さ基材4、4の端部から突出させておき、他方の酸化物超電導線材Aの端末において基材4、4を所定の長さ開いて導体8を露出させておく。この状態から、一方の酸化物超電導線材Aの導体8と他方の酸化物超電導線材Aの導体8を重ねた後、再度両酸化物超電導線材Aの基材4、4を折り曲げ加工して導体8、8を囲むように密閉し、はんだ付けすれば、酸化物超電導線材A、Aを電気的に接合することができる。
なお、酸化物超電導線材A、Aの酸化物超電導層3、3どうしを直に超電導接合している訳ではないので、接合部において導体8、8が介在する分の電気抵抗を生じるものの、図10に示す接合を行うことで酸化物超電導線材A、Aの電気的な接合ができる。
FIG. 10 is a perspective view for explaining a structure suitable for joining two oxide superconducting wires A having the structure shown in FIG.
When two oxide superconducting wires A are joined, the bases 4 and 4 are removed by a predetermined length at the end of one oxide superconducting wire A, and the conductor 8 is connected to the ends of the bases 4 and 4 by a predetermined length. The base material 4 and 4 are opened by a predetermined length at the end of the other oxide superconducting wire A to expose the conductor 8. From this state, after superposing the conductor 8 of one oxide superconducting wire A and the conductor 8 of the other oxide superconducting wire A, the base materials 4 and 4 of both oxide superconducting wires A are bent again to conduct the conductor 8. , 8 can be sealed and soldered so that the oxide superconducting wires A and A can be electrically joined.
Although the oxide superconducting wires A and the oxide superconducting layers 3 and 3 of the A are not directly superconductingly joined, the electrical resistance corresponding to the presence of the conductors 8 and 8 at the joint is generated. By performing the bonding shown in FIG. 10, the oxide superconducting wires A and A can be electrically bonded.

以下、実施例を示して本発明をさらに詳細に説明するが、本発明は以下に説明する実施例に限定されるものではない。
「実施例1」
ハステロイC−276(米国ヘインズ社商品名)からなる幅10mm、厚さ0.1mm、長さ100mのテープ状の基材本体上に、Alの拡散防止層(厚さ80nm)と、Yのベッド層(厚さ30nm)と、イオンビームアシスト蒸着法によるMgOの中間層(厚さ10nm)と、PLD法(パルスレーザー蒸着法)によるCeOのキャップ層(厚さ300nm)とPLD法によるYBaCu7−xで示される組成の酸化物超電導層(厚さ1μm)とスパッタ法によるAgの保護層(厚さ10μm)を成膜したテープ状の酸化物超電導積層体を用意した。
EXAMPLES Hereinafter, although an Example is shown and this invention is demonstrated further in detail, this invention is not limited to the Example described below.
"Example 1"
On a tape-shaped base body having a width of 10 mm, a thickness of 0.1 mm and a length of 100 m made of Hastelloy C-276 (trade name of Haynes, USA), an Al 2 O 3 diffusion prevention layer (thickness 80 nm), Bed layer (thickness 30 nm) of Y 2 O 3 , MgO intermediate layer (thickness 10 nm) by ion beam assisted vapor deposition, and CeO 2 cap layer (thickness 300 nm) by PLD method (pulse laser vapor deposition) And an oxide superconducting layer having a composition represented by YBa 2 Cu 3 O 7-x by PLD method and a protective layer of Ag (thickness 10 μm) by sputtering and forming a tape-like oxide superconducting layer Prepared the body.

