JP5732345B2 - Oxide superconducting wire connecting structure and oxide superconducting wire connecting method - Google Patents

Oxide superconducting wire connecting structure and oxide superconducting wire connecting method Download PDF

Info

Publication number
JP5732345B2
JP5732345B2 JP2011174903A JP2011174903A JP5732345B2 JP 5732345 B2 JP5732345 B2 JP 5732345B2 JP 2011174903 A JP2011174903 A JP 2011174903A JP 2011174903 A JP2011174903 A JP 2011174903A JP 5732345 B2 JP5732345 B2 JP 5732345B2
Authority
JP
Japan
Prior art keywords
layer
oxide superconducting
superconducting wire
base material
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011174903A
Other languages
Japanese (ja)
Other versions
JP2013037991A (en
Inventor
泰範 須藤
泰範 須藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2011174903A priority Critical patent/JP5732345B2/en
Publication of JP2013037991A publication Critical patent/JP2013037991A/en
Application granted granted Critical
Publication of JP5732345B2 publication Critical patent/JP5732345B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

本発明は、酸化物超電導線材の接続構造体及び酸化物超電導線材の接続方法に関する。   The present invention relates to an oxide superconducting wire connecting structure and an oxide superconducting wire connecting method.

近年になって発見されたRE−123系酸化物超電導体(REBaCu7−X:REはYを含む希土類元素)は、液体窒素温度以上で超電導性を示し、電流損失が低いため、実用上極めて有望な素材とされており、これを線材に加工して電力供給用の導体あるいは磁気コイル等として使用することが要望されている。この酸化物超電導体を線材に加工するための方法として、金属基材テープ上に酸化物超電導層を形成する方法が研究されている。 RE-123 oxide superconductor discovered in recent years (REBa 2 Cu 3 O 7-X, where RE is a rare earth element including Y) exhibits superconductivity above liquid nitrogen temperature and has low current loss. It is considered as a very promising material for practical use, and it is desired to process it into a wire and use it as a power supply conductor or a magnetic coil. As a method for processing this oxide superconductor into a wire, a method of forming an oxide superconducting layer on a metal substrate tape has been studied.

酸化物超電導線材にあっては、酸化物超電導層上に薄い銀の安定化層を形成し、その上に銅などの良導電性金属材料からなる厚い安定化層を設けた2層構造の安定化層を積層する構造が採用されている。前記銀の安定化層は、酸化物超電導層を水分から保護する目的のためにも設けられており、銅の安定化層は、酸化物超電導層が外乱を受けて超電導状態から常電導状態に遷移しようとしたとき、該酸化物超電導層の電流を転流させるバイパスとして機能させ、酸化物超電導線材を電気的に保護するための目的で設けられている。   In the oxide superconducting wire, the stability of the two-layer structure in which a thin silver stabilizing layer is formed on the oxide superconducting layer and a thick stabilizing layer made of a highly conductive metal material such as copper is provided thereon. A structure in which a chemical layer is laminated is employed. The silver stabilizing layer is also provided for the purpose of protecting the oxide superconducting layer from moisture, and the copper stabilizing layer is changed from the superconducting state to the normal conducting state due to the disturbance of the oxide superconducting layer. It is provided for the purpose of functioning as a bypass for commutating the current of the oxide superconducting layer when it is going to transition and electrically protecting the oxide superconducting wire.

このような酸化物超電導線材を実用機器に応用するためには、酸化物超超電導導体を接続する技術の開発が要望されている。
従来の酸化物超電導線材の接続方法としては、はんだにより安定化層の外表面側同士を貼り合わせる方法や、安定化層同士を接触させ、熱を加えることにより、拡散接合させる方法が提案されている(特許文献1、2参照)。
In order to apply such an oxide superconducting wire to a practical device, development of a technique for connecting an oxide superconducting conductor is desired.
As a conventional method for connecting the oxide superconducting wire, there are proposed a method in which the outer surface sides of the stabilization layer are bonded to each other with solder, and a method in which the stabilization layers are brought into contact with each other and heat is applied to perform diffusion bonding. (See Patent Documents 1 and 2).

特開2008−234957号公報JP 2008-234957 A 特開2007−12582号公報JP 2007-12582 A

しかしながら、特許文献1に開示された方法により接続された接続構造体は、接続部分の線材に段差が生じてしまうため、線材をコイル状に巻き線加工すると、段差部分の上側にある線材に負荷がかかり、その部分で超電導特性が劣化してしまうおそれがある。
特許文献2に開示された方法により接続された接続構造体おいても、接続するために別の線材を張り合わせる構造であるため、特許文献1に開示された方法と同様に、線材に段差が生じてしまう。
However, in the connection structure connected by the method disclosed in Patent Document 1, a step is generated in the wire at the connection portion. Therefore, when the wire is wound into a coil shape, a load is applied to the wire above the step portion. There is a risk that the superconducting characteristics will deteriorate at that portion.
Even in the connection structure connected by the method disclosed in Patent Document 2, since it has a structure in which another wire is bonded for connection, there is a step in the wire, as in the method disclosed in Patent Document 1. It will occur.

本発明は、以上のような従来の実情に鑑みなされたものであり、段差を発生させることなく接続が可能であり、接続部分の酸化物超電導層への水分の浸入を抑えることができる酸化物超電導線材の接続構造体及び酸化物超電導線材の接続方法を提供することを目的とする。   The present invention has been made in view of the conventional situation as described above, and can be connected without causing a step, and can suppress the intrusion of moisture into the oxide superconducting layer at the connection portion. It is an object of the present invention to provide a superconducting wire connecting structure and an oxide superconducting wire connecting method.

上記課題を解決するため、本発明の酸化物超電導線材の接続構造体は、基材と、中間層と、酸化物超電導層と、銀層と、がこの順に積層されてなる超電導積層体が、銀層から基材まで達する溝加工部を介し、はんだ層を挟んで二つ折りにされ、この二つ折りに重ねられた超電導積層体のうち一方の接続端近傍の基材から銀層までをはんだ層が露出するように除去された少なくとも2本の第1の酸化物超電導線材が、前記露出させたはんだ層同士を一体化して接続されてなることを特徴とする。
本発明の酸化物超電導線材の接続構造体は、酸化物超電導層が基材に挟まれるように、超電導積層体が二つ折りにされ、この二つ折りに重ねられた超電導積層体のうち一方の接続端近傍の基材から銀層までをはんだ層が露出するように除去してなる第1の酸化物超電導線材同士が接続されてなる構成である。
そのため、線材の全体の厚さを厚くすることなく、酸化物超電導層が外部から遮蔽された構成の酸化物超電導線材を段差が生じることなく接続された構成を実現できる。
従って、酸化物超電導層への水分の浸入を抑えるので、酸化物超電導層が水分によりダメージを受けることがなく、超電導特性が劣化することを防止でき、さらに段差を有しないので、コイル形状に巻線した際、局所劣化が生じることがない。
In order to solve the above problems, the superconducting laminate in which the base material, the intermediate layer, the oxide superconducting layer, and the silver layer are laminated in this order is a connection structure of the oxide superconducting wire of the present invention. Soldered from the base material to the silver layer in the vicinity of one of the connection ends of the superconducting laminate that is folded in half with the solder layer sandwiched through the groove processing part reaching from the silver layer to the base material The at least two first oxide superconducting wires removed so as to be exposed are formed by integrally connecting the exposed solder layers.
The connection structure of the oxide superconducting wire according to the present invention is such that the superconducting laminate is folded in two so that the oxide superconducting layer is sandwiched between the base materials, and one of the superconducting laminates stacked in the folded state is connected. The first oxide superconducting wire is formed by connecting the base material near the edge to the silver layer so that the solder layer is exposed.
Therefore, it is possible to realize a configuration in which the oxide superconducting wire having a configuration in which the oxide superconducting layer is shielded from the outside is connected without causing a step without increasing the overall thickness of the wire.
Therefore, since the infiltration of moisture into the oxide superconducting layer is suppressed, the oxide superconducting layer is not damaged by moisture, the superconducting characteristics can be prevented from being deteriorated, and further, there is no step, so that the coil shape is wound. When drawn, local degradation does not occur.

上記課題を解決するため、本発明の酸化物超電導線材の接続構造体は、基材と、中間層と、酸化物超電導層と、銀層と、がこの順に積層されてなる超電導積層体が、銀層から基材まで達する溝加工部を介し、はんだ層を挟んで二つ折りにされ、この二つ折りに重ねられた超電導積層体のうち一方の接続端近傍の基材から銀層までをはんだ層が露出するように除去されて第1の酸化物超電導線材が構成され、基材と、中間層と、酸化物超電導層と、銀層と、がこの順に積層されて第2の酸化物超電導線材が構成され、前記少なくとも2本の第1の酸化物超電導線材の前記接続端が対向配置され、
前記第1の酸化物超電導線材の露出されたはんだ層と前記第2の酸化物超電導線材が接続されてなることを特徴とする。
本発明の酸化物超電導線材の接続構造体は、接続端近傍の基材から銀層までをはんだ層が露出するように除去してなる2本の第1の酸化物超電導線材に対し、はんだ層露出部分の段差を埋めるように、1本の第2の酸化物超電導線材を接続しているため、線材の全体の厚さを厚くすることなく、酸化物超電導層が外部から遮蔽された構成の酸化物超電導線材を段差が生じることなく接続された構成を実現できる。
従って、酸化物超電導層への水分の浸入を抑えるので、酸化物超電導層が水分によりダメージを受けることがなく、超電導特性が劣化することを防止でき、さらに段差を有しないので、コイル形状に巻線した際、局所劣化が生じることがない。
In order to solve the above problems, the superconducting laminate in which the base material, the intermediate layer, the oxide superconducting layer, and the silver layer are laminated in this order is a connection structure of the oxide superconducting wire of the present invention. Soldered from the base material to the silver layer in the vicinity of one of the connection ends of the superconducting laminate that is folded in half with the solder layer sandwiched through the groove processing part reaching from the silver layer to the base material The first oxide superconducting wire is formed by removing the exposed portion, and the base material, the intermediate layer, the oxide superconducting layer, and the silver layer are laminated in this order to form the second oxide superconducting wire. And the connection ends of the at least two first oxide superconducting wires are arranged to face each other.
The exposed solder layer of the first oxide superconducting wire is connected to the second oxide superconducting wire.
The connection structure of the oxide superconducting wire according to the present invention has a solder layer for the two first oxide superconducting wires formed by removing the solder layer from the base material in the vicinity of the connection end to the silver layer. Since one second oxide superconducting wire is connected so as to fill the step in the exposed portion, the oxide superconducting layer is shielded from the outside without increasing the overall thickness of the wire. It is possible to realize a configuration in which oxide superconducting wires are connected without causing a step.
Therefore, since the infiltration of moisture into the oxide superconducting layer is suppressed, the oxide superconducting layer is not damaged by moisture, the superconducting characteristics can be prevented from being deteriorated, and further, there is no step, so that the coil shape is wound. When drawn, local degradation does not occur.

また、本発明の酸化物超電導線材の接続構造体において、前記酸化物超電導線材は、銀層上に更に金属安定化層が積層されたものとすることもできる。
この場合、酸化物超電導層のはんだ層側の面に銀層と金属安定化層を備える構成となるため、酸化物超電導層を安定化する効果が更に高まる。また、酸化物超電導層のはんだ層側の面が銀層、および金属安定化層により積層される構成となり、さらに効果的に酸化物超電導層への水分の浸入を抑えるので、酸化物超電導層が水分によりダメージを受けることがなくなり、超電導特性が劣化することをより確実に防止できる。
In the oxide superconducting wire connecting structure according to the present invention, the oxide superconducting wire may be formed by further laminating a metal stabilizing layer on the silver layer.
In this case, since the silver superconductor layer and the metal stabilizing layer are provided on the surface of the oxide superconductor layer on the solder layer side, the effect of stabilizing the oxide superconductor layer is further enhanced. In addition, the surface of the oxide superconducting layer on the solder layer side is laminated with a silver layer and a metal stabilizing layer, and more effectively prevents moisture from entering the oxide superconducting layer. It is possible to prevent the deterioration of the superconducting characteristics more reliably without being damaged by moisture.

上記課題を解決するため、本発明の酸化物超電導線材の接続構造体は、基材と、中間層と、酸化物超電導層と、銀層と、金属安定化層と、がこの順に積層されてなる超電導積層体が、金属安定化層から基材まで達する溝加工部を介し、はんだ層を挟んで二つ折りにされて、第3の酸化物超電導線材が構成され、前記第3の酸化物超電導線材の接続端の金属安定化層が、基材の接続端から外方に所定長さ延出されるとともに、基材と、中間層と、酸化物超電導層と、銀層と、金属安定化層と、がこの順に積層されてなる超電導積層体が、金属安定化層から基材まで達する溝加工部を介し、はんだ層を挟んで二つ折りにされ、接続端近傍の金属安定化層が除去され、露出した銀層上にはんだ層が形成されて、第4の酸化物超電導線材が構成され、
第4の酸化物超電導線材の二つ折り部分に前記第3の酸化物超電導線材の金属安定化層の延出部分が挟まれてはんだ層により接続されてなることを特徴とする。
本発明の酸化物超電導線材の接続方法は、酸化物超電導層が基材に挟まれるように、超電導積層体を二つ折りにしてなる第3の酸化物超電導線材と、該第3の酸化物超電導線材の接続端の金属安定化層を介して、超電導積層体を二つ折りにし、接続端近傍の金属安定化層が除去されてなる第4の酸化物超電導線材と、を接続してなる構成であるため、線材の全体の厚さを厚くすることなく、酸化物超電導層が外部から遮蔽された構成の酸化物超電導線材を段差が生じることなく接続された構成を実現できる。
従って、酸化物超電導層への水分の浸入を抑えるので、酸化物超電導層が水分によりダメージを受けることがなく、超電導特性が劣化することを防止でき、さらに段差を有しないので、コイル形状に巻線した際、局所劣化が生じることがない。
In order to solve the above problems, the oxide superconducting wire connection structure of the present invention comprises a base material, an intermediate layer, an oxide superconducting layer, a silver layer, and a metal stabilizing layer laminated in this order. And a third oxide superconducting wire is formed by folding the superconducting laminate into two with a solder layer interposed therebetween through a grooved portion extending from the metal stabilizing layer to the base material. The metal stabilization layer at the connection end of the wire extends outward for a predetermined length from the connection end of the substrate, and the substrate, the intermediate layer, the oxide superconducting layer, the silver layer, and the metal stabilization layer The superconducting laminate formed by laminating in this order is folded in half with the solder layer sandwiched between the grooved portion reaching from the metal stabilizing layer to the base material, and the metal stabilizing layer near the connection end is removed. A solder layer is formed on the exposed silver layer to form a fourth oxide superconducting wire;
An extended portion of the metal stabilization layer of the third oxide superconducting wire is sandwiched between two folded portions of the fourth oxide superconducting wire and is connected by a solder layer.
The method for connecting oxide superconducting wires of the present invention includes a third oxide superconducting wire formed by folding a superconducting laminate in half so that the oxide superconducting layer is sandwiched between substrates, and the third oxide superconducting wire. A structure in which the superconducting laminate is folded in half through the metal stabilization layer at the connection end of the wire, and the fourth oxide superconducting wire is formed by removing the metal stabilization layer near the connection end. Therefore, it is possible to realize a configuration in which the oxide superconducting wire having the configuration in which the oxide superconducting layer is shielded from the outside is connected without causing a step without increasing the overall thickness of the wire.
Therefore, since the infiltration of moisture into the oxide superconducting layer is suppressed, the oxide superconducting layer is not damaged by moisture, the superconducting characteristics can be prevented from being deteriorated, and further, there is no step, so that the coil shape is wound. When drawn, local degradation does not occur.