前記酸化物超電導積層体に500℃で酸素アニール処理を行い、続いて図3(a)に示すようにYAGレーザー加工機を用いて幅100μm、保護層から基材まで到達し、基材厚さの半分に達する溝加工部を酸化物超電導積層体の幅の中央部に全長に渡り形成した。この溝加工部形成済みの酸化物超電導積層体を2本平行に隣接し、これらの上面全域を覆う錫のはんだテープを被せた。このはんだテープの中央部に幅10mm、厚さ0.1mmのCuからなる安定化材形成用の導体を配置した。
左右に隣接した酸化物超電導積層体をそれぞれ先の溝加工部を介しU字状になるように折り曲げ加工し、酸化物超電導積層体で導体の全周を囲んだ後、はんだテープの溶融温度270℃まで加熱してはんだを溶融し、後に常温まで冷却してはんだ層で酸化物超電導積層を囲んだ酸化物超電導線材を得た。
The oxide superconducting laminate is subjected to an oxygen annealing treatment at 500 ° C., then, as shown in FIG. 3 (a), a YAG laser processing machine is used to reach a width of 100 μm from the protective layer to the base material. A groove processed portion reaching half of the width was formed in the central portion of the width of the oxide superconducting laminate over the entire length. Two oxide superconducting laminates with grooves formed thereon were adjacent to each other in parallel and covered with a tin solder tape covering the entire upper surface thereof. A conductor for forming a stabilizing material made of Cu having a width of 10 mm and a thickness of 0.1 mm was disposed at the center of the solder tape.
The oxide superconducting laminates adjacent to the left and right are bent into U-shapes through the grooved portions, respectively, and the entire circumference of the conductor is surrounded by the oxide superconducting laminate, and then the solder tape melting temperature 270 The solder was melted by heating to 0 ° C., and then cooled to room temperature to obtain an oxide superconducting wire in which the oxide superconducting laminate was surrounded by a solder layer.

この酸化物超電導線材について、プレッシャークッカー試験(温度120℃、湿度100%の環境下に放置)を行ったところ、100時間経過後も酸化物超電導線材の臨界電流値が低下しなかった。
この酸化物超電導線材を2本用意し、液体窒素に浸漬して77Kにおける超電導特性を測定したところ、臨界電流値(Ic)はいずれも200Aであった。
この試験結果から、酸化物超電導積層を酸化物超電導積層体で取り囲むとともに、導体の全周を酸化物超電導積層体にはんだ付けにより接合した酸化物超電導線材は、優れた耐湿性を発揮することが明らかとなった。
When this oxide superconducting wire was subjected to a pressure cooker test (left in an environment of a temperature of 120 ° C. and a humidity of 100%), the critical current value of the oxide superconducting wire did not decrease even after 100 hours had elapsed.
Two oxide superconducting wires were prepared, immersed in liquid nitrogen, and measured for superconducting properties at 77K. The critical current value (Ic) was 200A.
From this test result, the oxide superconducting laminate that surrounds the oxide superconducting laminate with the oxide superconducting laminate and that the entire circumference of the conductor is joined to the oxide superconducting laminate by soldering can exhibit excellent moisture resistance. It became clear.

2本の酸化物超電導線材のうち、一方の超電導線材の端末処理を行って端部の基材を除去し、内部の導体を50mm突出させ、他方の超電導線材の端末の基材を開いてCuの導体どうしを50mm重ねて貼り合わせ、導体どうしを重ねた部分の基材を折り曲げ直してから再度はんだを溶融させて2本の酸化物超電導線材を接合した。
接合後、接合部分を含めて液体窒素に浸漬して77Kにおける超電導特性を測定したところ、臨界電流値(Ic)は180Aであった。
この値は酸化物超電導線材どうしの電気的接合部分として有効な接合がなされているとみなすことができる。
Of the two oxide superconducting wires, end treatment of one superconducting wire is performed to remove the base material at the end, the inner conductor protrudes 50 mm, and the base material of the other superconducting wire material is opened to open Cu. The conductors of 50 mm were laminated and bonded together, the base material of the part where the conductors were overlapped was bent again, the solder was melted again, and two oxide superconducting wires were joined.
After joining, the superconducting property at 77K was measured by immersing in liquid nitrogen including the joined part, and the critical current value (Ic) was 180A.
This value can be regarded as an effective joining as an electrical joining portion between the oxide superconducting wires.

前記プレッシャークッカー試験に供した試料と同等構造の酸化物超電導線材全長に対し、基材端縁の突き合わせ部分を全長に渡りレーザー溶接して密閉構造とした酸化物超電導線材試料を得た。
この酸化物超電導線材試料について、プレッシャークッカー試験(温度120℃、湿度100%)に供したところ、150時間経過後も超電導特性の劣化が見られなかった。
この試験結果から、この例の酸化物超電導線材は、酸化物超電導積層体により酸化物超電導積層を取り囲んで導体に酸化物超電導積層体をはんだ付けしている上に、突き合わせ端縁部分を溶接しているので、はんだ付け部分と溶接部分により2重に接合しているので密閉構造に優れ、先の例より優れた耐湿性を示していることが明らかとなった。
With respect to the total length of the oxide superconducting wire having the same structure as the sample subjected to the pressure cooker test, an abutted portion of the base edge was laser welded over the entire length to obtain an oxide superconducting wire sample having a sealed structure.
When this oxide superconducting wire sample was subjected to a pressure cooker test (temperature: 120 ° C., humidity: 100%), no deterioration of superconducting properties was observed even after 150 hours.
From this test result, the oxide superconducting wire of this example surrounds the oxide superconducting laminate with the oxide superconducting laminate, solders the oxide superconducting laminate to the conductor, and welds the butt edge portion. As a result, it has been clarified that since the soldered portion and the welded portion are double-bonded, the sealing structure is excellent and the moisture resistance is superior to the previous example.

本発明技術は、例えば超電導用送電線、超電導モータ、限流器など、各種電力機器に用いられる酸化物超電導線材に利用できる。   The technology of the present invention can be used for oxide superconducting wires used in various power devices such as superconducting power transmission lines, superconducting motors, and current limiters.

A、B、C、D、E…酸化物超電導線材、1、1A、1B、1C…溝加工部、2、16、22、42…酸化物超電導積層体、3…酸化物超電導層、4…基材、4a…端縁、5…酸化物超電導積層体本体、6…中間層、7…保護層、8…導体(安定化材)、9…はんだ層、11…溝加工部、12…はんだ層、13…レーザー加工機(レーザー照射装置)、16a…端縁、20…はんだテープ、21…導体、22a…端縁、30…製造装置、31…第1リール装置、32…第2リール装置、33…第3リール装置、34…巻き取り装置、42a…端縁、51…搬送ローラ、52…導体沿わせ機構、53…貼り合わせ機構、60…固定機構、62…加圧ロール。   A, B, C, D, E ... oxide superconducting wire, 1, 1A, 1B, 1C ... grooved portion, 2, 16, 22, 42 ... oxide superconducting laminate, 3 ... oxide superconducting layer, 4 ... Base material, 4a ... edge, 5 ... oxide superconducting laminate body, 6 ... intermediate layer, 7 ... protective layer, 8 ... conductor (stabilizing material), 9 ... solder layer, 11 ... grooved portion, 12 ... solder Layer: 13 ... Laser processing machine (laser irradiation device), 16a ... edge, 20 ... solder tape, 21 ... conductor, 22a ... edge, 30 ... production device, 31 ... first reel device, 32 ... second reel device 33 ... 3rd reel device, 34 ... winding device, 42a ... edge, 51 ... conveying roller, 52 ... conductor alignment mechanism, 53 ... bonding mechanism, 60 ... fixing mechanism, 62 ... pressure roll.

Claims (8)