上記課題を解決するため、本発明の酸化物超電導線材の接続方法は、基材と、中間層と、酸化物超電導層と、銀層と、がこの順に積層されてなる超電導積層体が、銀層から基材まで達する溝加工部を介し、はんだ層を挟んで二つ折りにされてなる酸化物超電導線材において、二つ折りに重ねられた超電導積層体のうち一方の接続端近傍の基材から銀層までをはんだ層が露出するように除去し、第1の酸化物超電導線材を得る第1工程と、前記第1の酸化物超電導線材を少なくとも2本準備し、各々の第1の酸化物超電導線材の接続端について露出させたはんだ層同士を重ねて加熱しはんだ層同士を一体化し、前記第1の酸化物超電導線材同士を接続する第2工程と、を備えることを特徴とする。
本発明の酸化物超電導線材の接続方法は、酸化物超電導層が基材に挟まれるように、超電導積層体を二つ折りにして酸化物超電導線材を得た後、その酸化物超電導線材の接続端近傍の基材から銀層までをはんだ層が露出するように除去して得られた第1の酸化物超電導線材同士を接続する構成である。
前記接続方法は、第1の酸化物超電導線材において、基材から銀層までを除去して露出したはんだ層同士を重ねて加熱し、第1の酸化物超電導線材同士を接続する構成であるため、酸化物超電導層が外部から遮蔽された構成の酸化物超電導線材を段差が生じることなく接合することができる。
従って、コイル形状に巻線した際、段差による局所劣化が生じることなく、超電導特性に優れた酸化物超電導線材の接続体を提供できる。
In order to solve the above problems, the superconducting laminate in which the base material, the intermediate layer, the oxide superconducting layer, and the silver layer are laminated in this order is a silver superconducting laminate according to the present invention. In the oxide superconducting wire that is folded in half with the solder layer sandwiched between the grooved portion reaching from the layer to the substrate, the silver is removed from the substrate in the vicinity of one connection end of the superconducting laminate that is folded in half. At least two of the first oxide superconducting wires are prepared, and a first step of obtaining a first oxide superconducting wire by removing up to the layer so that the solder layer is exposed, and each first oxide superconducting wire And a second step of connecting the first oxide superconducting wires together by superimposing and heating the solder layers exposed at the connection ends of the wires to integrate the solder layers.
The method for connecting the oxide superconducting wire of the present invention is obtained by folding the superconducting laminate in two so that the oxide superconducting layer is sandwiched between the base materials to obtain an oxide superconducting wire, and then connecting the oxide superconducting wire. In this configuration, first oxide superconducting wires obtained by removing the solder layer from the nearby base material to the silver layer are connected to each other.
In the first oxide superconducting wire, the connection method is configured to connect the first oxide superconducting wires by heating the solder layers exposed by removing the base layer to the silver layer. The oxide superconducting wire having a structure in which the oxide superconducting layer is shielded from the outside can be joined without causing a step.
Therefore, it is possible to provide a connected body of oxide superconducting wire excellent in superconducting characteristics without causing local deterioration due to a step when wound in a coil shape.

上記課題を解決するため、本発明の酸化物超電導線材の接続方法は、基材と、中間層と、酸化物超電導層と、銀層と、がこの順に積層されてなる超電導積層体が、銀層から基材まで達する溝加工部を介し、はんだ層を挟んで二つ折りにされてなる酸化物超電導線材において、二つ折りに重ねられた超電導積層体のうち一方の接続端近傍の基材から銀層までをはんだ層が露出するように除去し、第1の酸化物超電導線材を得る第1工程と、前記第1の酸化物超電導線材を少なくとも2本準備し、基材と、中間層と、酸化物超電導層と、銀層と、がこの順に積層されてなる第2の酸化物超電導線材を少なくとも1本準備し、前記少なくとも2本の第1の酸化物超電導線材の前記接続端を対向配置し、前記露出させたはんだ層に対し、前記第2の酸化物超電導線材の銀層を重ねて加熱し、前記少なくとも2本の第1の酸化物超電導線材と前記少なくとも1本の第2の酸化物超電導線材を接続する第3工程と、を備えることを特徴とする。
本発明の酸化物超電導線材の接続方法は、対向配置した第1の酸化物超電導線材の露出させたはんだ層に対し、前記第2の酸化物超電導線材の銀層を重ねてはんだ層の部分の段差を埋めてから加熱し、前記第1の酸化物超電導線材と第2の酸化物超電導線材を接続する構成であるため、酸化物超電導層が外部から遮蔽された構成の酸化物超電導線材を段差が生じることなく接合することができる。
従って、コイル形状に巻線した際、段差による局所劣化が生じることなく、超電導特性に優れた酸化物超電導線材の接続体を提供できる。
In order to solve the above problems, the superconducting laminate in which the base material, the intermediate layer, the oxide superconducting layer, and the silver layer are laminated in this order is a silver superconducting laminate according to the present invention. In the oxide superconducting wire that is folded in half with the solder layer sandwiched between the grooved portion reaching from the layer to the substrate, the silver is removed from the substrate in the vicinity of one connection end of the superconducting laminate that is folded in half. A first step of obtaining a first oxide superconducting wire, removing at least two layers so as to expose the solder layer, and preparing at least two first oxide superconducting wires, a base material, an intermediate layer, At least one second oxide superconducting wire in which an oxide superconducting layer and a silver layer are laminated in this order is prepared, and the connection ends of the at least two first oxide superconducting wires are arranged to face each other. And the second acid is applied to the exposed solder layer. And a third step of connecting the at least two first oxide superconducting wires and the at least one second oxide superconducting wire by superimposing and heating the silver layer of the physical superconducting wire. And
In the method for connecting oxide superconducting wires of the present invention, the silver layer of the second oxide superconducting wire is overlapped with the exposed solder layer of the first oxide superconducting wire arranged opposite to the solder layer portion. Since the first oxide superconducting wire and the second oxide superconducting wire are connected by heating after filling the step, the oxide superconducting wire having a structure in which the oxide superconducting layer is shielded from the outside is stepped. It can join without generating.
Therefore, it is possible to provide a connected body of oxide superconducting wire excellent in superconducting characteristics without causing local deterioration due to a step when wound in a coil shape.

また、本発明の酸化物超電導線材の接続方法は、前記酸化物超電導線材が、銀層上に更に金属安定化層が積層されたものとすることもできる。
この場合、酸化物超電導層のはんだ層側の面に銀層と金属安定化層を形成する構成となるため、酸化物超電導層を安定化する効果が更に向上した酸化物超電導線材の接続体を提供できる。
また、酸化物超電導層のはんだ層側の面が銀層、および金属安定化層により積層される構成の酸化物超電導線材の接続体が製造できるため、さらに効果的に酸化物超電導層への水分の浸入を抑えるので、酸化物超電導層が水分によりダメージを受けて超電導特性が劣化することをより確実に防ぐことができる酸化物超電導線材の接続体を提供できる。
Moreover, the oxide superconducting wire connection method of the present invention may be such that the oxide superconducting wire further has a metal stabilizing layer laminated on a silver layer.
In this case, since the silver layer and the metal stabilizing layer are formed on the surface of the oxide superconducting layer on the solder layer side, the oxide superconducting wire connecting body further improving the effect of stabilizing the oxide superconducting layer is provided. Can be provided.
In addition, a connection body of oxide superconducting wire with a structure in which the solder layer side surface of the oxide superconducting layer is laminated with a silver layer and a metal stabilizing layer can be manufactured. Therefore, it is possible to provide an oxide superconducting wire connecting body that can more reliably prevent the oxide superconducting layer from being damaged by moisture and degrading the superconducting characteristics.

上記課題を解決するため、本発明の酸化物超電導線材の接続方法は、基材と、中間層と、酸化物超電導層と、銀層と、金属安定化層と、がこの順に積層されてなる超電導積層体が、金属安定化層から基材まで達する溝加工部を介し、はんだ層を挟んで二つ折りにされてなる酸化物超電導線材において、接続端側の金属安定化層が基材の外方に突出された第3の酸化物超電導線材を得る第4工程と、
基材と、中間層と、酸化物超電導層と、銀層と、金属安定化層と、がこの順に積層されてなる超電導積層体の金属安定化層側を、該超電導積層体の幅方向の中間部から長手方向に沿って金属安定化層から基材に達するように溝加工して溝加工部を設け、該溝加工部が設けられた前記金属安定化層側の上面にはんだ層を形成し、該はんだ層が内側となるように、前記溝加工部を介して前記超電導積層体を二つ折りにし、接続端近傍の金属安定化層を除去し、露出した銀層上にはんだ層を形成し、第4の酸化物超電導線材を得る第5工程と、
前記第3の酸化物超電導線材を少なくとも1本準備し、前記第4の酸化物超電導線材を少なくとも1本準備し、第3の酸化物超電導線材の外方に突出された金属安定化層を、前記第4の酸化物超電導線材の露出した銀層上に形成したはんだ層が挟み込むように、重ねて加熱し、前記少なくとも1本の第3の酸化物超電導線材と前記少なくとも1本の第4の酸化物超電導線材を接続する第6工程と、
を備えることを特徴とする。
本発明の酸化物超電導線材の接続方法は、酸化物超電導層が基材に挟まれるように、超電導積層体を二つ折りにして、接続端側の金属安定化層が基材の外方に突出された第3の酸化物超電導線材を得た後、その第3の酸化物超電導線材の外方に突出された金属安定化層を挟むように、超電導積層体を二つ折りにし、第4の酸化物超電導線材を得ると同時に、前記外方に突出された金属安定化層を介して、第3の酸化物超電導線材と第4の酸化物超電導線材とを接続する構成であるため、酸化物超電導層が外部から遮蔽された構成の酸化物超電導線材を段差が生じることなく接合することができる。
従って、コイル形状に巻線した際、段差による局所劣化が生じることなく、超電導特性に優れた酸化物超電導線材の接続体を提供できる。
In order to solve the above-described problems, a method for connecting an oxide superconducting wire according to the present invention includes a base material, an intermediate layer, an oxide superconducting layer, a silver layer, and a metal stabilizing layer laminated in this order. In the oxide superconducting wire in which the superconducting laminate is folded in two with the solder layer sandwiched between the grooved portion reaching from the metal stabilizing layer to the substrate, the metal stabilizing layer on the connection end side is outside the substrate. A fourth step of obtaining a third oxide superconducting wire protruding in the direction;
The metal stabilizing layer side of the superconducting laminate in which the base material, the intermediate layer, the oxide superconducting layer, the silver layer, and the metal stabilizing layer are laminated in this order is arranged in the width direction of the superconducting laminate. A groove is formed by grooving from the metal stabilization layer to the base material along the longitudinal direction from the middle portion, and a solder layer is formed on the upper surface of the metal stabilization layer side where the groove processing portion is provided Then, the superconducting laminate is folded in two through the grooved portion so that the solder layer is on the inside, the metal stabilizing layer near the connection end is removed, and a solder layer is formed on the exposed silver layer And a fifth step of obtaining a fourth oxide superconducting wire,
Preparing at least one third oxide superconducting wire, preparing at least one fourth oxide superconducting wire, and providing a metal stabilization layer protruding outward from the third oxide superconducting wire; The at least one third oxide superconducting wire and the at least one fourth fourth are heated so as to sandwich a solder layer formed on the exposed silver layer of the fourth oxide superconducting wire. A sixth step of connecting the oxide superconducting wire;
It is characterized by providing.
In the method for connecting the oxide superconducting wire of the present invention, the superconducting laminate is folded in two so that the oxide superconducting layer is sandwiched between the bases, and the metal stabilization layer on the connection end side protrudes outward from the base. After obtaining the third oxide superconducting wire, the superconducting laminate is folded in half so as to sandwich the metal stabilization layer protruding outward from the third oxide superconducting wire, and the fourth oxidation Since the superconducting wire is configured to connect the third oxide superconducting wire and the fourth oxide superconducting wire through the metal stabilizing layer protruding outward, the oxide superconducting wire is obtained. An oxide superconducting wire having a structure in which the layer is shielded from the outside can be joined without causing a step.
Therefore, it is possible to provide a connected body of oxide superconducting wire excellent in superconducting characteristics without causing local deterioration due to a step when wound in a coil shape.

本発明によれば、接続部分に段差を発生させることなく、酸化物超電導層への水分の浸入を抑えることができる酸化物超電導線材の接続構造体及び酸化物超電導線材の接続方法が提供される。   ADVANTAGE OF THE INVENTION According to this invention, the connection structure of an oxide superconducting wire and the connection method of an oxide superconducting wire which can suppress the penetration | invasion of the water | moisture content to an oxide superconducting layer, without producing a level | step difference in a connection part are provided. .