基材と中間層と酸化物超電導層と導電性の保護層をこの順に積層してなる酸化物超電導積層体が、保護層から基材まで達する溝加工部を介し前記保護層を内側にして二つ折りに折り曲げられ、2つの酸化物超電導積層体がそれらの折り曲げ部分を帯状の導体の幅方向端部側に位置させてこれら2つの酸化物超電導積層体により前記導体の全周がはんだ層を介し囲まれてなることを特徴とする酸化物超電導線材。   An oxide superconducting laminate formed by laminating a base material, an intermediate layer, an oxide superconducting layer, and a conductive protective layer in this order is arranged with the protective layer inside through a grooved portion reaching from the protective layer to the base material. The two oxide superconducting laminates are folded in a folded manner, and the bent portions thereof are positioned on the end portions in the width direction of the strip-shaped conductor, and the entire circumference of the conductor is interposed via the solder layer by these two oxide superconducting laminates. An oxide superconducting wire characterized by being surrounded. 基材と中間層と酸化物超電導層と導電性の保護層をこの順に積層してなる酸化物超電導積層体が、保護層から基材まで達する2本の平行な溝加工部を介し前記保護層を内側にして折り曲げられ、折り曲げ部分の内側に帯状の導体をはんだ層を介し内包することで前記酸化物超電導積層体により前記導体の全周が囲まれてなることを特徴とする酸化物超電導線材。   An oxide superconducting laminate formed by laminating a base material, an intermediate layer, an oxide superconducting layer, and a conductive protective layer in this order is formed through the two parallel groove processing portions extending from the protective layer to the base material. The oxide superconducting wire is characterized in that the conductor is surrounded by the oxide superconducting laminate by enclosing a strip-shaped conductor inside the bent portion via a solder layer. . 基材と中間層と酸化物超電導層と導電性の保護層をこの順に積層してなる酸化物超電導積層体が、保護層から基材まで達する複数本の平行な溝加工部を介し前記保護層を内側にして折り曲げられ、折り曲げ部分の内側に断面多角形状の帯状の導体が該導体の外周角部と前記折り曲げ部分を位置合わせしてはんだ層を介し内包され、前記酸化物超電導積層体により前記導体の全周が囲まれてなることを特徴とする酸化物超電導線材。   The oxide superconducting laminate formed by laminating the base material, the intermediate layer, the oxide superconducting layer, and the conductive protective layer in this order is provided with the protective layer via a plurality of parallel groove processing portions extending from the protective layer to the base material. The strip-shaped conductor having a polygonal cross section is encapsulated via a solder layer with the outer peripheral corner of the conductor aligned with the bent portion inside the bent portion, and the oxide superconducting laminate is used to An oxide superconducting wire characterized by being surrounded by a conductor. 前記酸化物超電導積層体の端縁どうしが突き合わされ、この突き合わせ部分が溶接されてなることを特徴とする請求項1乃至3のいずれか一項に記載の酸化物超電導線材。   The oxide superconducting wire according to any one of claims 1 to 3, wherein edges of the oxide superconducting laminate are butted together and the butted portion is welded. 基材と中間層と酸化物超電導層と導電性の保護層をこの順に積層してなる酸化物超電導積層体を2つ用意し、これら酸化物超電導積層体に保護層から基材まで達する直線状の溝加工部を形成し、該溝加工部を介し2つの酸化物超電導積層体を個々に前記保護層を内側にして二つ折りとしてこれら酸化物超電導積層体の間にはんだ層と帯状の導体を挟み込み前記導体の全周を前記はんだ層と前記酸化物超電導積層体で覆うとともに、前記はんだ層を溶融後凝固させて前記導体と前記酸化物超電導積層体を接合することを特徴とする酸化物超電導線材の製造方法。   Two oxide superconducting laminates are prepared by laminating a base material, an intermediate layer, an oxide superconducting layer, and a conductive protective layer in this order, and these oxide superconducting laminates form a straight line extending from the protective layer to the base material. A grooved portion is formed, and two oxide superconducting laminates are individually folded in two through the grooved portion with the protective layer inside, and a solder layer and a strip-shaped conductor are interposed between the oxide superconducting laminates. Covering the entire circumference of the sandwiched conductor with the solder layer and the oxide superconducting laminate, and melting and solidifying the solder layer to join the conductor and the oxide superconducting laminate A manufacturing method of a wire. 