本発明に係る接続構造体の第1実施形態に用いられる酸化物超電導線材を示す断面斜視図である。It is a section perspective view showing an oxide superconducting wire used for a 1st embodiment of a connection structure concerning the present invention. 本発明に係る接続構造体の第1実施形態に用いられる超電導積層体を示す断面斜視図である。It is a section perspective view showing a superconducting layered product used for a 1st embodiment of a connection structure concerning the present invention. 第1実施形態に用いられる酸化物超電導線材の製造方法の一例を説明する図である。It is a figure explaining an example of the manufacturing method of the oxide superconducting wire used for 1st Embodiment. 本発明に係る酸化物超電導線材の接続方法の第1実施形態の一例を説明する図である。It is a figure explaining an example of 1st Embodiment of the connection method of the oxide superconducting wire which concerns on this invention. 本発明に係る酸化物超電導線材の接続方法の第1実施形態の一例を説明する図である。It is a figure explaining an example of 1st Embodiment of the connection method of the oxide superconducting wire which concerns on this invention. 本発明に係る接続構造体の第2実施形態に用いられる超電導積層体を示す断面斜視図である。It is a cross-sectional perspective view which shows the superconducting laminated body used for 2nd Embodiment of the connection structure which concerns on this invention. 本発明に係る接続構造体の第2実施形態に用いられる酸化物超電導線材を示す断面斜視図である。It is a cross-sectional perspective view which shows the oxide superconducting wire used for 2nd Embodiment of the connection structure which concerns on this invention. 第2実施形態に用いられる酸化物超電導線材の製造方法の一例を説明する図である。It is a figure explaining an example of the manufacturing method of the oxide superconducting wire used for 2nd Embodiment. 本発明に係る酸化物超電導線材の接続方法の第2実施形態の一例を説明する図である。It is a figure explaining an example of 2nd Embodiment of the connection method of the oxide superconducting wire which concerns on this invention. 本発明に係る酸化物超電導線材の接続方法の第2実施形態の一例を説明する図である。It is a figure explaining an example of 2nd Embodiment of the connection method of the oxide superconducting wire which concerns on this invention. 本発明に係る酸化物超電導線材の接続方法の第3実施形態の一例を説明する図である。It is a figure explaining an example of 3rd Embodiment of the connection method of the oxide superconducting wire which concerns on this invention. 本発明に係る酸化物超電導線材の接続方法の第4実施形態の一例を説明する図である。It is a figure explaining an example of 4th Embodiment of the connection method of the oxide superconducting wire which concerns on this invention. 本発明に係る酸化物超電導線材の接続方法の第5実施形態の一例を説明する図である。It is a figure explaining an example of 5th Embodiment of the connection method of the oxide superconducting wire which concerns on this invention.

以下、本発明に係る酸化物超電導線材の接続方法、及び酸化物超電導線材の接続構造体(以下、接続構造体ということもある。)の実施形態について、図面に基づいて説明する。
[第1実施形態]
図1は、本発明に係る接続構造体の第1実施形態に用いられる酸化物超電導線材を示す断面斜視図である。図1に示すように、本実施形態に用いられる酸化物超電導線材10は、酸化物超電導層3を基材1で挟むように、溝加工部11を介して、基材1を二つ折りにしてなる構造となっている。
Hereinafter, embodiments of an oxide superconducting wire connecting method and an oxide superconducting wire connecting structure (hereinafter sometimes referred to as a connecting structure) according to the present invention will be described with reference to the drawings.
[First Embodiment]
FIG. 1 is a cross-sectional perspective view showing an oxide superconducting wire used in the first embodiment of the connection structure according to the present invention. As shown in FIG. 1, the oxide superconducting wire 10 used in the present embodiment is formed by folding the substrate 1 in two via a grooved portion 11 so that the oxide superconducting layer 3 is sandwiched between the substrates 1. It becomes the structure which becomes.

図2は、本発明に係る接続構造体の第1実施形態に用いられる超電導積層体5の断面斜視図である。
図2に示す超電導積層体5は、基材1の上に中間層2と酸化物超電導層3と銀層7が順次積層された構造となっている。
FIG. 2 is a cross-sectional perspective view of the superconducting laminate 5 used in the first embodiment of the connection structure according to the present invention.
A superconducting laminate 5 shown in FIG. 2 has a structure in which an intermediate layer 2, an oxide superconducting layer 3, and a silver layer 7 are sequentially laminated on a base material 1.

<酸化物超電導線材>
基材1は、通常の超電導線材の基材として使用し得るものであれば良く、長尺のプレート状、シート状又はテープ状であることが好ましく、耐熱性の金属からなるものが好ましい。耐熱性の金属の中でも、合金が好ましく、ニッケル(Ni)合金又は銅(Cu)合金がより好ましい。中でも、市販品であればハステロイ(商品名、ヘインズ社製)が好適であり、モリブデン(Mo)、クロム(Cr)、鉄(Fe)、コバルト(Co)等の成分量が異なる、ハステロイB、C、G、N、W等のいずれの種類も使用できる。また、基材1としてニッケル(Ni)合金などに集合組織を導入した配向金属基材を用い、その上に中間層2および酸化物超電導層3を形成してもよい。
基材1の厚さは、目的に応じて適宜調整すれば良く、通常は、10〜500μmであることが好ましい。
<Oxide superconducting wire>
The substrate 1 may be any material that can be used as a substrate for ordinary superconducting wires, and is preferably in the form of a long plate, sheet, or tape, and is preferably made of a heat-resistant metal. Among heat resistant metals, an alloy is preferable, and a nickel (Ni) alloy or a copper (Cu) alloy is more preferable. Among them, if it is a commercial product, Hastelloy (trade name, manufactured by Haynes) is suitable, and the amount of components such as molybdenum (Mo), chromium (Cr), iron (Fe), cobalt (Co) is different, Hastelloy B, Any kind of C, G, N, W, etc. can be used. Further, an oriented metal base material in which a texture is introduced into a nickel (Ni) alloy or the like may be used as the base material 1, and the intermediate layer 2 and the oxide superconducting layer 3 may be formed thereon.
What is necessary is just to adjust the thickness of the base material 1 suitably according to the objective, and it is preferable normally that it is 10-500 micrometers.

中間層2は、酸化物超電導層3の結晶配向性を制御し、基材1中の金属元素の酸化物超電導層3への拡散を防止するものである。さらに、基材1と酸化物超電導層3との物理的特性(熱膨張率や格子定数等)の差を緩和するバッファー層として機能し、その材質は、物理的特性が基材1と酸化物超電導層3との中間的な値を示す金属酸化物が好ましい。中間層2の好ましい材質として具体的には、GdZr、MgO、ZrO−Y(YSZ)、SrTiO、CeO、Y、Al、Gd、Zr、Ho、Nd等の金属酸化物が例示できる。
中間層2は、単層でも良いし、複数層でも良い。
The intermediate layer 2 controls the crystal orientation of the oxide superconducting layer 3 and prevents diffusion of metal elements in the base material 1 into the oxide superconducting layer 3. Furthermore, it functions as a buffer layer that alleviates the difference in physical properties (thermal expansion coefficient, lattice constant, etc.) between the base material 1 and the oxide superconducting layer 3, and the material has physical properties that are based on the base material 1 and the oxide superconductor layer 3. A metal oxide showing an intermediate value with the superconducting layer 3 is preferable. Specifically, preferred materials for the intermediate layer 2 are Gd 2 Zr 2 O 7 , MgO, ZrO 2 —Y 2 O 3 (YSZ), SrTiO 3 , CeO 2 , Y 2 O 3 , Al 2 O 3 , Gd 2. Examples thereof include metal oxides such as O 3 , Zr 2 O 3 , Ho 2 O 3 , and Nd 2 O 3 .
The intermediate layer 2 may be a single layer or a plurality of layers.

さらに、本実施形態において、中間層2は、基材1側に拡散防止層とベッド層が積層された複数層構造でもよい。この場合、基材1とベッド層との間に拡散防止層が介在された構造となる。拡散防止層は、基材1の構成元素拡散を防止する目的で形成されたもので、窒化ケイ素(Si)、酸化アルミニウム(Al)、あるいは希土類金属酸化物等から構成され、その厚さは例えば10〜400nmである。基材1とベッド層との間に拡散防止層を介在させる場合の例としては、拡散防止層としてAl、ベッド層としてYを用いる組み合わせを例示することができる。 Further, in the present embodiment, the intermediate layer 2 may have a multi-layer structure in which a diffusion prevention layer and a bed layer are laminated on the base material 1 side. In this case, the diffusion preventing layer is interposed between the base material 1 and the bed layer. The diffusion prevention layer is formed for the purpose of preventing the diffusion of the constituent elements of the substrate 1 and is made of silicon nitride (Si 3 N 4 ), aluminum oxide (Al 2 O 3 ), rare earth metal oxide, or the like. The thickness is, for example, 10 to 400 nm. As an example of the case where a diffusion preventing layer is interposed between the base material 1 and the bed layer, a combination using Al 2 O 3 as the diffusion preventing layer and Y 2 O 3 as the bed layer can be exemplified.

また中間層2は、前記金属酸化物層の上に、さらにキャップ層が積層された複数層構造でも良い。キャップ層は、酸化物超電導層3の配向性を制御する機能を有するとともに、酸化物超電導層3を構成する元素の中間層2への拡散や、酸化物超電導層3積層時に使用するガスと中間層2との反応を抑制する機能等を有するものである。   The intermediate layer 2 may have a multilayer structure in which a cap layer is further laminated on the metal oxide layer. The cap layer has a function of controlling the orientation of the oxide superconducting layer 3, diffuses the elements constituting the oxide superconducting layer 3 into the intermediate layer 2, and intermediates between the gas used for stacking the oxide superconducting layer 3 and the intermediate layer It has a function of suppressing the reaction with the layer 2 and the like.

キャップ層の材質は、上記機能を発現し得るものであれば特に限定されないが、好ましいものとして具体的には、CeO、Y、Al、Gd、Zr、Ho、Nd等が例示できる。 The material of the cap layer is not particularly limited as long as it can exhibit the above functions, but specifically, preferred examples include CeO 2 , Y 2 O 3 , Al 2 O 3 , Gd 2 O 3 , and Zr 2 O. 3 , Ho 2 O 3 , Nd 2 O 3 and the like.

中間層2の厚さは、目的に応じて適宜調整すれば良いが、通常は、0.1〜5μmである。   The thickness of the intermediate layer 2 may be appropriately adjusted according to the purpose, but is usually 0.1 to 5 μm.

中間層2は、スパッタ法、イオンビームアシスト蒸着法(以下、IBAD法と略記する)等の物理的蒸着法;化学気相成長法(CVD法);塗布熱分解法(MOD法);溶射等、酸化物薄膜を形成する公知の方法で積層できる。特に、IBAD法で形成された前記金属酸化物層は、結晶配向性が高く、酸化物超電導層3やキャップ層の結晶配向性を制御する効果が高い点で好ましい。IBAD法とは、蒸着時に、結晶の蒸着面に対して所定の角度でイオンビームを照射することにより、結晶軸を配向させる方法である。通常は、イオンビームとして、アルゴン(Ar)イオンビームを使用する。   The intermediate layer 2 is formed by physical vapor deposition such as sputtering or ion beam assisted vapor deposition (hereinafter abbreviated as IBAD); chemical vapor deposition (CVD); coating pyrolysis (MOD); thermal spraying, etc. The oxide thin film can be laminated by a known method. In particular, the metal oxide layer formed by the IBAD method is preferable in that the crystal orientation is high and the effect of controlling the crystal orientation of the oxide superconducting layer 3 and the cap layer is high. The IBAD method is a method of orienting crystal axes by irradiating an ion beam at a predetermined angle with respect to a crystal deposition surface during deposition. Usually, an argon (Ar) ion beam is used as the ion beam.

酸化物超電導層3は通常知られている組成の酸化物超電導体からなるものを広く適用することができ、REBaCu(REはY、La、Nd、Sm、Er、Gd等の希土類元素を表す)なる材質のもの、具体的には、Y123(YBaCu)又はGd123(GdBaCu)を例示することができる。また、その他の酸化物超電導体、例えば、BiSrCan−1Cu4+2n+δなる組成等に代表される臨界温度の高い他の酸化物超電導体からなるものを用いても良いのは勿論である。
酸化物超電導層3は、スパッタ法、真空蒸着法、レーザ蒸着法、電子ビーム蒸着法等の物理的蒸着法;化学気相成長法(CVD法);塗布熱分解法(MOD法)等で積層でき、なかでもレーザ蒸着法が好ましい。
酸化物超電導層3の厚みは、0.5〜5μm程度であって、均一な厚みであることが好ましい。
The oxide superconducting layer 3 can be widely applied with an oxide superconductor having a generally known composition, such as REBa 2 Cu 3 O y (RE is Y, La, Nd, Sm, Er, Gd, etc. A material made of a material that represents a rare earth element, specifically, Y123 (YBa 2 Cu 3 O y ) or Gd123 (GdBa 2 Cu 3 O y ) can be exemplified. Further, other oxide superconductors, for example, Bi 2 Sr 2 Ca n- 1 Cu n for O 4 + 2n + δ becomes may be used in compositions such as those made of other oxide superconductors having high critical temperatures representative Of course.
The oxide superconducting layer 3 is formed by physical vapor deposition such as sputtering, vacuum vapor deposition, laser vapor deposition, or electron beam vapor deposition; chemical vapor deposition (CVD); coating pyrolysis (MOD). Among them, the laser vapor deposition method is preferable.
The oxide superconducting layer 3 has a thickness of about 0.5 to 5 μm and preferably a uniform thickness.

酸化物超電導層3の上面を覆うように形成されている銀層7は、スパッタ法などの気相法により成膜されており、その厚さを1〜30μm程度とされる。
銀層7を備える構成とする理由としては、銀は良導電性かつ酸化物超電導層3と接触抵抗が低くなじみの良い点、及び、酸化物超電導層3に酸素をドープするアニール工程においてドープした酸素を酸化物超電導層3から逃避し難くする性質を有する点を挙げることができる。
The silver layer 7 formed so as to cover the upper surface of the oxide superconducting layer 3 is formed by a vapor phase method such as a sputtering method, and has a thickness of about 1 to 30 μm.
The reason why the silver layer 7 is provided is that silver is doped in an annealing process in which oxygen is doped into the oxide superconducting layer 3 and the oxide superconducting layer 3 has a good conductivity and low contact resistance. The point which has a property which makes it difficult to escape oxygen from the oxide superconductor layer 3 can be mentioned.