基材と中間層と酸化物超電導層と導電性の保護層をこの順に積層してなる酸化物超電導積層体を用意し、この酸化物超電導積層体に保護層から基材まで達する直線状の溝加工部を平行に2本形成し、これら2本の溝加工部を介し酸化物超電導積層体を前記保護層を内側にして折り曲げてこれら折り曲げ部分の間にはんだ層と帯状の導体を挟み込み、該導体の全周を前記はんだ層と前記酸化物超電導積層体で覆うとともに、前記はんだ層を溶融後凝固させて前記導体と前記酸化物超電導積層体を接合することを特徴とする酸化物超電導線材の製造方法。   An oxide superconducting laminate is prepared by laminating a base material, an intermediate layer, an oxide superconducting layer, and a conductive protective layer in this order, and a linear groove extending from the protective layer to the base material on the oxide superconducting laminate. Two processed portions are formed in parallel, the oxide superconducting laminate is bent with the protective layer inside through the two groove processed portions, and a solder layer and a strip-shaped conductor are sandwiched between the bent portions, An oxide superconducting wire characterized by covering the entire circumference of a conductor with the solder layer and the oxide superconducting laminate, and solidifying the solder layer after melting and joining the conductor and the oxide superconducting laminate. Production method. 基材と中間層と酸化物超電導層と導電性の保護層をこの順に積層してなる酸化物超電導積層体を用意し、この酸化物超電導積層体に保護層から基材まで達する直線状の溝加工部を平行に3本以上形成し、これら3本以上の溝加工部を介し酸化物超電導積層体を前記保護層を内側にして折り曲げ、この酸化物超電導積層体の内側に帯状の導体とはんだ層を挟み込み、前記導体の全周を前記はんだ層と前記酸化物超電導積層体で覆うとともに、はんだ層を溶融後凝固させて前記導体と前記酸化物超電導積層体を接合することを特徴とする酸化物超電導線材の製造方法。   An oxide superconducting laminate is prepared by laminating a base material, an intermediate layer, an oxide superconducting layer, and a conductive protective layer in this order, and a linear groove extending from the protective layer to the base material on the oxide superconducting laminate. Three or more processed parts are formed in parallel, the oxide superconducting laminate is bent with the protective layer inside through the three or more grooved parts, and a strip-shaped conductor and solder are placed inside the oxide superconducting laminate. An oxide comprising sandwiching the layers, covering the entire circumference of the conductor with the solder layer and the oxide superconducting laminate, and solidifying the solder layer after melting, thereby joining the conductor and the oxide superconducting laminate Manufacturing method of superconducting wire. 前記導電性接合材としてはんだ層を用い、加熱処理と冷却処理に伴うはんだ層の溶融と凝固により前記酸化物超電導積層体を金属導体に電気的に接合することを特徴とする請求項5乃至7のいずれか一項に記載の酸化物超電導線材の製造方法。   8. A solder layer is used as the conductive bonding material, and the oxide superconducting laminate is electrically bonded to a metal conductor by melting and solidification of the solder layer accompanying heat treatment and cooling treatment. The manufacturing method of the oxide superconducting wire as described in any one of these.
JP2011222035A 2011-10-06 2011-10-06 Oxide superconducting wire and method for producing the same Expired - Fee Related JP5775785B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011222035A JP5775785B2 (en) 2011-10-06 2011-10-06 Oxide superconducting wire and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011222035A JP5775785B2 (en) 2011-10-06 2011-10-06 Oxide superconducting wire and method for producing the same