本実施形態に用いられる酸化物超電導線材10の詳細は後述するが、図1に示されるように、酸化物超電導線材10は、超電導積層体5の銀層7側に、該超電導積層体5の幅方向の中間部から長手方向に沿って銀層7から基材1に達するように溝加工部11が設けられ、溝加工部11が設けられた銀層7側の上面に被着するようにはんだ層12が積層され、はんだ層12が内側となるように溝加工部11を介して超電導積層体5が二つ折りにされてなる。
すなわち、酸化物超電導線材10は、基材1と中間層2と酸化物超電導層3と銀層7がこの順に積層されてなる超電導積層体5が、銀層7から基材1まで達する溝加工部11を介し、はんだ層12を挟んで二つ折りにされてなる構造となっている。
Although details of the oxide superconducting wire 10 used in this embodiment will be described later, as shown in FIG. 1, the oxide superconducting wire 10 is formed on the silver layer 7 side of the superconducting laminate 5. A grooved portion 11 is provided so as to reach the base material 1 from the silver layer 7 along the longitudinal direction from an intermediate portion in the width direction, and is attached to the upper surface on the silver layer 7 side where the grooved portion 11 is provided. The solder layer 12 is laminated, and the superconducting laminate 5 is folded in two via the groove processing portion 11 so that the solder layer 12 is inside.
That is, the oxide superconducting wire 10 has a groove processing in which a superconducting laminate 5 in which a base material 1, an intermediate layer 2, an oxide superconducting layer 3 and a silver layer 7 are laminated in this order reaches the base material 1 from the silver layer 7. It has a structure in which the solder layer 12 is sandwiched between the part 11 and the solder layer 12.

次に図3を参照して、本実施形態に用いられる酸化物超電導線材10の製造方法について説明する。
本実施形態に用いられる酸化物超電導線材10の製造方法は、基材1と、中間層2と、酸化物超電導層3と、銀層7と、がこの順に積層されてなる超電導積層体5を準備する工程Aと、超電導積層体5の銀層7側を、該超電導積層体5の幅方向の中間部から長手方向に沿って銀層7から基材1に達するように溝加工して溝加工部11を設ける工程Bと、溝加工部11が設けられた銀層7側の上面にはんだ層12を形成する工程Cと、はんだ層12が内側となるように、溝加工部11を介して超電導積層体5を二つ折りにする工程Dと、二つ折りにされた超電導積層体5を加熱してはんだ層12を溶融凝固させて超電導積層体5を固定する工程Eと、を備える。
Next, with reference to FIG. 3, the manufacturing method of the oxide superconducting wire 10 used for this embodiment is demonstrated.
The manufacturing method of the oxide superconducting wire 10 used in the present embodiment includes a superconducting laminate 5 in which a base material 1, an intermediate layer 2, an oxide superconducting layer 3, and a silver layer 7 are laminated in this order. The groove A is formed by grooving the step A to be prepared and the silver layer 7 side of the superconducting laminate 5 so as to reach the substrate 1 from the silver layer 7 along the longitudinal direction from the intermediate portion in the width direction of the superconducting laminate 5. Step B for providing the processed portion 11, Step C for forming the solder layer 12 on the upper surface on the silver layer 7 side where the groove processed portion 11 is provided, and the groove processed portion 11 so that the solder layer 12 is on the inner side. A step D for folding the superconducting laminate 5 in half, and a step E for fixing the superconducting laminate 5 by heating the folded superconducting laminate 5 to melt and solidify the solder layer 12.

まず、前述した超電導積層体5を準備する(工程A)。一例として、基材1上にスパッタ法で拡散防止層とベッド層を形成した後、このベッド層の上にIBAD法で中間層2を形成し、さらにPLD法でキャップ層と酸化物超電導層3を形成し、次に、酸化物超電導層3の上面に銀層7を形成して超電導積層体5を作製する。
銀層7の形成方法は特に限定されず従来公知の方法を適用できるが、気相法により形成することが好ましい。
First, the above-described superconducting laminate 5 is prepared (step A). As an example, after forming a diffusion prevention layer and a bed layer on the substrate 1 by sputtering, an intermediate layer 2 is formed on the bed layer by IBAD, and then a cap layer and an oxide superconducting layer 3 are formed by PLD. Next, a silver layer 7 is formed on the upper surface of the oxide superconducting layer 3 to produce a superconducting laminate 5.
The formation method of the silver layer 7 is not specifically limited, A conventionally well-known method can be applied, However, It is preferable to form by the vapor phase method.

次に、超電導積層体5の銀層7側を、超電導積層体5の幅方向の中間部から長手方向に沿って銀層7から基材1に達するように溝加工して溝加工部11を設ける(工程B)。溝加工部11の形成方法は特に限定されず従来公知の方法を適用できるが、レーザー又は回転刃により形成することが好ましい。図3に示すように、レーザー加工機13を用いる場合には、加工時に超電導積層体5が応力や圧力により変形するおそれがない。レーザーの出力や回転刃の厚さを調整することで容易に溝加工部11の幅及び深さを調整できる。また、超電導積層体5の搬送速度を変えることにより、更に正確な調節が可能となる。
溝加工部11の幅は、20〜100μm程度とされ、溝加工部11の深さは、基材1の厚さの1/3〜1/2程度の深さに達する程度とされる。
溝加工部11を設けずに基材1を二つ折りにすると、酸化物超電導層3の折り曲げ部分に不定形のクラックが多数生じてしまうので、酸化物超電導線材10の超電導特性が劣化してしまう。一方、溝加工部11を設けることにより、超電導積層体5を二つ折りにする際、酸化物超電導層3に不用なクラックが生じないので、超電導特性の劣化を抑制した酸化物超電導線材10を提供することができる。
Next, the silver layer 7 side of the superconducting laminate 5 is grooved so as to reach the base material 1 from the silver layer 7 along the longitudinal direction from the intermediate portion in the width direction of the superconducting laminate 5 to form the groove processing portion 11. Provided (step B). The formation method of the groove processing part 11 is not specifically limited, A conventionally well-known method can be applied, However, It is preferable to form with a laser or a rotary blade. As shown in FIG. 3, when using the laser processing machine 13, there is no possibility that the superconducting laminate 5 is deformed by stress or pressure during processing. The width and depth of the grooved portion 11 can be easily adjusted by adjusting the laser output and the thickness of the rotary blade. In addition, more accurate adjustment is possible by changing the transport speed of the superconducting laminate 5.
The width of the groove processing portion 11 is set to about 20 to 100 μm, and the depth of the groove processing portion 11 is set to reach a depth of about 1/3 to 1/2 of the thickness of the substrate 1.
If the base material 1 is folded in half without providing the groove processing portion 11, many irregular cracks are generated in the bent portion of the oxide superconducting layer 3, and the superconducting characteristics of the oxide superconducting wire 10 are deteriorated. . On the other hand, by providing the groove processed portion 11, when the superconducting laminate 5 is folded in half, an unnecessary crack does not occur in the oxide superconducting layer 3, so that the oxide superconducting wire 10 that suppresses deterioration of superconducting characteristics is provided. can do.

次に溝加工部11が設けられた銀層7側の上面にはんだ層12を形成する(工程C)。はんだ層12の厚さは、20〜30μm程度とされる。はんだ層は、はんだテープを被着させたものであっても、はんだ層を塗布することによって形成したものであってもよい。また、はんだ層の材料として錫、錫−銀系合金や錫−ビスマス系合金等を適宜用いることができる。   Next, the solder layer 12 is formed on the upper surface on the silver layer 7 side where the groove processing portion 11 is provided (step C). The thickness of the solder layer 12 is about 20 to 30 μm. The solder layer may be formed by applying a solder tape or may be formed by applying a solder layer. Moreover, tin, a tin-silver alloy, a tin-bismuth alloy, or the like can be appropriately used as a material for the solder layer.

次にはんだ層12が内側となるように、溝加工部11を介して超電導積層体5を二つ折りにする(工程D)。溝加工部11を介することにより超電導積層体5を折り曲げやすくすることができる。尚、上述したように、折り曲げの観点から基材1の厚さの1/3〜1/2程度の深さに達するように溝加工部11を設けることが好ましい。   Next, the superconducting laminate 5 is folded in two via the groove processing portion 11 so that the solder layer 12 is on the inner side (process D). The superconducting laminate 5 can be easily bent through the groove processing portion 11. As described above, it is preferable to provide the grooved portion 11 so as to reach a depth of about 1/3 to 1/2 of the thickness of the substrate 1 from the viewpoint of bending.

次に二つ折りにされた超電導積層体5を加熱してはんだ層12を溶融凝固させて超電導積層体5を固定する(工程E)。
以上の工程により、酸化物超電導線材10を製造できる。
Next, the superconducting laminate 5 folded in half is heated to melt and solidify the solder layer 12 to fix the superconducting laminate 5 (step E).
The oxide superconducting wire 10 can be manufactured through the above steps.

<酸化物超電導線材の接続構造体>
次に本実施形態の酸化物超電導線材10aの接続方法、及び接続構造体20について説明する。
まず、第1の酸化物超電導線材10aを得る(第1工程)。図3を用いて説明したように、超電導積層体5を二つ折りにし、二つ折りにされた超電導積層体5を加熱してはんだ層12を溶融凝固させて超電導積層体5を固定し、酸化物超電導線材10を製造する。
次いで、図4において、酸化物超電導線材10の接続端21から、長手方向10〜500mmに接続端21と平行に切れ込みを入れ、加熱をし、二つ折りにした酸化物超電導線材10の層全体の半分に相当する基材1から銀層7までを広げる。そして、広げた部分をはんだ層12が露出するように除去し、段差部19を有する第1の酸化物超電導線材10aを作製する。
<Connecting structure of oxide superconducting wire>
Next, the connection method of the oxide superconducting wire 10a and the connection structure 20 of this embodiment will be described.
First, the first oxide superconducting wire 10a is obtained (first step). As described with reference to FIG. 3, the superconducting laminate 5 is folded in half, the superconducting laminate 5 folded in half is heated and the solder layer 12 is melted and solidified to fix the superconducting laminate 5, and the oxide Superconducting wire 10 is manufactured.
Next, in FIG. 4, from the connection end 21 of the oxide superconducting wire 10, a cut is made parallel to the connection end 21 in the longitudinal direction of 10 to 500 mm, and the entire layer of the oxide superconducting wire 10 folded in half is heated. The base material 1 corresponding to half is spread from the silver layer 7. Then, the widened portion is removed so that the solder layer 12 is exposed, and the first oxide superconducting wire 10a having the step portion 19 is produced.

次いで、第1の酸化物超電導線材10aを2本準備し、第1の酸化物超電導線材10aの段差部19のはんだ層12同士を重ねて、段差部19同士を互い違いにして段差を打ち消すように重ねてから加熱し、はんだ層12同士を一体化し、2本の第1の酸化物超電導線材10a同士を接続し、接続部22を形成する(第2工程)。   Next, two first oxide superconducting wires 10a are prepared, and the solder layers 12 of the stepped portions 19 of the first oxide superconducting wire 10a are overlapped with each other so that the stepped portions 19 are staggered to cancel the steps. After overlapping, heating is performed, the solder layers 12 are integrated, the two first oxide superconducting wires 10a are connected, and the connection portion 22 is formed (second step).

本実施形態においては、2本の第1の酸化物超電導線材10aを、超電導積層体を二つ折りに重ねることにより生じた折り目が同じ側になるように接続しているが、図5に示されるように、第1工程において、二つ折りに重ねられた超電導積層体のうち除去される部分が、上半分と下半分とで互いに異なる2種類の第1の酸化物超電導線材10a,10a’を用意し、第2工程において、2本の第1の酸化物超電導線材10a,10a’をその折り目が互いに反対側になるように接続する形態とすることもできる。   In the present embodiment, the two first oxide superconducting wires 10a are connected so that the creases generated by folding the superconducting laminate in two are on the same side, as shown in FIG. Thus, in the first step, two types of first oxide superconducting wires 10a and 10a ′ are prepared, in which the removed portion of the superconducting laminate stacked in two is different between the upper half and the lower half In the second step, the two first oxide superconducting wires 10a and 10a ′ may be connected such that the folds are opposite to each other.

また、第1工程において、酸化物超電導線材10の両端を接続端21とし、両端のはんだ層12を露出させてもよい。本実施形態においては、かかる酸化物超電導線材の両端に、片端のはんだ層12が露出した第1の酸化物超電導線材10aをそれぞれ接続する形態とすることもできる。
また、かかる形態において、用いる酸化物超電導線材の数を適宜調整することにより、更に長尺の接合体を得ることができる。
In the first step, both ends of the oxide superconducting wire 10 may be the connection ends 21 and the solder layers 12 at both ends may be exposed. In the present embodiment, the first oxide superconducting wire 10a with the solder layer 12 at one end exposed may be connected to both ends of the oxide superconducting wire.
Further, in this embodiment, a longer joined body can be obtained by appropriately adjusting the number of oxide superconducting wires used.

従って、酸化物超電導層3を外部から遮蔽した構成の酸化物超電導線材10を段差が生じることなく接合することができるので、コイル形状に巻線した際、段差のない円周状の円弧を描くことができる。そして、線材に加わる応力は、線材全体に均一にかかるようになるため、局所劣化が生じることなく、超電導特性に優れ、線材の全体の厚さを必要以上に厚くすることなく、酸化物超電導層3を外部から遮蔽した構成の酸化物超電導線材10aの接続体20を提供できる。
また、万一、銀層7の一部が剥離して剥離部が形成され、酸化物超電導層3の一部が露出している場合にも、溶融したはんだ層12により銀層7の剥離部が埋められ、酸化物超電導層3を外部から遮蔽する構造を実現できる。
よって、酸化物超電導層3への水分の浸入を抑えるので、酸化物超電導層3が水分によりダメージを受けることがなく、超電導特性の劣化を防止する酸化物超電導線材10aの接続体20を提供できる。
Therefore, since the oxide superconducting wire 10 having the structure in which the oxide superconducting layer 3 is shielded from the outside can be joined without causing a step, a circular arc having no step is drawn when wound in a coil shape. be able to. Since the stress applied to the wire is uniformly applied to the entire wire, local deterioration does not occur, the superconducting characteristics are excellent, and the total thickness of the wire is not increased more than necessary. The connection body 20 of the oxide superconducting wire 10a having a configuration in which 3 is shielded from the outside can be provided.
In the unlikely event that a part of the silver layer 7 is peeled off to form a peeled portion and a part of the oxide superconducting layer 3 is exposed, the peeled portion of the silver layer 7 is melted by the molten solder layer 12. And a structure for shielding the oxide superconducting layer 3 from the outside can be realized.
Therefore, since the penetration of moisture into the oxide superconducting layer 3 is suppressed, the oxide superconducting layer 3 is not damaged by moisture, and the connection body 20 of the oxide superconducting wire 10a that prevents deterioration of superconducting characteristics can be provided. .

また、本実施形態の酸化物超電導線材10aの接続構造体20は、基材1を酸化物超電導層3より外側に位置した構成である。
従って、酸化物超電導層3が基材1により外部から遮蔽された構成を実現できるので、外部からの衝撃によるダメージを受けることがなく、超電導特性が劣化することを防止できる。
In addition, the connection structure 20 of the oxide superconducting wire 10a of the present embodiment has a configuration in which the base material 1 is positioned outside the oxide superconducting layer 3.
Therefore, since the oxide superconducting layer 3 can be configured to be shielded from the outside by the base material 1, it can be prevented from being damaged by an impact from the outside and the superconducting characteristics can be prevented from deteriorating.

また、本実施形態の酸化物超電導線材10aの接続構造体20は、基材1と中間層2と酸化物超電導層3と銀層7がこの順に積層されてなる超電導積層体5が、銀層7から基材1まで達する溝加工部11を介し、はんだ層12を挟んで二つ折りにされてなる構成である。そのため、酸化物超電導層3は、酸化物超電導線材10aの中立軸の近くに位置し、引張応力及び圧縮応力を受けにくい。従って、線材を巻胴などに巻回してコイル加工して超電導コイルとする際に、線材の表裏を考慮する必要がないため、本実施形態の接続構造体20を備えた酸化物超電導線材10aを超電導コイルとして好適に用いることができる。   In addition, the connection structure 20 of the oxide superconducting wire 10a of the present embodiment includes a superconducting laminate 5 in which the base material 1, the intermediate layer 2, the oxide superconducting layer 3, and the silver layer 7 are laminated in this order. In this configuration, the solder layer 12 is sandwiched between the groove processing portion 11 extending from 7 to the base material 1. Therefore, the oxide superconducting layer 3 is located near the neutral axis of the oxide superconducting wire 10a and is not easily subjected to tensile stress and compressive stress. Therefore, it is not necessary to consider the front and back of the wire when the wire is wound around a winding drum and coiled into a superconducting coil. Therefore, the oxide superconducting wire 10a provided with the connection structure 20 of the present embodiment is used. It can be suitably used as a superconducting coil.

さらに、本実施形態の酸化物超電導線材10aの接続構造体20は、上記の如くはんだ層12のみが積層された超電導積層体5を、二つ折りにしてなる構成であるため、線材の小型化が可能であり、線材をコイル加工して超電導コイルとする際にも巻回しに要する時間を短縮でき、取り扱い性が良好である。   Furthermore, since the connection structure 20 of the oxide superconducting wire 10a of the present embodiment has a configuration in which the superconducting laminate 5 in which only the solder layer 12 is laminated as described above is folded in two, the wire can be downsized. It is possible to reduce the time required for winding even when the wire material is coiled into a superconducting coil, and the handling property is good.

[第2実施形態]
<酸化物超電導線材>
図6は、本発明に係る接続構造体の第2実施形態に用いられる超電導積層体5Bを示す断面斜視図である。
図6に示す超電導積層体5Bは、基材1の上に、中間層2と、酸化物超電導層3と、銀層7と、を順次積層し、この銀層7上に、金属安定化層8が積層された構造となっている。
また、図7は、本発明に係る接続構造体の第2実施形態に用いられる酸化物超電導線材10Bを示す断面斜視図である。
[Second Embodiment]
<Oxide superconducting wire>
FIG. 6 is a cross-sectional perspective view showing a superconducting laminate 5B used in the second embodiment of the connection structure according to the present invention.
A superconducting laminate 5B shown in FIG. 6 is formed by sequentially laminating an intermediate layer 2, an oxide superconducting layer 3, and a silver layer 7 on a substrate 1, and a metal stabilizing layer on the silver layer 7. 8 is laminated.
FIG. 7 is a cross-sectional perspective view showing an oxide superconducting wire 10B used in the second embodiment of the connection structure according to the present invention.

酸化物超電導線材10Bに用いられる超電導積層体5Bは、酸化物超電導線材10に用いられる超電導積層体5の構成に加え、酸化物超電導層3の上面に形成された銀層7の上に金属安定化層8が積層された構成となっている。図7において、上記第1実施形態における酸化物超電導線材10と同一の構成要素には同一の符号を付し、説明を省略する。   The superconducting laminate 5B used for the oxide superconducting wire 10B has a metal stable on the silver layer 7 formed on the upper surface of the oxide superconducting layer 3 in addition to the configuration of the superconducting laminate 5 used for the oxide superconducting wire 10. It is the structure by which the chemical layer 8 was laminated | stacked. In FIG. 7, the same code | symbol is attached | subjected to the component same as the oxide superconducting wire 10 in the said 1st Embodiment, and description is abbreviate | omitted.

金属安定化層8は、良導電性の金属材料からなり、酸化物超電導層3が超電導状態から常電導状態に遷移しようとした時に、銀層7とともに、酸化物超電導層3の電流が転流するバイパスとして機能する。
金属安定化層8を構成する金属材料としては、良導電性を有するものであればよく、特に限定されないが、銅、黄銅(Cu−Zn合金)、Cu−Ni合金等の銅合金、ステンレス等の比較的安価な材質からなるものを用いることが好ましく、中でも高い導電性を有し、安価であることがら銅製が好ましい。
なお、酸化物超電導線材10Bを超電導限流器に使用する場合は、金属安定化層8は抵抗金属材料より構成され、Ni−Cr等のNi系合金などを使用できる。
The metal stabilizing layer 8 is made of a highly conductive metal material. When the oxide superconducting layer 3 is about to transition from the superconducting state to the normal conducting state, the current of the oxide superconducting layer 3 is commutated together with the silver layer 7. To act as a bypass.
The metal material constituting the metal stabilizing layer 8 is not particularly limited as long as it has good conductivity, but copper alloys such as copper, brass (Cu—Zn alloy), Cu—Ni alloy, stainless steel, etc. It is preferable to use those made of a relatively inexpensive material, and among them, copper is preferable because it has high conductivity and is inexpensive.
When the oxide superconducting wire 10B is used for a superconducting fault current limiter, the metal stabilizing layer 8 is made of a resistance metal material, and a Ni-based alloy such as Ni—Cr can be used.

金属安定化層8の形成方法は特に限定されず、例えば、銅などの良導電性材料よりなる金属テープをはんだなどの接合剤を介して銀層7上に積層することにより形成できる。
金属安定化層8の厚さは特に限定されず、適宜調整可能であるが、10〜300μmとすることが好ましい。下限値以上とすることにより酸化物超電導層3を安定化する一層高い効果が得られ、上限値以下とすることにより酸化物超電導線材10Bを薄型化できる。
The formation method of the metal stabilization layer 8 is not specifically limited, For example, it can form by laminating | stacking the metal tape which consists of good electroconductive materials, such as copper, on the silver layer 7 through bonding agents, such as a solder.
The thickness of the metal stabilizing layer 8 is not particularly limited and can be adjusted as appropriate, but is preferably 10 to 300 μm. By setting the lower limit value or more, a higher effect of stabilizing the oxide superconducting layer 3 can be obtained, and by setting the upper limit value or less, the oxide superconducting wire 10B can be thinned.

酸化物超電導線材10Bは、超電導積層体5Bの金属安定化層8側に、該超電導積層体5Bの幅方向の中間部から長手方向に沿って金属安定化層8から基材1に達するように溝加工部11Bが設けられ、溝加工部11Bが設けられた金属安定化層8側の上面に被着するようにはんだ層12が積層され、はんだ層12が内側となるように溝加工部11Bを介して超電導積層体5Bが二つ折りにされてなる。
すなわち、酸化物超電導線材10Bは、はんだ層12と銀層7との間に金属安定化層8が介在されてなる構造となっている。
従って、酸化物超電導線材10Bは、酸化物超電導層が積層された超電導積層体の外周全面に銀の安定化層を設け、さらに銅の安定化層を設けた構造と比較して、線材の全体の厚さが厚くならず、臨界電流密度が低くなってしまうおそれがない。
The oxide superconducting wire 10B reaches the substrate 1 from the metal stabilizing layer 8 to the metal stabilizing layer 8 side of the superconducting laminate 5B from the intermediate portion in the width direction of the superconducting laminate 5B along the longitudinal direction. A groove processing portion 11B is provided, and a solder layer 12 is laminated so as to adhere to the upper surface on the metal stabilization layer 8 side where the groove processing portion 11B is provided, and the groove processing portion 11B so that the solder layer 12 is on the inside. The superconducting laminate 5B is folded in two through the gap.
That is, the oxide superconducting wire 10 </ b> B has a structure in which the metal stabilization layer 8 is interposed between the solder layer 12 and the silver layer 7.
Therefore, the oxide superconducting wire 10B has an entire wire compared with a structure in which a silver stabilizing layer is provided on the entire outer periphery of the superconducting laminate in which the oxide superconducting layers are laminated, and a copper stabilizing layer is further provided. Therefore, there is no possibility that the critical current density is lowered.

次に図8を参照して、本実施形態に用いられる酸化物超電導線材10Bの製造方法について説明する。
本実施形態に用いられる酸化物超電導線材10Bの製造方法は、まず、前述の第1実施形態に用いられた酸化物超電導線材10の製造方法の工程Aにおいて、銀層7を積層した後に、銀層7上に金属安定化層8を積層して超電導積層体5Bを準備する。
次いで、前述の酸化物超電導線材10の製造方法の工程Bにおいて、超電導積層体5Bの金属安定化層8側を、該超電導積層体5Bの幅方向の中間部から長手方向に沿って銀層7から基材1に達するように溝加工して溝加工部11Bを設ける。
次いで、前述の酸化物超電導線材10の製造方法の工程Cにおいて、溝加工部11Bが設けられた金属安定化層8側の上面にはんだ層12を形成する。
その後、前述の酸化物超電導線材10の製造方法の工程D及び工程Eと同様の工程を行う。
以上の工程により、本実施形態に用いられる酸化物超電導線材10Bを製造できる。
Next, with reference to FIG. 8, the manufacturing method of the oxide superconducting wire 10B used for this embodiment is demonstrated.
In the manufacturing method of the oxide superconducting wire 10B used in the present embodiment, first, in Step A of the manufacturing method of the oxide superconducting wire 10 used in the first embodiment, the silver layer 7 is laminated, and then the silver A metal stabilizing layer 8 is laminated on the layer 7 to prepare a superconducting laminate 5B.
Next, in the step B of the manufacturing method of the oxide superconducting wire 10 described above, the metal stabilizing layer 8 side of the superconducting laminate 5B is moved from the intermediate portion in the width direction of the superconducting laminate 5B along the longitudinal direction to the silver layer 7. The groove processing part 11B is provided by processing the groove so as to reach the base material 1 from above.
Next, in Step C of the method for manufacturing the oxide superconducting wire 10 described above, the solder layer 12 is formed on the upper surface of the metal stabilizing layer 8 side where the grooved portion 11B is provided.
Then, the process similar to the process D and the process E of the manufacturing method of the above-mentioned oxide superconducting wire 10 is performed.
The oxide superconducting wire 10B used in the present embodiment can be manufactured through the above steps.

工程Aにおいて、金属安定化層8を金属テープの貼り合わせにより形成することができる。金属テープの厚さを調整することで容易に金属安定化層8の厚さを調整できるので、酸化物超電導層3を安定化するに充分な厚さを確保しやすく、安定化効果が高い酸化物超電導線材10Bとなる。
次いで、工程Bにおいて、超電導積層体5Bの金属安定化層8側を溝加工して溝加工部11Bを設けるが、前述の酸化物超電導線材10の製造方法の第2工程と第3工程の間に、折り曲げ後の超電導積層体5Bの幅と同じ幅の金属テープ2枚を、溝加工部11Bを覆わないように銀層7に貼り合わせてもよい。
In step A, the metal stabilizing layer 8 can be formed by bonding a metal tape. Since the thickness of the metal stabilization layer 8 can be easily adjusted by adjusting the thickness of the metal tape, it is easy to ensure a sufficient thickness to stabilize the oxide superconducting layer 3, and the oxidation effect is high. It becomes the object superconducting wire 10B.
Next, in step B, the metal stabilizing layer 8 side of the superconducting laminate 5B is grooved to provide a grooved portion 11B. Between the second step and the third step of the manufacturing method of the oxide superconducting wire 10 described above. Alternatively, two metal tapes having the same width as the width of the folded superconducting laminate 5B may be bonded to the silver layer 7 so as not to cover the grooved portion 11B.

また、工程Aにおいて、金属安定化層8は、電気めっきによりすることもできる。金属安定化層8を構成する材質としては、良導電性の金属が好ましく、Cu、Alなどが挙げられ、高い導電性を有するためCuが特に好ましい。金属安定化層8の厚さは特に限定されず、適宜変更可能であるが、10〜100μm程度とすることができ、20μm以上100μm以下とすることが好ましく、20μm以上50μm以下とすることがより好ましい。
金属安定化層8の厚さを10μm以上とすることにより酸化物超電導層3を安定化する一層高い効果が得られ、100μm以下とすることにより酸化物超電導線材10Bを薄型化できる。
Moreover, in the process A, the metal stabilization layer 8 can also be performed by electroplating. The material constituting the metal stabilizing layer 8 is preferably a highly conductive metal, such as Cu or Al. Cu is particularly preferable because it has high conductivity. The thickness of the metal stabilizing layer 8 is not particularly limited and can be changed as appropriate. However, the thickness can be set to about 10 to 100 μm, preferably 20 μm to 100 μm, and more preferably 20 μm to 50 μm. preferable.
A higher effect of stabilizing the oxide superconducting layer 3 can be obtained by setting the thickness of the metal stabilizing layer 8 to 10 μm or more, and the oxide superconducting wire 10B can be made thinner by setting the thickness to 100 μm or less.

<酸化物超電導線材の接続構造体>
次に、本実施形態の酸化物超電導線材10bの接続方法、及び接続構造体20Bについて説明する。
まず、第1の酸化物超電導線材10bを得る(第1工程)。図8を用いて説明したように、超電導積層体5Bを二つ折りにし、二つ折りにされた超電導積層体5を加熱してはんだ層12を溶融凝固させて超電導積層体5を固定し、酸化物超電導線材10Bを製造する。
次いで、図9において、酸化物超電導線材10Bの接続端21から、長手方向10〜500mmに接続端21と平行に切れ込みを入れ、加熱をし、二つ折りにした酸化物超電導線材10の層全体の半分に相当する基材1から金属安定化層8までを広げる。そして、広げた部分をはんだ層12が露出するように除去し、段差部19を有する第1の超電導積層体10bを作製する。
<Connecting structure of oxide superconducting wire>
Next, the connection method of the oxide superconducting wire 10b and the connection structure 20B of the present embodiment will be described.
First, the first oxide superconducting wire 10b is obtained (first step). As described with reference to FIG. 8, the superconducting laminate 5B is folded in half, and the superconducting laminate 5 folded in half is heated to melt and solidify the solder layer 12, thereby fixing the superconducting laminate 5 to the oxide. Superconducting wire 10B is manufactured.
Next, in FIG. 9, from the connection end 21 of the oxide superconducting wire 10B, a cut is made parallel to the connection end 21 in the longitudinal direction of 10 to 500 mm, and the whole layer of the oxide superconducting wire 10 folded in half is heated. The base material 1 corresponding to half is spread from the metal stabilizing layer 8. Then, the widened portion is removed so that the solder layer 12 is exposed, and the first superconducting laminate 10b having the step portion 19 is produced.

次いで、第1の酸化物超電導線材10bを2本準備し、第1の酸化物超電導線材10bの段差部19のはんだ層12同士を重ねて、段差部19同士を互い違いにして段差を打ち消すように重ねてから加熱し、はんだ層12同士を一体化し、2本の第1の酸化物超電導線材10b同士を接続し、接続部22を形成する(第2工程)。   Next, two first oxide superconducting wires 10b are prepared, the solder layers 12 of the step portions 19 of the first oxide superconducting wire 10b are overlapped, and the step portions 19 are staggered to cancel the steps. After overlapping, heating is performed, the solder layers 12 are integrated, the two first oxide superconducting wires 10b are connected, and the connection portion 22 is formed (second step).

本実施形態においては、2本の第1の酸化物超電導線材10bを、超電導積層体を二つ折りに重ねることにより生じた折り目が同じ側になるように接続しているが、図10に示されるように、第1工程において、二つ折りに重ねられた超電導積層体のうち除去される部分が、上半分と下半分とで互いに異なる2種類の第1の酸化物超電導線材10b,10b’を用意し、第2工程において、2本の第1の酸化物超電導線材10b,10b’をその折り目が互いに反対側になるように接続する形態とすることもできる。   In the present embodiment, the two first oxide superconducting wires 10b are connected so that the creases generated by superimposing the superconducting laminate in two are on the same side, as shown in FIG. Thus, in the first step, two types of first oxide superconducting wires 10b and 10b 'are prepared, in which the removed portion of the superconducting laminate stacked in two is different between the upper half and the lower half In the second step, the two first oxide superconducting wires 10b and 10b ′ may be connected so that the folds are opposite to each other.

また、第1工程において、酸化物超電導線材10の両端を接続端21とし、両端のはんだ層12を露出させてもよい。本実施形態においては、かかる酸化物超電導線材の両端に、片端のはんだ層12が露出した第1の酸化物超電導線材10bをそれぞれ接続する形態とすることもできる。
また、かかる形態において、用いる酸化物超電導線材の数を適宜調整することにより、更に長尺の接合体を得ることができる。
In the first step, both ends of the oxide superconducting wire 10 may be the connection ends 21 and the solder layers 12 at both ends may be exposed. In the present embodiment, the first oxide superconducting wire 10b with the solder layer 12 at one end exposed may be connected to both ends of the oxide superconducting wire.
Further, in this embodiment, a longer joined body can be obtained by appropriately adjusting the number of oxide superconducting wires used.

本実施形態の酸化物超電導線材10bの接続方法は、酸化物超電導層3のはんだ層12側の面に銀層7と金属安定化層8を形成する構成となるため、酸化物超電導層3を安定化する効果が更に向上した酸化物超電導線材10bの接続体20Bを提供できる。
また、酸化物超電導層3のはんだ層12側の面が銀層7、および金属安定化層8により積層される構成の酸化物超電導線材10bの接続体20Bが製造できるため、さらに効果的に酸化物超電導層3への水分の浸入を抑えるので、酸化物超電導層3が水分によりダメージを受けて超電導特性が劣化することをより確実に防ぐことができる酸化物超電導線材10bの接続体20Bを提供できる。
The connection method of the oxide superconducting wire 10b of the present embodiment is such that the silver layer 7 and the metal stabilizing layer 8 are formed on the surface of the oxide superconducting layer 3 on the solder layer 12 side. It is possible to provide the connection body 20B of the oxide superconducting wire 10b that further improves the stabilizing effect.
In addition, since the surface of the oxide superconducting layer 3 on the solder layer 12 side can be manufactured with the oxide superconducting wire 10b having a structure in which the silver layer 7 and the metal stabilizing layer 8 are laminated, the oxide superconducting layer 3 can be oxidized more effectively. Provided is a connection body 20B of the oxide superconducting wire 10b that can more reliably prevent the superconducting properties from being deteriorated due to moisture damage to the superconducting layer 3 because it prevents moisture from entering the superconducting layer 3. it can.

本実施形態の酸化物超電導線材10bの接続方法は、前述した酸化物超電導線材10bの製造方法の工程Aにおいて、銀層7上に金属テープを貼り合わせることにより、又は銀層7を金属でめっきするにより銀層7上に金属安定化層8を積層する工程を有する構成とすることもできる。
金属安定化層8を金属テープの貼り合わせにより形成する場合、金属テープの厚さを調整することで容易に金属安定化層8の厚さを調整できるので、酸化物超電導層3を安定化するに充分な厚さを確保しやすく、安定化効果が高い酸化物超電導線材10bを製造することができる。また、金属安定化層8をめっきにより形成する場合、銀層7の表面を覆うように金属安定化層8を形成する工程を有する構成となる。そのため、超電導積層体5Bを外部からより効果的に遮蔽することができるので、水分による酸化物超電導層3の劣化をさらに確実に抑制する酸化物超電導線材10bの接続体20を提供できる。
The connection method of the oxide superconducting wire 10b of the present embodiment is as follows. In step A of the manufacturing method of the oxide superconducting wire 10b described above, a metal tape is bonded onto the silver layer 7, or the silver layer 7 is plated with a metal. Accordingly, a configuration including a step of laminating the metal stabilizing layer 8 on the silver layer 7 can also be adopted.
When the metal stabilizing layer 8 is formed by bonding a metal tape, the thickness of the metal stabilizing layer 8 can be easily adjusted by adjusting the thickness of the metal tape, so that the oxide superconducting layer 3 is stabilized. Therefore, it is possible to manufacture the oxide superconducting wire 10b having a sufficient stabilizing effect and a sufficient stabilizing effect. Further, when the metal stabilizing layer 8 is formed by plating, the metal stabilizing layer 8 is formed so as to cover the surface of the silver layer 7. Therefore, since superconducting laminate 5B can be more effectively shielded from the outside, it is possible to provide connection body 20 of oxide superconducting wire 10b that more reliably suppresses deterioration of oxide superconducting layer 3 due to moisture.

[第3実施形態]
<酸化物超電導線材の接続構造体>
次に図11を参照して、本実施形態の酸化物超電導線材10aの接続方法、及び接続構造体20Cについて説明する。
第1実施形態と同様に、第1の酸化物超電導線材10aを2本準備するとともに、基材1と、中間層2と、酸化物超電導層3と、銀層7と、がこの順に積層されてなる第2の酸化物超電導線材10cを1本準備する。第2の酸化物超電導線材10cは、上述した超電導積層体5と同様の層構造である。第2の酸化物超電導線材10cの長手方向の長さは、対向配置した2本の第1の酸化物超電導線材10aにおいて、はんだ層12が露出するように除去した部分に相当する長さであり、20〜1000mmである。
次いで、第1の酸化物超電導線材10aの接続端21(先端)同士をそれらの段差部19が対向するように配置する。そして、第1の酸化物超電導線材10aにおいて露出させたはんだ層12に対し、第2の酸化物超電導線材10cの銀層7を段差部19,19の部分を埋めるように重ねて加熱し、2本の第1の酸化物超電導線材10aと1本の第2の酸化物超電導線材10cを接続し、接続部22a,22b,22cを一体化する(第3工程)。
[Third Embodiment]
<Connecting structure of oxide superconducting wire>
Next, with reference to FIG. 11, the connection method of the oxide superconducting wire 10a of this embodiment and the connection structure 20C will be described.
Similarly to the first embodiment, two first oxide superconducting wires 10a are prepared, and the base material 1, the intermediate layer 2, the oxide superconducting layer 3, and the silver layer 7 are laminated in this order. A second oxide superconducting wire 10c is prepared. The second oxide superconducting wire 10c has a layer structure similar to that of the superconducting laminate 5 described above. The length in the longitudinal direction of the second oxide superconducting wire 10c is a length corresponding to a portion of the two first oxide superconducting wires 10a arranged opposite to each other so that the solder layer 12 is exposed. 20 to 1000 mm.
Next, the connection ends 21 (tips) of the first oxide superconducting wire 10a are arranged so that their stepped portions 19 face each other. Then, the silver layer 7 of the second oxide superconducting wire 10c is superposed on the solder layer 12 exposed in the first oxide superconducting wire 10a so as to fill the step portions 19 and 19, and heated. The first oxide superconducting wire 10a and the second oxide superconducting wire 10c are connected, and the connecting portions 22a, 22b, and 22c are integrated (third step).

また、第1工程において、酸化物超電導線材10の両端を接続端21とし、両端のはんだ層12を露出させてもよい。本実施形態においては、片端のはんだ層12が露出した第1の酸化物超電導線材と、両端のはんだ層12が露出した酸化物超電導線材と、第2の酸化物超電導線材とを組み合わせた形態とすることもできる。
また、かかる形態において、用いる酸化物超電導線材の数を適宜調整することにより、更に長尺の接合体を得ることができる。
In the first step, both ends of the oxide superconducting wire 10 may be the connection ends 21 and the solder layers 12 at both ends may be exposed. In the present embodiment, a combination of a first oxide superconducting wire with one end solder layer 12 exposed, an oxide superconducting wire with both end solder layers 12 exposed, and a second oxide superconducting wire You can also
Further, in this embodiment, a longer joined body can be obtained by appropriately adjusting the number of oxide superconducting wires used.

本実施形態の酸化物超電導線材10aの接続方法は、上述のように段差部19,19を酸化物超電導線材10cで埋めるように接続したため、酸化物超電導層3が外部から遮蔽された構成の酸化物超電導線材10aを段差が生じることなく接合することができる。
従って、コイル形状に巻線した際、段差による局所劣化が生じることなく、超電導特性に優れた酸化物超電導線材の接続体20Cを提供できる。
In the connection method of the oxide superconducting wire 10a of this embodiment, since the step portions 19 and 19 are connected so as to be filled with the oxide superconducting wire 10c as described above, the oxide superconducting layer 3 is shielded from the outside. The superconducting wire 10a can be joined without causing a step.
Therefore, it is possible to provide an oxide superconducting wire connecting member 20C having excellent superconducting characteristics without causing local deterioration due to a step when wound in a coil shape.

本実施形態によれば、先の実施形態と同じように酸化物超電導層3への水分の浸入を抑えるので、酸化物超電導層3が水分によりダメージを受けることがなく、超電導特性が劣化することを防止でき、さらに段差を有しないので、コイル形状に巻線した際、段差のない円周状の円弧を描くことができ、線材に加わる応力は、線材全体に均一にかかるようになるため局所劣化が生じることがない。   According to this embodiment, since the infiltration of moisture into the oxide superconducting layer 3 is suppressed as in the previous embodiment, the oxide superconducting layer 3 is not damaged by moisture, and the superconducting characteristics are deteriorated. Since there is no step, it is possible to draw a circular arc with no step when wound in a coil shape, and the stress applied to the wire is uniformly applied to the entire wire, so it is local. There is no deterioration.

[第4実施形態]
<酸化物超電導線材の接続構造体>
次に図12を参照して、本実施形態の酸化物超電導線材10bの接続方法、及び接続構造体20Dについて説明する。
本実施形態の酸化物超電導線材10bの接続方法は、図8を用いて説明した酸化物超電導線材10Bの製造方法により得られた酸化物超電導線材10Bを用いて、第1の酸化物超電導線材10bを2本準備し、更に基材1と、中間層2と、酸化物超電導層3と、銀層7と、金属安定化層8、とがこの順に積層されてなる第2の酸化物超電導線材10dを1本準備し、第1の酸化物超電導線材10bの接続端21同士をそれらの段差部19,19が並ぶように対向配置し、露出させたはんだ層12に対し、第2の酸化物超電導線材10dの金属安定化層8を重ねて加熱し、2本の第1の酸化物超電導線材10bと1本の第2の酸化物超電導線材10dを接続する第3工程を有する。
[Fourth Embodiment]
<Connecting structure of oxide superconducting wire>
Next, with reference to FIG. 12, the connection method of the oxide superconducting wire 10b of this embodiment and the connection structure 20D will be described.
The connection method of the oxide superconducting wire 10b of this embodiment uses the oxide superconducting wire 10B obtained by the manufacturing method of the oxide superconducting wire 10B described with reference to FIG. 8, and the first oxide superconducting wire 10b. And a second oxide superconducting wire comprising a base material 1, an intermediate layer 2, an oxide superconducting layer 3, a silver layer 7, and a metal stabilizing layer 8 laminated in this order. 10d is prepared, and the connection ends 21 of the first oxide superconducting wire 10b are arranged to face each other so that their stepped portions 19 and 19 are arranged, and the second oxide is exposed to the exposed solder layer 12. There is a third step in which the metal stabilizing layer 8 of the superconducting wire 10d is stacked and heated to connect the two first oxide superconducting wires 10b and the one second oxide superconducting wire 10d.

第3工程により、2本の第1の酸化物超電導線材10bと1本の第2の酸化物超電導線材10dを接続し、接続部22d,22e,22fを形成する(第3工程)。   In the third step, two first oxide superconducting wires 10b and one second oxide superconducting wire 10d are connected to form connection portions 22d, 22e, and 22f (third step).

本実施形態の酸化物超電導線材10bの接続方法は、酸化物超電導層3のはんだ層12側の面に銀層7と金属安定化層8を形成する構成となるため、酸化物超電導層3を安定化する効果が更に向上した酸化物超電導線材10bの接続体20Dを提供できる。   The connection method of the oxide superconducting wire 10b of the present embodiment is such that the silver layer 7 and the metal stabilizing layer 8 are formed on the surface of the oxide superconducting layer 3 on the solder layer 12 side. It is possible to provide the connection body 20D of the oxide superconducting wire 10b that further improves the stabilizing effect.

本実施形態の酸化物超電導線材10bの接続構造体20Dは、酸化物超電導層3のはんだ層12側の面に銀層7と金属安定化層8を備える構成となるため、酸化物超電導層3を安定化する効果が更に高まる。また、酸化物超電導層3のはんだ層12側の面が銀層7、および金属安定化層8により積層される構成となり、さらに効果的に酸化物超電導層3への水分の浸入を抑えるので、酸化物超電導層3が水分によりダメージを受けることがなくなり、超電導特性が劣化することをより確実に防止できる。   Since the connection structure 20D of the oxide superconducting wire 10b according to the present embodiment includes the silver layer 7 and the metal stabilizing layer 8 on the surface on the solder layer 12 side of the oxide superconducting layer 3, the oxide superconducting layer 3 is provided. The effect of stabilizing is further increased. Further, the surface on the solder layer 12 side of the oxide superconducting layer 3 is laminated with the silver layer 7 and the metal stabilizing layer 8, and more effectively suppresses the intrusion of moisture into the oxide superconducting layer 3. The oxide superconducting layer 3 is not damaged by moisture, and the superconducting characteristics can be more reliably prevented from deteriorating.

[第5実施形態]
<酸化物超電導線材の接続構造体>
次に図13を参照して、本実施形態の酸化物超電導線材10eの接続方法、及び接続構造体20Eについて説明する。
まず、第3の酸化物超電導線材10eを得る(第4工程)。第3の酸化物超電導線材10eは、図7を用いて説明した酸化物超電導線材10Bにおいて、第4の酸化物超電導線材10fと接続するための金属安定化層8eを有するものである。図13に示されるように、金属安定化層8eは、酸化物超電導線材10eの接続端21e側から基材1の外方に突出されてなる。
[Fifth Embodiment]
<Connecting structure of oxide superconducting wire>
Next, with reference to FIG. 13, the connection method of the oxide superconducting wire 10e of this embodiment and the connection structure 20E are demonstrated.
First, a third oxide superconducting wire 10e is obtained (fourth step). The third oxide superconducting wire 10e has the metal stabilizing layer 8e for connecting to the fourth oxide superconducting wire 10f in the oxide superconducting wire 10B described with reference to FIG. As shown in FIG. 13, the metal stabilizing layer 8 e protrudes outward from the base 1 from the connection end 21 e side of the oxide superconducting wire 10 e.

次いで、第4の酸化物超電導線材10fを得る(第5工程)。第4の酸化物超電導線材10fは図7を用いて説明した酸化物超電導線材10Bにおいて、溝加工部11を介して超電導積層体5Bを二つ折りにした後、接続端21eから、長手方向10〜500mmに接続端21eと平行に切れ込みを入れ、加熱をし、二つ折りにした酸化物超電導線材10Bの層全体の半分に相当する基材1から金属安定化層8までを広げ、広げた部分のうち、金属安定化層8を銀層7が露出するように除去し、露出した銀層7上にはんだ層12を形成してなるものである。   Next, a fourth oxide superconducting wire 10f is obtained (fifth step). The fourth oxide superconducting wire 10f is the same as the oxide superconducting wire 10B described with reference to FIG. 7 except that the superconducting laminate 5B is folded in two via the groove processing portion 11, and then the connecting end 21e A notch is made in parallel with the connection end 21e at 500 mm, heated, and the base 1 corresponding to half of the entire layer of the folded oxide superconducting wire 10B is expanded from the metal stabilizing layer 8 to the expanded portion. Among them, the metal stabilizing layer 8 is removed so that the silver layer 7 is exposed, and a solder layer 12 is formed on the exposed silver layer 7.

次いで、第3の酸化物超電導線材10eを1本準備し、第4の酸化物超電導線材10fを1本準備し、第3の酸化物超電導線材10eの外方に突出された金属安定化層8eを、第4の酸化物超電導線材10fのはんだ層12が挟み込むように、重ねて加熱し、1本の第3の酸化物超電導線材10eと1本の第4の酸化物超電導線材10fを接続し、接続部22g,22hを形成する(第6工程)。   Next, a third oxide superconducting wire 10e is prepared, a fourth oxide superconducting wire 10f is prepared, and a metal stabilization layer 8e protruding outward from the third oxide superconducting wire 10e. Are stacked and heated so that the solder layer 12 of the fourth oxide superconducting wire 10f is sandwiched therebetween, and one third oxide superconducting wire 10e and one fourth oxide superconducting wire 10f are connected. Then, the connecting portions 22g and 22h are formed (sixth step).

また、第4工程において、第3の酸化物超電導線材10eの両端が金属安定化層8eを有していてもよい。本実施形態においては、2本の第4の酸化物超電導線材10fを準備し、対向配置し、両端の金属安定化層8eを挟むようにして接続する形態とすることもできる。   In the fourth step, both ends of the third oxide superconducting wire 10e may have a metal stabilizing layer 8e. In the present embodiment, two fourth oxide superconducting wires 10f may be prepared, arranged opposite to each other, and connected so as to sandwich the metal stabilization layers 8e at both ends.

また、第5工程において、超電導積層体5Bの代わりに、超電導積層体5を用いてもよい。即ち、第4の酸化物超電導線材10fとして、最初から金属安定化層8を有さないものを用いてもよい。
かかる場合、第4の酸化物超電導線材10fは、溝加工部11を介して超電導積層体5を二つ折りにする際、第4の酸化物超電導線材10fのはんだ層12が内側となり、第3の酸化物超電導線材10eの外方に突出された金属安定化層8eを挟むように、二つ折りにされてなるものである(図13参照)。
次いで、第6工程において、第3の酸化物超電導線材10eを1本準備し、第4の酸化物超電導線材10fを1本準備し、第3の酸化物超電導線材10eの外方に突出された金属安定化層8eを、第4の酸化物超電導線材10fのはんだ層12が挟み込むように、重ねて加熱し、1本の第3の酸化物超電導線材10eと1本の第4の酸化物超電導線材10fを接続し、接続部22g、22hを形成する形態としてもよい。
Further, in the fifth step, the superconducting laminate 5 may be used instead of the superconducting laminate 5B. That is, as the fourth oxide superconducting wire 10f, one that does not have the metal stabilizing layer 8 from the beginning may be used.
In such a case, when the fourth oxide superconducting wire 10f is folded in half with the superconducting laminate 5 via the groove processing portion 11, the solder layer 12 of the fourth oxide superconducting wire 10f is on the inner side, The oxide superconducting wire 10e is folded in half so as to sandwich the metal stabilizing layer 8e protruding outward (see FIG. 13).
Next, in the sixth step, one third oxide superconducting wire 10e was prepared, one fourth oxide superconducting wire 10f was prepared, and protruded outward from the third oxide superconducting wire 10e. The metal stabilization layer 8e is heated so that the solder layer 12 of the fourth oxide superconducting wire 10f is sandwiched between the third oxide superconducting wire 10e and one fourth oxide superconducting wire. It is good also as a form which connects the wire 10f and forms the connection parts 22g and 22h.

このように、本実施形態の酸化物超電導線材の接続方法は、基材1から金属安定化層8までを有する第3の酸化物超電導線材10eと、基材1から銀層7までを有する第4の酸化物超電導線材10fとを、外方に突出された金属安定化層8eを介して接続する構成であり、金属安定化層8eと第4の酸化物超電導線材10fが同じ長さであれば、酸化物超電導層3が外部から遮蔽された構成の酸化物超電導線材を段差が生じることなく接続することができる。
従って、コイル形状に巻線した際、段差による局所劣化が生じることなく、超電導特性に優れた酸化物超電導線材の接続体20Eを提供できる。
As described above, the connection method of the oxide superconducting wire according to the present embodiment includes the third oxide superconducting wire 10e having the base 1 to the metal stabilization layer 8 and the base 1 to the silver layer 7. 4 oxide superconducting wire 10f is connected through a metal stabilizing layer 8e protruding outward, and the metal stabilizing layer 8e and the fourth oxide superconducting wire 10f have the same length. For example, an oxide superconducting wire having a configuration in which the oxide superconducting layer 3 is shielded from the outside can be connected without causing a step.
Therefore, it is possible to provide an oxide superconducting wire connecting body 20E excellent in superconducting characteristics without causing local deterioration due to a step when wound in a coil shape.

本実施形態の酸化物超電導線材の接続構造体20Eは、酸化物超電導層3が基材1に挟まれるように、超電導積層体5Dを二つ折りにしてなる第3の酸化物超電導線材10eと、第3の酸化物超電導線材10eの有する外方に突出された金属安定化層8eを介して、金属安定化層8を除去してなる第4の酸化物超電導線材10fと、を接続してなる構成であるため、そのため、線材の全体の厚さを厚くすることなく、酸化物超電導層3が外部から遮蔽された構成の酸化物超電導線材10eを段差が生じることなく接続された構成を実現できる。
従って、酸化物超電導層3への水分の浸入を抑えるので、酸化物超電導層3が水分によりダメージを受けることがなく、超電導特性が劣化することを防止でき、さらに段差を有しないので、コイル形状に巻線した際、段差のない円周状の円弧を描くことができ、線材に加わる応力は、線材全体に均一にかかるようになるため局所劣化が生じることがない。
The oxide superconducting wire connecting structure 20E of the present embodiment includes a third oxide superconducting wire 10e in which the superconducting laminate 5D is folded in two so that the oxide superconducting layer 3 is sandwiched between the base materials 1. The third oxide superconducting wire 10e is connected to a fourth oxide superconducting wire 10f formed by removing the metal stabilizing layer 8 through the metal stabilizing layer 8e protruding outward from the third oxide superconducting wire 10e. Therefore, it is possible to realize a configuration in which the oxide superconducting layer 3 is configured to be connected without causing a step without increasing the overall thickness of the wire, and the oxide superconducting layer 3 is shielded from the outside. .
Accordingly, since the infiltration of moisture into the oxide superconducting layer 3 is suppressed, the oxide superconducting layer 3 is not damaged by moisture, the superconducting characteristics can be prevented from being deteriorated, and further, there is no step, so that the coil shape When the wire is wound, a circular arc having no step can be drawn, and the stress applied to the wire is uniformly applied to the entire wire, so local deterioration does not occur.

以上、本発明の酸化物超電導線材の接続方法及び酸化物超電導線材の接続構造体について説明したが、上記実施形態は一例であって、本発明の範囲を逸脱しない範囲で適宜変更することが可能である。   The oxide superconducting wire connecting method and the oxide superconducting wire connecting structure according to the present invention have been described above. However, the above embodiment is an example, and can be appropriately changed without departing from the scope of the present invention. It is.

本発明は、例えばエネルギー貯蔵機、変圧器、モーター、発電機など、各種電力機器に用いられる酸化物超電導線材に利用することができる。   INDUSTRIAL APPLICABILITY The present invention can be used for oxide superconducting wires used in various power devices such as energy storage devices, transformers, motors, and generators.

1…基材、2…中間層、3…酸化物超電導層、5、5B、5D…超電導積層体、7…銀層、8、8e…金属安定化層、10、10B、10a、10a’、10b、10b’、10c、10d、10e、10f…酸化物超電導線材、11、11B…溝加工部、12…はんだ層、19…段差部、20、20B、20C、20D、20E…酸化物超電導線材の接続構造体、21、21e…接続端、22、22a、22b、22c、22d、22e、22f、22g、22h…接続部 DESCRIPTION OF SYMBOLS 1 ... Base material, 2 ... Intermediate | middle layer, 3 ... Oxide superconducting layer 5, 5B, 5D ... Superconducting laminated body, 7 ... Silver layer, 8, 8e ... Metal stabilization layer 10, 10B, 10a, 10a ', 10b, 10b ', 10c, 10d, 10e, 10f ... oxide superconducting wire, 11, 11B ... grooved portion, 12 ... solder layer, 19 ... stepped portion, 20, 20B, 20C, 20D, 20E ... oxide superconducting wire Connection structure, 21, 21e ... connection end, 22, 22a, 22b, 22c, 22d, 22e, 22f, 22g, 22h ... connection part

Claims (8)

基材と、中間層と、酸化物超電導層と、銀層と、がこの順に積層されてなる超電導積層体が、銀層から基材まで達する溝加工部を介し、はんだ層を挟んで二つ折りにされ、この二つ折りに重ねられた超電導積層体のうち一方の接続端近傍の基材から銀層までをはんだ層が露出するように除去された少なくとも2本の第1の酸化物超電導線材が、前記露出させたはんだ層同士を一体化して接続されてなることを特徴とする酸化物超電導線材の接続構造体。   A superconducting laminate in which a base material, an intermediate layer, an oxide superconducting layer, and a silver layer are laminated in this order is folded in half with a solder layer sandwiched between groove processing parts reaching from the silver layer to the base material. And at least two first oxide superconducting wires from which the solder layer is exposed from the base material in the vicinity of one of the connection ends to the silver layer of the superconducting laminated body folded in half. The connection structure of the oxide superconducting wire, wherein the exposed solder layers are integrated and connected. 基材と、中間層と、酸化物超電導層と、銀層と、がこの順に積層されてなる超電導積層体が、銀層から基材まで達する溝加工部を介し、はんだ層を挟んで二つ折りにされ、この二つ折りに重ねられた超電導積層体のうち一方の接続端近傍の基材から銀層までをはんだ層が露出するように除去されて第1の酸化物超電導線材が構成され、
基材と、中間層と、酸化物超電導層と、銀層と、がこの順に積層されて第2の酸化物超電導線材が構成され、
前記少なくとも2本の第1の酸化物超電導線材の前記接続端が対向配置され、
前記第1の酸化物超電導線材の露出されたはんだ層と前記第2の酸化物超電導線材が接続されてなることを特徴とする酸化物超電導線材の接続構造体。
A superconducting laminate in which a base material, an intermediate layer, an oxide superconducting layer, and a silver layer are laminated in this order is folded in half with a solder layer sandwiched between groove processing parts reaching from the silver layer to the base material. The first oxide superconducting wire is constituted by removing the solder layer from the base material near one connection end to the silver layer in the superconducting laminate that is folded in half.
A base material, an intermediate layer, an oxide superconducting layer, and a silver layer are laminated in this order to constitute a second oxide superconducting wire,
The connection ends of the at least two first oxide superconducting wires are arranged to face each other;
An oxide superconducting wire connecting structure, wherein the exposed solder layer of the first oxide superconducting wire is connected to the second oxide superconducting wire.
前記酸化物超電導線材は、銀層上に更に金属安定化層が積層されたものであることを特徴とする請求項1又は2に記載の酸化物超電導線材の接続構造体。   3. The oxide superconducting wire connecting structure according to claim 1 or 2, wherein the oxide superconducting wire is obtained by further laminating a metal stabilizing layer on a silver layer. 基材と、中間層と、酸化物超電導層と、銀層と、金属安定化層と、がこの順に積層されてなる超電導積層体が、金属安定化層から基材まで達する溝加工部を介し、はんだ層を挟んで二つ折りにされて、第3の酸化物超電導線材が構成され、
前記第3の酸化物超電導線材の接続端の金属安定化層が、基材の接続端から外方に所定長さ延出されるとともに、
基材と、中間層と、酸化物超電導層と、銀層と、金属安定化層と、がこの順に積層されてなる超電導積層体が、金属安定化層から基材まで達する溝加工部を介し、はんだ層を挟んで二つ折りにされ、接続端近傍の金属安定化層が除去され、露出した銀層上にはんだ層が形成されて、第4の酸化物超電導線材が構成され、
第4の酸化物超電導線材の二つ折り部分に前記第3の酸化物超電導線材の金属安定化層の延出部分が挟まれてはんだ層により接続されてなることを特徴とする酸化物超電導線材の接続構造体。
A superconducting laminate in which a base material, an intermediate layer, an oxide superconducting layer, a silver layer, and a metal stabilizing layer are laminated in this order is passed through a groove processing portion that reaches from the metal stabilizing layer to the base material. The third oxide superconducting wire is constructed by being folded in half with the solder layer in between.
The metal stabilization layer at the connection end of the third oxide superconducting wire extends a predetermined length outward from the connection end of the base material,
A superconducting laminate in which a base material, an intermediate layer, an oxide superconducting layer, a silver layer, and a metal stabilizing layer are laminated in this order is passed through a groove processing portion that reaches from the metal stabilizing layer to the base material. The metal stabilizing layer near the connection end is removed, the solder layer is formed on the exposed silver layer, and the fourth oxide superconducting wire is configured.
An extended portion of the metal stabilization layer of the third oxide superconducting wire is sandwiched between two folded portions of the fourth oxide superconducting wire and connected by a solder layer. Connection structure.
基材と、中間層と、酸化物超電導層と、銀層と、がこの順に積層されてなる超電導積層体が、銀層から基材まで達する溝加工部を介し、はんだ層を挟んで二つ折りにされてなる酸化物超電導線材において、二つ折りに重ねられた超電導積層体のうち一方の接続端近傍の基材から銀層までをはんだ層が露出するように除去し、第1の酸化物超電導線材を得る第1工程と、
前記第1の酸化物超電導線材を少なくとも2本準備し、各々の第1の酸化物超電導線材の接続端について露出させたはんだ層同士を重ねて加熱しはんだ層同士を一体化し、前記第1の酸化物超電導線材同士を接続する第2工程と、
を備えることを特徴とする酸化物超電導線材の接続方法。
A superconducting laminate in which a base material, an intermediate layer, an oxide superconducting layer, and a silver layer are laminated in this order is folded in half with a solder layer sandwiched between groove processing parts reaching from the silver layer to the base material. In the oxide superconducting wire thus formed, the first superconducting conductor is removed so that the solder layer is exposed from the base material in the vicinity of one connection end to the silver layer of the superconducting laminate that is folded in two. A first step of obtaining a wire;
At least two first oxide superconducting wires are prepared, and the solder layers exposed at the connection ends of the respective first oxide superconducting wires are overlapped and heated to integrate the solder layers, A second step of connecting the oxide superconducting wires together;
A method for connecting an oxide superconducting wire characterized by comprising:
基材と、中間層と、酸化物超電導層と、銀層と、がこの順に積層されてなる超電導積層体が、銀層から基材まで達する溝加工部を介し、はんだ層を挟んで二つ折りにされてなる酸化物超電導線材において、二つ折りに重ねられた超電導積層体のうち一方の接続端近傍の基材から銀層までをはんだ層が露出するように除去し、第1の酸化物超電導線材を得る第1工程と、
前記第1の酸化物超電導線材を少なくとも2本準備し、基材と、中間層と、酸化物超電導層と、銀層と、がこの順に積層されてなる第2の酸化物超電導線材を少なくとも1本準備し、前記少なくとも2本の第1の酸化物超電導線材の前記接続端を対向配置し、前記露出させたはんだ層に対し、前記第2の酸化物超電導線材の銀層を重ねて加熱し、前記少なくとも2本の第1の酸化物超電導線材と前記少なくとも1本の第2の酸化物超電導線材を接続する第3工程と、
を備えることを特徴とする酸化物超電導線材の接続方法。
A superconducting laminate in which a base material, an intermediate layer, an oxide superconducting layer, and a silver layer are laminated in this order is folded in half with a solder layer sandwiched between groove processing parts reaching from the silver layer to the base material. In the oxide superconducting wire thus formed, the first superconducting conductor is removed so that the solder layer is exposed from the base material in the vicinity of one connection end to the silver layer of the superconducting laminate that is folded in two. A first step of obtaining a wire;
At least two first oxide superconducting wires are prepared, and at least one second oxide superconducting wire is formed by laminating a base material, an intermediate layer, an oxide superconducting layer, and a silver layer in this order. This preparation is made, the connection ends of the at least two first oxide superconducting wires are arranged opposite to each other, and the silver layer of the second oxide superconducting wire is overlaid and heated on the exposed solder layer. A third step of connecting the at least two first oxide superconducting wires and the at least one second oxide superconducting wire;
A method for connecting an oxide superconducting wire characterized by comprising:
前記酸化物超電導線材は、銀層上に更に金属安定化層が積層されたものであることを特徴とする請求項5又は6に記載の酸化物超電導線材の接続方法。   The method for connecting an oxide superconducting wire according to claim 5 or 6, wherein the oxide superconducting wire is obtained by further laminating a metal stabilizing layer on a silver layer. 基材と、中間層と、酸化物超電導層と、銀層と、金属安定化層と、がこの順に積層されてなる超電導積層体が、金属安定化層から基材まで達する溝加工部を介し、はんだ層を挟んで二つ折りにされてなる酸化物超電導線材において、接続端側の金属安定化層が基材の外方に突出された第3の酸化物超電導線材を得る第4工程と、
基材と、中間層と、酸化物超電導層と、銀層と、金属安定化層と、がこの順に積層されてなる超電導積層体の金属安定化層側を、該超電導積層体の幅方向の中間部から長手方向に沿って金属安定化層から基材に達するように溝加工して溝加工部を設け、該溝加工部が設けられた前記金属安定化層側の上面にはんだ層を形成し、該はんだ層が内側となるように、前記溝加工部を介して前記超電導積層体を二つ折りにし、接続端近傍の金属安定化層を除去し、露出した銀層上にはんだ層を形成し、第4の酸化物超電導線材を得る第5工程と、
前記第3の酸化物超電導線材を少なくとも1本準備し、前記第4の酸化物超電導線材を少なくとも1本準備し、第3の酸化物超電導線材の外方に突出された金属安定化層を、前記第4の酸化物超電導線材の露出した銀層上に形成したはんだ層が挟み込むように、重ねて加熱し、前記少なくとも1本の第3の酸化物超電導線材と前記少なくとも1本の第4の酸化物超電導線材を接続する第6工程と、
を備えることを特徴とする酸化物超電導線材の接続方法。
A superconducting laminate in which a base material, an intermediate layer, an oxide superconducting layer, a silver layer, and a metal stabilizing layer are laminated in this order is passed through a groove processing portion that reaches from the metal stabilizing layer to the base material. A fourth step of obtaining a third oxide superconducting wire in which the metal stabilizing layer on the connection end side protrudes outward from the base material in the oxide superconducting wire folded in half with the solder layer interposed therebetween;
The metal stabilizing layer side of the superconducting laminate in which the base material, the intermediate layer, the oxide superconducting layer, the silver layer, and the metal stabilizing layer are laminated in this order is arranged in the width direction of the superconducting laminate. A groove is formed by grooving from the metal stabilization layer to the base material along the longitudinal direction from the middle portion, and a solder layer is formed on the upper surface of the metal stabilization layer side where the groove processing portion is provided Then, the superconducting laminate is folded in two through the grooved portion so that the solder layer is on the inside, the metal stabilizing layer near the connection end is removed, and a solder layer is formed on the exposed silver layer And a fifth step of obtaining a fourth oxide superconducting wire,
Preparing at least one third oxide superconducting wire, preparing at least one fourth oxide superconducting wire, and providing a metal stabilization layer protruding outward from the third oxide superconducting wire; The at least one third oxide superconducting wire and the at least one fourth fourth are heated so as to sandwich a solder layer formed on the exposed silver layer of the fourth oxide superconducting wire. A sixth step of connecting the oxide superconducting wire;
A method for connecting an oxide superconducting wire characterized by comprising:
JP2011174903A 2011-08-10 2011-08-10 Oxide superconducting wire connecting structure and oxide superconducting wire connecting method Active JP5732345B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011174903A JP5732345B2 (en) 2011-08-10 2011-08-10 Oxide superconducting wire connecting structure and oxide superconducting wire connecting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011174903A JP5732345B2 (en) 2011-08-10 2011-08-10 Oxide superconducting wire connecting structure and oxide superconducting wire connecting method

Publications (2)

Publication Number Publication Date
JP2013037991A JP2013037991A (en) 2013-02-21
JP5732345B2 true JP5732345B2 (en) 2015-06-10

Family

ID=47887404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011174903A Active JP5732345B2 (en) 2011-08-10 2011-08-10 Oxide superconducting wire connecting structure and oxide superconducting wire connecting method

Country Status (1)

Country Link
JP (1) JP5732345B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015028912A (en) * 2013-07-05 2015-02-12 中部電力株式会社 Superconductive wire rod and superconductive coil using the same
KR101624031B1 (en) 2014-03-31 2016-05-25 두산중공업 주식회사 Superconductive wire material, joint method thereof, and superconducting coil using same
CN113593767B (en) * 2020-04-30 2022-11-04 中国科学院电工研究所 Connection method of second-generation high-temperature superconducting wire and connection superconducting wire

Also Published As

Publication number Publication date
JP2013037991A (en) 2013-02-21

Similar Documents

Publication Publication Date Title
JP5684601B2 (en) Oxide superconducting wire and method for producing the same
JP5933781B2 (en) Oxide superconducting wire
JP5695803B2 (en) Oxide superconducting wire, its connection structure, and superconducting equipment
WO2013165001A1 (en) Superconducting wire material, superconducting wire material connection structure, superconducting wire material connection method, and terminal treatment method of superconducting wire material
JP5695509B2 (en) Superconducting wire and method for manufacturing the same
JP6101491B2 (en) Oxide superconducting wire and method for producing the same
JP5732345B2 (en) Oxide superconducting wire connecting structure and oxide superconducting wire connecting method
JP2014154320A (en) Connection structure of oxide superconductive wire rod and superconductive apparatus
JP6101490B2 (en) Oxide superconducting wire connection structure and superconducting equipment
JP2013247011A (en) Oxide superconducting wire, and method of manufacturing the same
JP5775785B2 (en) Oxide superconducting wire and method for producing the same
JP5701247B2 (en) Oxide superconducting wire connection structure and connection method
JP5693798B2 (en) Oxide superconducting wire
WO2012039444A1 (en) Oxide superconductor wire material and method for producing same
JP2014130730A (en) Connection structure and connection method of oxide superconductive wire material, and oxide superconductive wire material using the connection structure
JP2015228357A (en) Oxide superconducting wire rod, superconducting apparatus, and method for producing the oxide superconducting wire rod
JP6002602B2 (en) Oxide superconducting wire connection structure and manufacturing method thereof
WO2014104333A1 (en) Connection structure of oxide superconducting wires, method for producing same, and superconducting device
JP5775810B2 (en) Manufacturing method of oxide superconducting wire
JP6106789B1 (en) Oxide superconducting wire, manufacturing method thereof, and superconducting coil
JP5775808B2 (en) Oxide superconducting wire and manufacturing method thereof
JP2014130793A (en) Connection structure of oxide superconductive wire material and its manufacturing method
JP2012150982A (en) Oxide superconducting wire material and manufacturing method thereof
JP2012150981A (en) Oxide superconducting wire material and manufacturing method thereof
JP2012209189A (en) Oxide superconducting wire material and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150317

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150413

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250