Publications (2)

Publication Number Publication Date
JP2013084382A true JP2013084382A (en) 2013-05-09
JP5775785B2 JP5775785B2 (en) 2015-09-09

Family

ID=48529406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011222035A Expired - Fee Related JP5775785B2 (en) 2011-10-06 2011-10-06 Oxide superconducting wire and method for producing the same

Country Status (1)

Country Link
JP (1) JP5775785B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015207746A (en) * 2014-04-23 2015-11-19 公益財団法人鉄道総合技術研究所 High-temperature superconducting coil winding method and high-temperature superconducting coil winding machine of the same
JP2017538386A (en) * 2014-10-17 2017-12-21 モーグ インコーポレイテッド Superconducting equipment such as current collector rings and homopolar motors / generators
CN109698046A (en) * 2019-01-15 2019-04-30 中国科学院电工研究所 A kind of iron-based superconduction reinforcing strip and preparation method thereof
CN114822917A (en) * 2018-06-26 2022-07-29 Abb瑞士股份有限公司 Copper conductor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0562536A (en) * 1991-08-30 1993-03-12 Hitachi Cable Ltd Aggrigated conductor of oxide type superconductive wires
JP2003505848A (en) * 1999-07-23 2003-02-12 アメリカン・スーパーコンダクター・コーポレーション Encapsulated ceramic superconductor
JP2009503794A (en) * 2005-07-29 2009-01-29 アメリカン・スーパーコンダクター・コーポレーション Architecture for high temperature superconductor wires
WO2009022484A1 (en) * 2007-08-14 2009-02-19 Sumitomo Electric Industries, Ltd. Superconductive tape and method of manufacturing the same
JP2012209189A (en) * 2011-03-30 2012-10-25 Fujikura Ltd Oxide superconducting wire material and method for manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0562536A (en) * 1991-08-30 1993-03-12 Hitachi Cable Ltd Aggrigated conductor of oxide type superconductive wires
JP2003505848A (en) * 1999-07-23 2003-02-12 アメリカン・スーパーコンダクター・コーポレーション Encapsulated ceramic superconductor
JP2009503794A (en) * 2005-07-29 2009-01-29 アメリカン・スーパーコンダクター・コーポレーション Architecture for high temperature superconductor wires
WO2009022484A1 (en) * 2007-08-14 2009-02-19 Sumitomo Electric Industries, Ltd. Superconductive tape and method of manufacturing the same
JP2012209189A (en) * 2011-03-30 2012-10-25 Fujikura Ltd Oxide superconducting wire material and method for manufacturing the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015207746A (en) * 2014-04-23 2015-11-19 公益財団法人鉄道総合技術研究所 High-temperature superconducting coil winding method and high-temperature superconducting coil winding machine of the same
JP2017538386A (en) * 2014-10-17 2017-12-21 モーグ インコーポレイテッド Superconducting equipment such as current collector rings and homopolar motors / generators
US10446995B2 (en) 2014-10-17 2019-10-15 Moog Inc. Superconducting devices, such as slip-rings and homopolar motors/generators
US10965077B2 (en) 2014-10-17 2021-03-30 Moog Inc. Superconducting devices, such as slip-rings and homopolar motors/generators
CN114822917A (en) * 2018-06-26 2022-07-29 Abb瑞士股份有限公司 Copper conductor
CN114822917B (en) * 2018-06-26 2024-04-09 Abb瑞士股份有限公司 Copper conductor
CN109698046A (en) * 2019-01-15 2019-04-30 中国科学院电工研究所 A kind of iron-based superconduction reinforcing strip and preparation method thereof
CN109698046B (en) * 2019-01-15 2020-09-15 中国科学院电工研究所 Iron-based superconducting reinforcing belt and preparation method thereof

Also Published As

Publication number Publication date
JP5775785B2 (en) 2015-09-09

Similar Documents

Publication Publication Date Title
JP5933781B2 (en) Oxide superconducting wire
US9362026B2 (en) Oxide superconductor wire, connection structure thereof, and superconductor equipment
JP5568361B2 (en) Superconducting wire electrode joint structure, superconducting wire, and superconducting coil
US20190172612A1 (en) Oxide superconducting wire
JP6155258B2 (en) Superconducting wire, superconducting wire connection structure, superconducting wire connecting method, and superconducting wire terminal treatment method
JP5775785B2 (en) Oxide superconducting wire and method for producing the same
JP6101490B2 (en) Oxide superconducting wire connection structure and superconducting equipment
JP2014154320A (en) Connection structure of oxide superconductive wire rod and superconductive apparatus
RU2597211C1 (en) Wire made from oxide superconductor
JP5732345B2 (en) Oxide superconducting wire connecting structure and oxide superconducting wire connecting method
WO2012039444A1 (en) Oxide superconductor wire material and method for producing same
JP2014130730A (en) Connection structure and connection method of oxide superconductive wire material, and oxide superconductive wire material using the connection structure
JP6002602B2 (en) Oxide superconducting wire connection structure and manufacturing method thereof
JP5775810B2 (en) Manufacturing method of oxide superconducting wire
JP5775808B2 (en) Oxide superconducting wire and manufacturing method thereof
WO2014104333A1 (en) Connection structure of oxide superconducting wires, method for producing same, and superconducting device
WO2020203543A1 (en) Superconducting wire connecting structure, and superconducting wire
JP2012150981A (en) Oxide superconducting wire material and manufacturing method thereof
JP5723553B2 (en) Oxide superconducting wire manufacturing apparatus and oxide superconducting wire manufacturing method
JP2012209189A (en) Oxide superconducting wire material and method for manufacturing the same
JP5701356B2 (en) Oxide superconducting wire and method for producing the same
JP2015011860A (en) Oxide superconductive wire rod and production method thereof
JP2014154331A (en) Oxide superconductive wire material, connection structure of oxide superconductive wire materials, and method for manufacturing an oxide superconductive wire material
JP2013187103A (en) Oxide superconducting wire and manufacturing method therefor
JP2014110144A (en) Connection structure of oxide superconductive conductor and superconductive apparatus provided therewith

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150324

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150521

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150609

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150706

R151 Written notification of patent or utility model registration

Ref document number: 5775785

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees