JP2014130730A - Connection structure and connection method of oxide superconductive wire material, and oxide superconductive wire material using the connection structure - Google Patents

Connection structure and connection method of oxide superconductive wire material, and oxide superconductive wire material using the connection structure Download PDF

Info

Publication number
JP2014130730A
JP2014130730A JP2012287611A JP2012287611A JP2014130730A JP 2014130730 A JP2014130730 A JP 2014130730A JP 2012287611 A JP2012287611 A JP 2012287611A JP 2012287611 A JP2012287611 A JP 2012287611A JP 2014130730 A JP2014130730 A JP 2014130730A
Authority
JP
Japan
Prior art keywords
oxide superconducting
layer
superconducting wire
connection structure
protective
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012287611A
Other languages
Japanese (ja)
Inventor
Shun Kurihara
駿 栗原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2012287611A priority Critical patent/JP2014130730A/en
Publication of JP2014130730A publication Critical patent/JP2014130730A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Manufacturing Of Electrical Connectors (AREA)
  • Connections Effected By Soldering, Adhesion, Or Permanent Deformation (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a connection structure and connection method of an oxide superconductive wire material.SOLUTION: There is provided a connection structure of first and second oxide superconductive wire materials which an intermediate layer, an oxide superconductive layer and a protective layer containing Ag or Ag alloy are laminated on a tape-like base material and the protective layers near each end of the first and second oxide superconductive wire materials are arranged opposite with each other, a part of the protective layer arranged oppositely is joined by a silver joint layer and a part of the protective layer arranged oppositely is jointed by a solder joint layer.

Description

本発明は、酸化物超電導線材の接続構造体及び接続方法並びに接続構造体を用いた酸化物超電導線材に関する。   The present invention relates to an oxide superconducting wire connecting structure, a connecting method, and an oxide superconducting wire using the connecting structure.

近年のエネルギー問題を解決できる電気機器の一つに低損失の導電材料として酸化物超電導体を用いたケーブル、コイル、モーター、マグネットなどの超電導機器が挙げられる。これらの超電導機器に用いられる超電導体として、例えば、RE−123系(REBaCu7−x:REはYやGdなどを含む希土類元素)等の酸化物超電導体が知られている。この酸化物超電導体は、液体窒素温度付近で超電導特性を示し、強磁界内でも比較的高い臨界電流密度を維持できるため、実用上有望な導電材料として期待されている。 One of the electrical devices that can solve energy problems in recent years is a superconducting device such as a cable, a coil, a motor, and a magnet using an oxide superconductor as a low-loss conductive material. As superconductors used in these superconducting devices, for example, oxide superconductors such as RE-123 series (REBa 2 Cu 3 O 7-x : RE is a rare earth element including Y and Gd) are known. This oxide superconductor exhibits superconducting properties near the temperature of liquid nitrogen and can maintain a relatively high critical current density even in a strong magnetic field, and thus is expected as a practically promising conductive material.

上述の酸化物超電導体を電気機器に使用するためには、酸化物超電導体を線材に加工して、電力供給用の導体あるいはコイルとして用いるのが一般的である。具体的には、テープ状の金属製基材上に結晶配向性の良好な中間層を介し酸化物超電導層を形成し、この酸化物超電導層を覆うようにAg又はAg合金からなる保護層や安定化層を形成することで酸化物超電導線材を得ることができる。   In order to use the above-described oxide superconductor in an electric device, it is common to process the oxide superconductor into a wire and use it as a power supply conductor or coil. Specifically, an oxide superconducting layer is formed on a tape-shaped metal substrate via an intermediate layer having a good crystal orientation, and a protective layer made of Ag or an Ag alloy is formed so as to cover the oxide superconducting layer. An oxide superconducting wire can be obtained by forming a stabilization layer.

RE−123系の酸化物超電導線材を実用機器に応用するために、酸化物超電導線材を接続する技術が要望されている。例えば、一対の酸化物超電導線材の保護層や安定化層同士を半田により接続する技術が知られている。しかしながら、この接続方法は、接続抵抗が半田固有の電気抵抗率に依存するため高くなってしまうという問題があった。そこで、特許文献1には、接続したい酸化物超電導線材の端部近傍の保護層表面に銀ペーストを塗布し、流動性を呈する段階で導電性金属層同士を圧着して、そのまま乾燥させた後、対接面間に銀ペースト層を介在した形での固相反応によって一体化する方法が開示されている。   In order to apply the RE-123 series oxide superconducting wire to a practical device, a technique for connecting the oxide superconducting wire is desired. For example, a technique for connecting a protective layer or a stabilization layer of a pair of oxide superconducting wires with solder is known. However, this connection method has a problem that the connection resistance is high because it depends on the electrical resistivity specific to the solder. Therefore, in Patent Document 1, after applying a silver paste to the surface of the protective layer near the end of the oxide superconducting wire to be connected, the conductive metal layers are pressure-bonded in a stage exhibiting fluidity, and dried as they are. A method of integrating by a solid phase reaction in which a silver paste layer is interposed between contact surfaces is disclosed.

特開平7−192837号公報Japanese Patent Laid-Open No. 7-192837

しかしながら、特許文献1に記載の技術において、酸化物超電導線材同士の接続は、Agの固相反応によってなされているため機械的強度が弱く、接続部分に曲げを印加すると接合部分が剥離し、電気的接続が絶たれる虞があった。加えて、接合に用いる銀ペーストに含まれる成分によって、接続部の抵抗値が高くなる場合があった。   However, in the technique described in Patent Document 1, the connection between the oxide superconducting wires is made by a solid phase reaction of Ag, so that the mechanical strength is weak. There was a risk of the connection being lost. In addition, the resistance value of the connection portion may be increased depending on the components contained in the silver paste used for bonding.

本発明は、以上のような実情に鑑みなされたものであり、機械的強度が高く、接続抵抗が低い酸化物超電導線材の接続構造体並びに接続方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an oxide superconducting wire connection structure and a connection method having high mechanical strength and low connection resistance.

前記課題を解決するため本発明の酸化物超電導線材の接続構造体は、テープ状の基材に中間層と酸化物超電導層とAg又はAg合金からなる保護層とが積層されてなる一対の酸化物超電導線材の接続構造体であって、前記一対の酸化物超電導線材の互いの端部近傍の前記保護層同士が対向して配置され、前記対向して配置された保護層同士の少なくとも一部が銀接合層によって接合され、前記対向して配置された保護層同士の少なくとも一部が半田接合層によって接合されていることを特徴とする。
本発明によれば、酸化物超電導線材の保護層同士の接続部分に銀接合層を有することによって接続構造体の接続抵抗を小さくできる。また、接続部分に半田接合層を有することによって、機械的強度が低い銀接合層を補強し接続構造体の機械的強度を高めることができる。加えて、半田接合層も導電性を有するため、接続構造体に不慮の過大な負荷が加わり、銀接合層が損傷を受けて、銀接合層を介する電気的な接続が絶たれた場合であっても、半田接合層がバイパスとしての役割を果たし、接続構造体の電気的接続が絶たれることを防ぐことができる。
In order to solve the above problems, the oxide superconducting wire connecting structure according to the present invention is a pair of oxides in which an intermediate layer, an oxide superconducting layer, and a protective layer made of Ag or an Ag alloy are laminated on a tape-like substrate. A superconducting wire connecting structure, wherein the protective layers in the vicinity of the end portions of the pair of oxide superconducting wires are opposed to each other, and at least a part of the opposingly arranged protective layers Are bonded by a silver bonding layer, and at least a part of the facing protective layers are bonded by a solder bonding layer.
According to the present invention, the connection resistance of the connection structure can be reduced by having the silver bonding layer at the connection portion between the protective layers of the oxide superconducting wire. Moreover, by having a solder joint layer in a connection part, the silver joint layer with low mechanical strength can be reinforced and the mechanical strength of a connection structure can be improved. In addition, since the solder bonding layer is also conductive, an unexpected excessive load is applied to the connection structure, the silver bonding layer is damaged, and the electrical connection through the silver bonding layer is broken. However, the solder joint layer serves as a bypass, and electrical connection of the connection structure can be prevented from being disconnected.

また、本発明の酸化物超電導線材の接続構造体は、前記銀接合層が、前記一対の酸化物超電導線材の長手方向において、半田接合層によって挟まれていることを特徴とする。
本発明によれば、一対の酸化物超電導線材の長手方向において、前記銀接合層の両側の保護層同士が半田接合層によって接合されていることで、より効果的に機械的強度を高めることができる。
Further, the oxide superconducting wire connecting structure according to the present invention is characterized in that the silver bonding layer is sandwiched between solder bonding layers in the longitudinal direction of the pair of oxide superconducting wires.
According to the present invention, in the longitudinal direction of the pair of oxide superconducting wires, the protective layers on both sides of the silver bonding layer are bonded to each other by the solder bonding layer, thereby increasing the mechanical strength more effectively. it can.

また、本発明の酸化物超電導線材の接続構造体は、第1、第2、第3の酸化物超電導線材を備え、前記第1の酸化物超電導線材及び第2の酸化物超電導線材が、前記接続しようとする端部同士を隣接させ、基材に対して酸化物超電導層を形成した側を揃えて配置され、前記隣接された端部を跨るように、前記第1の酸化物超電導線材及び第2の酸化物超電導線材の保護層に前記第3の酸化物超電導線材の保護層が橋渡しされ、前記第1及び第3の酸化物超電導線材の保護層同士、並びに前記第2及び第3の酸化物超電導線材の保護層同士の少なくとも一部が銀接合層によって接合され、前記第1及び第3の酸化物超電導線材の保護層同士、並びに前記第2及び第3の酸化物超電導線材の保護層同士の少なくとも一部が半田接合層によって接合されていることを特徴とする。
本発明によれば、接続抵抗が小さく、機械的強度が高い上に、接続する一対の酸化物超電導線材が積層方向を揃えて配置されているため、接続部分で酸化物超電導線材の表裏の逆転がない接続構造体を提供することができる。
The oxide superconducting wire connecting structure of the present invention comprises first, second, and third oxide superconducting wires, and the first oxide superconducting wire and the second oxide superconducting wire are The first oxide superconducting wire and the first oxide superconducting wire are arranged so that the ends to be connected are adjacent to each other, and the side on which the oxide superconducting layer is formed is aligned with respect to the base material, and straddles the adjacent ends. The protective layer of the third oxide superconducting wire is bridged to the protective layer of the second oxide superconducting wire, the protective layers of the first and third oxide superconducting wires, and the second and third At least a part of the protective layers of the oxide superconducting wire is joined by a silver bonding layer, and the protective layers of the first and third oxide superconducting wires and the protection of the second and third oxide superconducting wires are protected. At least part of the layers are joined by the solder joint layer It is characterized in that is.
According to the present invention, since the connection resistance is low, the mechanical strength is high, and the pair of oxide superconducting wires to be connected are arranged with the lamination direction aligned, the inversion of the oxide superconducting wire at the connection portion is reversed. It is possible to provide a connection structure without the above.

また、本発明の酸化物超電導線材は、前記接続構造体によって接続された酸化物超電導線材であって、前記接続構造体を含む酸化物超電導線材の外周がめっき被覆層又は金属テープにより外部と気密に覆われていることを特徴とする。
本発明によれば、接続構造体を含む酸化物超電導線材が外部から完全に封止され、酸化物超電導層の水分による劣化を防ぐことができる。
The oxide superconducting wire of the present invention is an oxide superconducting wire connected by the connection structure, and the outer periphery of the oxide superconducting wire including the connection structure is hermetically sealed from the outside by a plating coating layer or a metal tape. It is covered with.
According to the present invention, the oxide superconducting wire including the connection structure is completely sealed from the outside, and deterioration of the oxide superconducting layer due to moisture can be prevented.

また、本発明の酸化物超電導線材の接続方法は、テープ状の基材上に中間層と酸化物超電導層とAg又はAg合金からなる保護層を有する一対の酸化物超電導線材を用い、前記一対の酸化物超電導線材の互いの端部近傍の前記保護層同士を対向させ、間にAg又はAg合金からなる箔を挟んで重ね合わせる工程と、前記一対の酸化物超電導線材を介して前記箔を厚み方向から加圧しながら加熱し、前記保護層と前記箔とを拡散接合により接合し銀接合層を形成する工程と、前記保護層同士が重ね合わされた部分であって、前記銀接合層が形成されていない領域の保護層同士を半田より接合する工程とを有していることを特徴とする。
本発明によれば、酸化物超電導線材の保護層同士の接続部分に銀接合層を形成することによって接続抵抗が小さい接続構造体を供給できる。また、接続部分に半田接合層を形成することによって、機械的強度が低い銀接合層を補強し機械的強度を高めることができる。加えて、半田接合層も導電性を有するため、接続構造体に不慮の過大な負荷が加わり、銀接合層が損傷を受けて、銀接合層を介する電気的な接続が絶たれた場合であっても、半田接合層がバイパスとしての役割を果たし、接続構造体の電気的接続が絶たれることを防ぐことができる。
The method for connecting oxide superconducting wires of the present invention uses a pair of oxide superconducting wires having an intermediate layer, an oxide superconducting layer, and a protective layer made of Ag or an Ag alloy on a tape-shaped substrate, and A step of facing the protective layers in the vicinity of each end of the oxide superconducting wire, and sandwiching the foil made of Ag or an Ag alloy between the protective layers; and the foil via the pair of oxide superconducting wires Heating while pressing from the thickness direction, bonding the protective layer and the foil by diffusion bonding to form a silver bonding layer, and a portion where the protective layers are overlaid, the silver bonding layer formed And a step of joining the protective layers in the unfinished region with solder.
ADVANTAGE OF THE INVENTION According to this invention, a connection structure with small connection resistance can be supplied by forming a silver joining layer in the connection part of the protective layers of an oxide superconducting wire. Further, by forming a solder bonding layer at the connection portion, it is possible to reinforce the silver bonding layer having a low mechanical strength and increase the mechanical strength. In addition, since the solder bonding layer is also conductive, an unexpected excessive load is applied to the connection structure, the silver bonding layer is damaged, and the electrical connection through the silver bonding layer is broken. However, the solder joint layer serves as a bypass, and electrical connection of the connection structure can be prevented from being disconnected.

また、本発明の酸化物超電導線材の接続方法は、前記拡散接合により接合し銀接合層を形成する工程を酸素雰囲気下で行うことによって、同時に前記酸化物超電導層に酸素を供給してその結晶構造を整える酸素アニール処理を行うことを特徴とする。
本発明によれば、拡散接合させる熱処理工程は、酸化物超電導層に酸素を供給して、その結晶構造を整える酸素アニール処理と同時に行うことができるため、新たな生産設備や製造工程を付加する必要がなく、安価に行うことができる。
Also, the method for connecting the oxide superconducting wire of the present invention is characterized in that oxygen is supplied to the oxide superconducting layer at the same time by performing the step of bonding by diffusion bonding and forming a silver bonding layer in an oxygen atmosphere. It is characterized by performing an oxygen annealing process for adjusting the structure.
According to the present invention, the heat treatment process for diffusion bonding can be performed simultaneously with the oxygen annealing process for supplying oxygen to the oxide superconducting layer and adjusting its crystal structure, thereby adding new production equipment and manufacturing processes. This is not necessary and can be performed at low cost.

本発明によれば、酸化物超電導線材の保護層同士の接続部分に銀接合層を有することによって接続構造体の接続抵抗を小さくできる。また、接続部分に半田接合層を有することによって、機械的強度が低い銀接合層を補強し接続構造体の機械的強度を高めることができる。加えて、半田接合層も導電性を有するため、接続構造体に不慮の過大な負荷が加わり、銀接合層が損傷を受けて、銀接合層を介する電気的な接続が絶たれた場合であっても、半田接合層がバイパスとしての役割を果たし、接続構造体の電気的接続が絶たれることを防ぐことができる。   According to the present invention, the connection resistance of the connection structure can be reduced by having the silver bonding layer at the connection portion between the protective layers of the oxide superconducting wire. Moreover, by having a solder joint layer in a connection part, the silver joint layer with low mechanical strength can be reinforced and the mechanical strength of a connection structure can be improved. In addition, since the solder bonding layer is also conductive, an unexpected excessive load is applied to the connection structure, the silver bonding layer is damaged, and the electrical connection through the silver bonding layer is broken. However, the solder joint layer serves as a bypass, and electrical connection of the connection structure can be prevented from being disconnected.

図1は、本発明に係る酸化物超電導線材及びその端部を示す模式図である。FIG. 1 is a schematic diagram showing an oxide superconducting wire according to the present invention and its end. 本発明に係る接続構造体の第1実施形態を示す断面模式図である。It is a cross-sectional schematic diagram which shows 1st Embodiment of the connection structure which concerns on this invention. 本発明に係る接続方法を示す模式図であり、図3(a)は、一対の酸化物超電導線材の間に箔を挟んだ状態を示し、図3(b)は、拡散接合を行い、拡散接合体を形成した状態を示し、図3(c)は、半田接合を行い、接続構造体を形成した状態を示す。FIG. 3A is a schematic diagram showing a connection method according to the present invention, FIG. 3A shows a state in which a foil is sandwiched between a pair of oxide superconducting wires, and FIG. 3B shows diffusion bonding and diffusion. FIG. 3C shows a state in which a joined structure is formed, and FIG. 3C shows a state in which a connection structure is formed by performing solder joining. 本発明に係る接続構造体の第2実施形態を示す断面模式図である。It is a cross-sectional schematic diagram which shows 2nd Embodiment of the connection structure which concerns on this invention. 図4に示す接続構造体を外部と気密構造とした例を示す断面模式図であり、図5(a)は、めっき被覆層によって覆った例を示し、図5(b)は、金属テープによって覆った例を示す。FIG. 5A is a schematic cross-sectional view showing an example in which the connection structure shown in FIG. 4 is airtight with the outside. FIG. 5A shows an example covered with a plating coating layer, and FIG. A covered example is shown.

以下、本発明に係る酸化物超電導線材の実施形態について図面に基づいて説明する。なお、以下の説明で用いる図面は、特徴をわかりやすくするために、便宜上特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率などが実際と同じであるとは限らない。   Hereinafter, embodiments of an oxide superconducting wire according to the present invention will be described with reference to the drawings. In addition, in the drawings used in the following description, in order to make the features easy to understand, there are cases where the portions that become the features are enlarged for the sake of convenience, and the dimensional ratios of the respective components are not always the same as the actual ones. Absent.

(酸化物超電導線材)
図1は、本発明に係る酸化物超電導線材1の断面図である。酸化物超電導線材1は、テープ状の基材10に中間層11、酸化物超電導層12、保護層13が順に積層された構造を有する。図1を基に、酸化物超電導線材1の各構成要素に関して詳細に説明する。ただし、本発明は以下の実施形態に限定されるものではない。
(Oxide superconducting wire)
FIG. 1 is a cross-sectional view of an oxide superconducting wire 1 according to the present invention. The oxide superconducting wire 1 has a structure in which an intermediate layer 11, an oxide superconducting layer 12, and a protective layer 13 are laminated in this order on a tape-like base material 10. Based on FIG. 1, each component of the oxide superconducting wire 1 will be described in detail. However, the present invention is not limited to the following embodiments.

基材10は、通常の酸化物超電導線材の基材として使用し得るものであれば良く、可撓性を有する長尺のテープ状であることが好ましい。また、基材10に用いられる材料は、機械的強度が高く、耐熱性があり、線材に加工することが容易な金属を有しているものが好ましく、例えば、ステンレス鋼、ハステロイ等のニッケル合金等の各種耐熱性金属材料、もしくはこれら各種金属材料上にセラミックスを配した材料などが挙げられる。中でも、市販品であれば、ハステロイ(商品名、米国ヘインズ社製)が好適である。このハステロイの種類には、モリブデン、クロム、鉄、コバルト等の成分量が異なる、ハステロイB、C、G、N、W等が挙げられ、ここではいずれの種類も使用できる。また、基材10として、ニッケル合金に集合組織を導入した配向Ni−W合金テープ基材等を適用することもできる。基材10の厚さは、目的に応じて適宜調整すれば良く、通常は10〜500μm、好ましくは20〜200μmである。   The base material 10 may be any material that can be used as a base material for a normal oxide superconducting wire, and is preferably a long tape having flexibility. In addition, the material used for the base material 10 preferably has a metal having high mechanical strength, heat resistance, and easy to be processed into a wire, for example, a nickel alloy such as stainless steel or hastelloy. And various heat-resistant metal materials, or materials in which ceramics are arranged on these metal materials. Among them, Hastelloy (trade name, manufactured by Haynes, USA) is preferable as a commercial product. This kind of Hastelloy includes Hastelloy B, C, G, N, W, etc., which have different amounts of components such as molybdenum, chromium, iron, cobalt, etc., and any kind can be used here. Further, as the base material 10, an oriented Ni—W alloy tape base material in which a texture is introduced into a nickel alloy can be used. What is necessary is just to adjust the thickness of the base material 10 suitably according to the objective, Usually, 10-500 micrometers, Preferably it is 20-200 micrometers.

中間層11は、一例として拡散防止層、ベッド層、配向層、及びキャップ層がこの順に積層された構造を適用することができる。
拡散防止層は、この層よりも上面に他の層を形成する際に加熱処理した結果、基材10や他の層が熱履歴を受ける場合に、基材10の構成元素の一部が拡散し、不純物として酸化物超電導層12側に混入することを抑制する機能を有する。拡散防止層の具体的な構造としては、上記機能を発現し得るものであれば特に限定されないが、不純物の混入を防止する効果が比較的高いAl、Si、又はGZO(GdZr)等から構成される単層構造あるいは複層構造が望ましい。
As the intermediate layer 11, for example, a structure in which a diffusion prevention layer, a bed layer, an alignment layer, and a cap layer are stacked in this order can be applied.
As a result of heat treatment when forming another layer on the upper surface of this layer, the diffusion preventing layer diffuses part of the constituent elements of the base material 10 when the base material 10 or other layers receive a thermal history. And it has a function which suppresses mixing into the oxide superconducting layer 12 side as an impurity. The specific structure of the diffusion preventing layer is not particularly limited as long as it can exhibit the above-described function, but Al 2 O 3 , Si 3 N 4 , or GZO (which has a relatively high effect of preventing contamination of impurities) A single layer structure or a multilayer structure composed of Gd 2 Zr 2 O 7 ) or the like is desirable.

ベッド層は、基材10と酸化物超電導層12との界面における構成元素の反応を抑え、この層よりも上面に設ける層の配向性を向上させるために用いられる。ベッド層の具体的な構造としては、上記機能を発現し得るものであれば特に限定されないが、耐熱性が高いY、CeO、La、Dy、Er、Eu、Ho、などの希土類酸化物から構成される単層構造あるいは複層構造が望ましい。 The bed layer is used to suppress the reaction of the constituent elements at the interface between the base material 10 and the oxide superconducting layer 12 and to improve the orientation of the layer provided on the upper surface than this layer. The specific structure of the bed layer is not particularly limited as long as it can exhibit the above functions, but Y 2 O 3 , CeO 2 , La 2 O 3 , Dy 2 O 3 , Er 2 O, which have high heat resistance. 3 , a single layer structure or a multilayer structure composed of rare earth oxides such as Eu 2 O 3 and Ho 2 O 3 is desirable.

配向層は、その上に形成されるキャップ層や酸化物超電導層12の結晶配向性を制御したり、基材10の構成元素が酸化物超電導層12へ拡散することを抑制したり、基材10と酸化物超電導層12との熱膨張率や格子定数といった物理的特性の差を緩和したりする機能等を有するものである。配向層の材料には、上記機能を発現し得るものであれば特に限定されないが、GdZr、MgO、ZrO−Y(YSZ)等の金属酸化物を用いると、後述するイオンビームアシスト蒸着法(以下、IBAD法と呼ぶことがある。)において、結晶配向性の高い層が得られ、キャップ層や酸化物超電導層12の結晶配向性をより良好にできるため、特に好適である。 The alignment layer controls the crystal orientation of the cap layer and the oxide superconducting layer 12 formed thereon, suppresses the constituent elements of the substrate 10 from diffusing into the oxide superconducting layer 12, 10 and the oxide superconducting layer 12 have a function of reducing a difference in physical characteristics such as a coefficient of thermal expansion and a lattice constant. The material of the alignment layer is not particularly limited as long as it can express the above function, but when a metal oxide such as Gd 2 Zr 2 O 7 , MgO, ZrO 2 —Y 2 O 3 (YSZ) is used, In an ion beam assisted vapor deposition method (hereinafter also referred to as IBAD method) described later, a layer having high crystal orientation is obtained, and the crystal orientation of the cap layer and the oxide superconducting layer 12 can be improved. Particularly preferred.

キャップ層は、酸化物超電導層12の結晶配向性を配向層と同等ないしそれ以上に強く制御したり、酸化物超電導層12を構成する元素の中間層11への拡散や、酸化物超電導層12の積層時に使用するガスと中間層11との反応を抑制したりする機能等を有するものである。キャップ層の材料には、上記機能を発現し得るものであれば特に限定されないが、CeO、LaMnO、Y、Al、Gd、ZrO、Ho、Nd、Zr等の金属酸化物が酸化物超電導層12との格子整合性の観点から好適である。そのなかでも、酸化物超電導層12とのマッチング性から、CeO、LaMnOが特に好適である。
ここで、キャップ層にCeOを用いる場合、キャップ層は、Ceの一部が他の金属原子又は金属イオンで置換されたCe−M−O系酸化物を含んでいても良い。
The cap layer strongly controls the crystal orientation of the oxide superconducting layer 12 to be equal to or higher than that of the oriented layer, diffuses the elements constituting the oxide superconducting layer 12 into the intermediate layer 11, and the oxide superconducting layer 12. It has a function of suppressing the reaction between the gas used when laminating and the intermediate layer 11. The material of the cap layer is not particularly limited as long as it can exhibit the above functions, but is CeO 2 , LaMnO 3 , Y 2 O 3 , Al 2 O 3 , Gd 2 O 3 , ZrO 2 , Ho 2 O 3. From the viewpoint of lattice matching with the oxide superconducting layer 12, metal oxides such as Nd 2 O 3 and Zr 2 O 3 are preferable. Among these, CeO 2 and LaMnO 3 are particularly suitable from the viewpoint of matching with the oxide superconducting layer 12.
Here, when CeO 2 is used for the cap layer, the cap layer may include a Ce—M—O-based oxide in which part of Ce is substituted with another metal atom or metal ion.

酸化物超電導層12は、超電導状態の時に電流を流す機能を有するものである。酸化物超電導層12に用いられる材料には、通常知られている組成の酸化物超電導体からなるものを広く適用することができ、例えば、RE−123系超電導体、Bi系超電導体などの銅酸化物超電導体などが挙げられる。RE−123系超電導体の組成は、例えば、REBaCu(7−x)(REはY、La、Nd、Sm、Er、Gd等の希土類元素、xは酸素欠損を表す。)が挙げられ、具体的には、Y123(YBaCu(7−x))、Gd123(GdBaCu(7−x))が挙げられる。Bi系超電導体の組成は、例えば、BiSrCan−1Cu4+2n+δ(nはCuOの層数、δは過剰酸素を表す。)が挙げられる。この銅酸化物超電導体は、母物質が絶縁体であるが、後述する接続方法において説明する酸素アニール処理により酸素を取り込むことで結晶構造の整った酸化物超電導体となり、超電導特性を示す性質を持っている。
また、本実施形態おいて用いられる酸化物超電導層12の材料は、銅酸化物超電導体であり、以下、特に指定がなければ、酸化物超電導層12に用いる材料を銅酸化物超電導体とする。
The oxide superconducting layer 12 has a function of flowing current when in the superconducting state. As the material used for the oxide superconducting layer 12, a material composed of an oxide superconductor having a generally known composition can be widely applied. For example, copper such as RE-123 series superconductor, Bi series superconductor, etc. Examples include oxide superconductors. The composition of the RE-123 series superconductor is, for example, REBa 2 Cu 3 O (7-x) (RE represents a rare earth element such as Y, La, Nd, Sm, Er, Gd, and x represents oxygen deficiency). mentioned, specifically, Y123 (YBa 2 Cu 3 O (7-x)), Gd123 (GdBa 2 Cu 3 O (7-x)) and the like. The composition of the Bi-based superconductor, for example, Bi 2 Sr 2 Ca n- 1 Cu n O 4 + 2n + δ (n is the number of layers of CuO 2, [delta] represents an excess oxygen.) Include. In this copper oxide superconductor, the base material is an insulator, but it becomes an oxide superconductor with a well-crystallized structure by incorporating oxygen by the oxygen annealing treatment described in the connection method described later, and has the property of exhibiting superconducting properties. have.
Moreover, the material of the oxide superconductor layer 12 used in this embodiment is a copper oxide superconductor. Hereinafter, unless otherwise specified, the material used for the oxide superconductor layer 12 is a copper oxide superconductor. .

保護層13は、事故時に発生する過電流をバイパスしたり、酸化物超電導層12とこの層よりも上面に設ける層との間で起こる化学反応を抑制し、一方の層の元素の一部が他方の層側に侵入して組成がくずれることにより起こる超電導特性が低下するのを防いだりするなどの機能を有するものである。また、酸化物超電導層12に酸素を取り込ませやすくするために、加熱時には酸素を透過しやすくさせる機能も有する。このため、保護層13は、Agあるいは少なくともAgを含む材料から形成されることが好ましい。また、保護層13を形成する材料は、Au、Ptなどの貴金属を含む混合物もしくは合金であってもよく、In、Pdを含む合金であっても良い。また、これらを複数用いてもよい。   The protective layer 13 bypasses an overcurrent generated at the time of an accident, or suppresses a chemical reaction that occurs between the oxide superconducting layer 12 and a layer provided on the upper surface of this layer. It has a function of preventing deterioration of superconducting characteristics caused by entering the other layer and breaking the composition. Moreover, in order to make it easy to take in oxygen to the oxide superconducting layer 12, it has the function to make oxygen permeate | transmit easily at the time of a heating. For this reason, it is preferable that the protective layer 13 is formed from Ag or a material containing at least Ag. The material for forming the protective layer 13 may be a mixture or alloy containing noble metals such as Au and Pt, or an alloy containing In and Pd. A plurality of these may be used.

なお、図1の保護層13は、酸化物超電導層12の上面のみに設けられているが、スパッタ法などの成膜法により保護層13を形成した場合、基材10、中間層11、酸化物超電導層12の側面側にもAg粒子が回り込んでAgの薄い層が形成され、基材10の裏面側にもAgの薄い層が形成される。しかしながら、本発明で重要とするのは、酸化物超電導層12の上面を覆う保護層13の部分であるので、酸化物超電導線材1の側面及び裏面側に形成されるAgの層は、特に問題とはせず図示を略す。   1 is provided only on the upper surface of the oxide superconducting layer 12. However, when the protective layer 13 is formed by a film formation method such as sputtering, the base material 10, the intermediate layer 11, the oxidation layer 13 are formed. Ag particles wrap around the side surface of the superconductor layer 12 to form a thin Ag layer, and a thin Ag layer is also formed on the back side of the substrate 10. However, since what is important in the present invention is the portion of the protective layer 13 that covers the upper surface of the oxide superconducting layer 12, the Ag layer formed on the side and back sides of the oxide superconducting wire 1 is particularly problematic. The illustration is omitted.

(第1実施形態)
次に上述した酸化物超電導線材1と同等の構造を有しているが、酸素アニール処理前の酸化物超電導線材を2本用意し、このうち一方を第1の酸化物超電導線材2とし、他方を第2の酸化物超電導線材3として、これらを接続した第1実施形態の接続構造体30について、図2を基に説明する。
(First embodiment)
Next, it has a structure equivalent to the oxide superconducting wire 1 described above, but two oxide superconducting wires before the oxygen annealing treatment are prepared, one of which is the first oxide superconducting wire 2, and the other As a second oxide superconducting wire 3, a connection structure 30 of the first embodiment in which these are connected will be described with reference to FIG.

図2に示すように、第1実施形態の接続構造体30は、第1の酸化物超電導線材2及び第2の酸化物超電導線材3を接続する構造体である。第1及び第2の酸化物超電導線材2、3は、互いの端部2a、3a近傍の保護層13同士が対向して重ね合わされて配置されており、この対向して重ね合わされた保護層13の中央部が銀接合層14によって接合されている。また、第1及び第2の酸化物超電導線材2、3の長手方向において、前記銀接合層14の両側の保護層13同士が半田接合層22によって接合されて接続構造体30を構成している。   As shown in FIG. 2, the connection structure 30 of the first embodiment is a structure that connects the first oxide superconducting wire 2 and the second oxide superconducting wire 3. The first and second oxide superconducting wires 2 and 3 are arranged such that the protective layers 13 in the vicinity of the end portions 2a and 3a face each other and are overlapped with each other. Are joined by a silver bonding layer 14. Further, in the longitudinal direction of the first and second oxide superconducting wires 2 and 3, the protective layers 13 on both sides of the silver bonding layer 14 are bonded to each other by the solder bonding layer 22 to constitute the connection structure 30. .

銀接合層14は、保護層13と拡散接合により接合されたAg又はAg合金からなる。Ag合金として、例えばAg−In合金、Ag−Pd合金を用いる事ができる。また、前記拡散接合は、接合面に圧力をかけ300〜600℃の熱処理を行うことで、Agを固相拡散させる接合方法である。
半田接合層22は、従来公知の半田を使用可能であり、例えば、Inを主成分とするIn半田、Sn、Sn−Ag系合金、Sn−Bi系合金、Sn−Cu系合金、Sn−Zn系合金などのSnを主成分とする合金よりなるSn半田、Pb−Sn系合金半田、共晶半田、低温半田などが挙げられ、これらの半田を一種又は二種以上組み合わせて使用することができる。これらの中でも、融点が300℃以下の半田を用いることが好ましい。
The silver bonding layer 14 is made of Ag or an Ag alloy bonded to the protective layer 13 by diffusion bonding. As the Ag alloy, for example, an Ag—In alloy or an Ag—Pd alloy can be used. The diffusion bonding is a bonding method in which Ag is solid-phase diffused by applying pressure to the bonding surfaces and performing heat treatment at 300 to 600 ° C.
Conventionally known solder can be used for the solder bonding layer 22, for example, In solder containing In as a main component, Sn, Sn—Ag alloy, Sn—Bi alloy, Sn—Cu alloy, Sn—Zn. Sn solder made of an alloy containing Sn as a main component, such as a Pb-based alloy, Pb—Sn-based alloy solder, eutectic solder, low-temperature solder, and the like can be used. These solders can be used alone or in combination of two or more. . Among these, it is preferable to use solder having a melting point of 300 ° C. or less.

Ag又はAg合金は体積抵抗率が低いため、接続部分に銀接合層14を設けることによって接続構造体30の接続抵抗を小さくすることができる。しかし、銀接合層14は、拡散接合により第1及び第2の酸化物超電導線材2、3の保護層13、13と接合しているため、機械的強度が低い。
本実施形態において、第1及び第2の酸化物超電導線材2、3の長手方向において、前記銀接合層14の両側の保護層13同士が半田接合層22によって接合されている。半田接合層22は機械的強度が高く、半田接合層22が銀接合層14の両側を補強しているため、接続構造体30の機械的強度を高めることができる。
Since Ag or Ag alloy has a low volume resistivity, the connection resistance of the connection structure 30 can be reduced by providing the silver bonding layer 14 at the connection portion. However, since the silver bonding layer 14 is bonded to the protective layers 13 and 13 of the first and second oxide superconducting wires 2 and 3 by diffusion bonding, the mechanical strength is low.
In the present embodiment, the protective layers 13 on both sides of the silver bonding layer 14 are bonded to each other by the solder bonding layer 22 in the longitudinal direction of the first and second oxide superconducting wires 2 and 3. Since the solder bonding layer 22 has high mechanical strength and the solder bonding layer 22 reinforces both sides of the silver bonding layer 14, the mechanical strength of the connection structure 30 can be increased.

また、半田接合層22は高い導電性を有するため、接続構造体30に不慮の過大な外力等が加わり、銀接合層14と保護層13、13との接合部が損傷を受けて、銀接合層14を介する電気的な接続が絶たれた場合であっても、半田接合層22がバイパスとしての役割を果たし、接続構造体30の電気的接続が絶たれることを防ぐことができる。
なお、本実施形態においては、半田接合層22は、銀接合層14の長手方向両側に形成されているが、半田接合層22は銀接合層14の片側だけに形成されていても良い。
Further, since the solder bonding layer 22 has high conductivity, an unexpected excessive external force or the like is applied to the connection structure 30, so that the bonding portion between the silver bonding layer 14 and the protective layers 13 and 13 is damaged, and the silver bonding Even when the electrical connection through the layer 14 is disconnected, the solder bonding layer 22 serves as a bypass, and the electrical connection of the connection structure 30 can be prevented from being disconnected.
In this embodiment, the solder bonding layer 22 is formed on both sides of the silver bonding layer 14 in the longitudinal direction, but the solder bonding layer 22 may be formed only on one side of the silver bonding layer 14.

(酸化物超電導線材の接続方法)
次に第1及び第2の酸化物超電導線材2、3を接続し、接続構造体30を構成する接続方法について図3(a)、(b)、(c)を基に説明する。
まず、図3(a)に示すように、第1の酸化物超電導線材2と第2の酸化物超電導線材3の端部2a、3a近傍を重ね合わせる。重ね合わせる際に、第1の酸化物超電導線材2の保護層13と第2の酸化物超電導線材3の保護層13間にAg又はAg合金からなる箔14Aを挟み込む。
箔14Aは、保護層13と同種の金属からなる事が好ましい。例えば、保護層13がAg、Ag−In合金、Ag−Pd合金からなる場合においては、箔14AとしてAg、Ag−In合金、Ag−Pd合金等を用いることができる。この中でも特に、保護層13、箔14AともにAgであることが最も好ましい。
(Connection method for oxide superconducting wire)
Next, a connection method in which the first and second oxide superconducting wires 2 and 3 are connected to form the connection structure 30 will be described with reference to FIGS. 3 (a), 3 (b), and 3 (c).
First, as shown in FIG. 3A, the vicinity of the end portions 2a and 3a of the first oxide superconducting wire 2 and the second oxide superconducting wire 3 are overlapped. When superposing, a foil 14A made of Ag or an Ag alloy is sandwiched between the protective layer 13 of the first oxide superconducting wire 2 and the protective layer 13 of the second oxide superconducting wire 3.
The foil 14A is preferably made of the same type of metal as the protective layer 13. For example, when the protective layer 13 is made of Ag, an Ag—In alloy, or an Ag—Pd alloy, Ag, an Ag—In alloy, an Ag—Pd alloy, or the like can be used as the foil 14A. Among these, it is most preferable that both the protective layer 13 and the foil 14A are Ag.

箔14Aの厚さは、保護層13、箔14A共にAgからなる場合において、0.1μm以上50μm以下が好ましい。0.1μmより薄いと、保護層13と箔14Aの拡散接合が起こりにくくなる。加えて、隙間16の高さが狭いため、後工程での半田接合層22の形成の際に、隙間16に半田を充填させることが困難となる。また、50μmより厚いと、接続構造体30における第1の酸化物超電導線材2と第2の酸化物超電導線材3との間に形成される段差が大きくなり、接続構造体30をコイル状に巻回すると係る段差によって、巻き線が不均一となる。これによって、巻回した酸化物超電導線材2、3に電流を流した場合に発生する磁界が不均一となる虞がある。さらに巻き線が不均一であると、製造工程上で巻回したコイルを巻き出す際に巻き出し速度が一定とならず、不具合を生じる虞がある。   When both the protective layer 13 and the foil 14A are made of Ag, the thickness of the foil 14A is preferably 0.1 μm or more and 50 μm or less. When the thickness is less than 0.1 μm, diffusion bonding between the protective layer 13 and the foil 14A is difficult to occur. In addition, since the height of the gap 16 is narrow, it is difficult to fill the gap 16 with solder when forming the solder bonding layer 22 in a later process. On the other hand, if the thickness is larger than 50 μm, a step formed between the first oxide superconducting wire 2 and the second oxide superconducting wire 3 in the connection structure 30 becomes large, and the connection structure 30 is wound in a coil shape. When it is turned, the winding becomes uneven due to the step. As a result, the magnetic field generated when current is passed through the wound oxide superconducting wires 2 and 3 may be non-uniform. Further, if the winding is not uniform, the unwinding speed is not constant when the coil wound in the manufacturing process is unwound, which may cause a problem.

箔14Aは、第1及び第2の酸化物超電導線材2、3の幅と略同幅の物を用いて、重なり部の全幅に渡って配置される。また、箔14Aは、第1及び第2の酸化物超電導線材2、3の重なり部の中央に、長さH14に渡って配置され、重なり部において箔14Aの両側から第1及び第2の酸化物超電導線材2、3の端部2a、3aには、それぞれ長さH16、H16の隙間16が設けられている。 The foil 14 </ b> A is disposed over the entire width of the overlapping portion using an object having substantially the same width as that of the first and second oxide superconducting wires 2 and 3. Further, the foil 14A is the center of the overlapping portion of the first and second oxide superconducting wire 2, the length is disposed over the H 14, from both sides of the foil 14A at the overlapping portions of the first and second end 2a of the oxide superconducting wire 2, the 3a, each gap 16 of length H 16, H 16 are provided.

次に、第1及び第2の酸化物超電導線材2、3の重なり部を厚み方向から、バイス(万力)等によって挟み込むことによって、第1及び第2の酸化物超電導線材2、3を介して箔14Aに圧力を加える。当該圧力は1〜30MPaであるとこが好ましい。1MPa未満であると、保護層13と箔14Aの拡散接合がおこらない。また、30MPaを超えた圧力で加圧すると、酸化物超電導層12の結晶構造に亀裂が生じ超電導特性が劣化する虞がある。   Next, by sandwiching an overlapping portion of the first and second oxide superconducting wires 2 and 3 from the thickness direction with a vise (vise) or the like, the first and second oxide superconducting wires 2 and 3 are interposed. Then, pressure is applied to the foil 14A. The pressure is preferably 1 to 30 MPa. When the pressure is less than 1 MPa, diffusion bonding between the protective layer 13 and the foil 14A does not occur. Further, when the pressure is increased at a pressure exceeding 30 MPa, the oxide superconducting layer 12 may be cracked in the crystal structure to deteriorate the superconducting characteristics.

バイスによって、第1及び第2の酸化物超電導線材2、3の重なり部を加圧した状態で、酸素雰囲気とされた加熱炉に格納し熱処理を行う。熱処理の時間は、加熱炉の温度を300〜500℃とした場合は10〜25hであり、加熱炉の温度を500〜600℃とした場合は1〜25hである。このような熱処理を行うことによって、箔14Aと第1及び第2の酸化物超電導線材2、3の保護層13、13とが拡散接合し、銀接合層14が形成され、図3(b)に示す拡散接合体31が構成される。
また、酸素雰囲気下で加熱されることによって、同時に酸素アニール処理が行われる。即ち、第1及び第2の酸化物超電導線材2、3の酸化物超電導層12に保護層13を介して酸素を供給し、その結晶構造を整えることで、超電導特性の良好な酸化物超電導体の結晶からなる酸化物超電導層12とする。
In a state where the overlapping portion of the first and second oxide superconducting wires 2 and 3 is pressurized by a vice, the heat treatment is performed by storing in a heating furnace having an oxygen atmosphere. The heat treatment time is 10 to 25 hours when the temperature of the heating furnace is 300 to 500 ° C., and 1 to 25 hours when the temperature of the heating furnace is 500 to 600 ° C. By performing such heat treatment, the foil 14A and the protective layers 13 and 13 of the first and second oxide superconducting wires 2 and 3 are diffusion-bonded to form a silver bonding layer 14, and FIG. The diffusion bonded body 31 shown in FIG.
Further, oxygen annealing is simultaneously performed by heating in an oxygen atmosphere. That is, by supplying oxygen to the oxide superconducting layers 12 of the first and second oxide superconducting wires 2 and 3 via the protective layer 13 and adjusting the crystal structure thereof, the oxide superconductor having good superconducting characteristics. The oxide superconducting layer 12 is made of the above crystal.

箔14Aと第1及び第2の酸化物超電導線材2、3の保護層13、13とが拡散接合し、銀接合層14を形成する熱処理工程は、酸素アニール工程と同時に行うことができるため、新たな生産設備や製造工程を付加する必要がなく、安価に行うことができる。   The heat treatment step in which the foil 14A and the protective layers 13 and 13 of the first and second oxide superconducting wires 2 and 3 are diffusion bonded and the silver bonding layer 14 is formed can be performed simultaneously with the oxygen annealing step. There is no need to add new production equipment and manufacturing processes, and it can be performed at low cost.

次に、加熱炉から取り出し十分に冷却した拡散接合体31の隙間16に、隙間16の厚みと略同厚み又は若干薄い半田の箔を差し込み、拡散接合体31を加熱し半田を溶融させた後、冷却し半田を凝固させ、図3(c)に示すように半田接合層22を形成する。加熱手段は特に限定されないが、例えば半田ごてにより加熱することができる。
半田の加熱の際の温度は300℃以下であることが好ましい。これにより、半田付けの熱によって酸素アニール処理を行った酸化物超電導層12の特性が劣化することを抑止できる。
以上の工程を経ることによって、接続構造体30を形成することができる。
Next, after removing from the heating furnace and sufficiently cooling the gap 16 of the diffusion bonded body 31, a solder foil of approximately the same thickness as the gap 16 or slightly thinner is inserted and the diffusion bonded body 31 is heated to melt the solder. Then, the solder is solidified by cooling, and a solder bonding layer 22 is formed as shown in FIG. The heating means is not particularly limited, but can be heated by, for example, a soldering iron.
The temperature at the time of heating the solder is preferably 300 ° C. or less. Thereby, it can suppress that the characteristic of the oxide superconducting layer 12 which performed the oxygen annealing process with the heat of soldering deteriorates.
Through the above steps, the connection structure 30 can be formed.

(第2実施形態)
次に、図1を基に説明した酸化物超電導線材1と同等の構造を有しているが、酸素アニール処理前の酸化物超電導線材を3本用意し、これらを第1の酸化物超電導線材4、第2の酸化物超電導線材5、第3の酸化物超電導線材6として接続した第2実施形態の接続構造体32について、図4を基に説明する。なお、上述の第1実施形態と同一の構成要素については、同一符号を付し、その説明を省略する。
(Second Embodiment)
Next, it has the same structure as the oxide superconducting wire 1 described with reference to FIG. 1, but three oxide superconducting wires before the oxygen annealing treatment are prepared, and these are the first oxide superconducting wires. 4, the connection structure 32 of 2nd Embodiment connected as the 2nd oxide superconducting wire 5 and the 3rd oxide superconducting wire 6 is demonstrated based on FIG. In addition, about the component same as the above-mentioned 1st Embodiment, the same code | symbol is attached | subjected and the description is abbreviate | omitted.

図4に示すように、接続構造体32は、第1の酸化物超電導線材4及び第2の酸化物超電導線材5を第3の酸化物超電導線材6を介して接続する構成を有する。
即ち、接続構造体32は、第1の酸化物超電導線材4及び第2の酸化物超電導線材5が、端部4a、5a同士を所定の間隙7を設けて隣接されている。なお、第1及び第2の酸化物超電導線材4、5の積層方向は一致している。また、端部4a、5aを跨るように、第1及び第2の酸化物超電導線材4、5の保護層13に第3の酸化物超電導線材6の保護層13が橋渡しされており、第1及び第3の酸化物超電導線材4、6の保護層13、13同士、並びに前記第2及び第3の酸化物超電導線材5、6の保護層13、13同士の少なくとも一部が銀接合層14によって接合され、第1及び第3の酸化物超電導線材4、6の保護層13、13同士、並びに第2及び第3の酸化物超電導線材5、6の保護層13、13同士の少なくとも一部が半田接合層22によって接合されている。
As shown in FIG. 4, the connection structure 32 has a configuration in which the first oxide superconducting wire 4 and the second oxide superconducting wire 5 are connected via the third oxide superconducting wire 6.
That is, in the connection structure 32, the first oxide superconducting wire 4 and the second oxide superconducting wire 5 are adjacent to each other with the end portions 4 a and 5 a provided with a predetermined gap 7. In addition, the lamination direction of the 1st and 2nd oxide superconducting wire 4 and 5 corresponds. Further, the protective layer 13 of the third oxide superconducting wire 6 is bridged to the protective layer 13 of the first and second oxide superconducting wires 4 and 5 so as to straddle the end portions 4a and 5a. And the protective layers 13 and 13 of the third oxide superconducting wires 4 and 6, and at least a part of the protective layers 13 and 13 of the second and third oxide superconducting wires 5 and 6 are silver bonding layers 14. And at least a part of the protective layers 13 and 13 of the first and third oxide superconducting wires 4 and 6 and the protective layers 13 and 13 of the second and third oxide superconducting wires 5 and 6. Are bonded by the solder bonding layer 22.

第2実施形態の接続構造体32は、上述した第1実施形態の接続構造体30を第1の酸化物超電導線材4の一端(端部4a近傍)と第3の酸化物超電導線材6の一端(第1端部6a近傍)とに適用して接続し、さらに第3の酸化物超電導線材6の他端(第2端部6b近傍)と第2の酸化物超電導線材5の一端(端部5a近傍)とに適用して接続したものであると説明できる。
このような構造とすることで、第1実施形態の種々の効果を奏するのみならず、接続部分で酸化物超電導線材の表裏の逆転がない接続構造体を提供することができる。
The connection structure 32 of the second embodiment is different from the connection structure 30 of the first embodiment described above in one end of the first oxide superconducting wire 4 (in the vicinity of the end 4a) and one end of the third oxide superconducting wire 6. (Applied to and near the first end portion 6a), and connected to the other end of the third oxide superconducting wire 6 (near the second end portion 6b) and one end (end portion) of the second oxide superconducting wire 5. It can be explained that the connection is applied to the vicinity of 5a.
With such a structure, it is possible to provide a connection structure that not only exhibits the various effects of the first embodiment but also does not cause the reverse of the oxide superconducting wire at the connection portion.

(被覆接続構造体)
図5(a)に、第2実施形態の接続構造体32によって接続された酸化物超電導線材4、5、6をめっき被覆層20によって外部と気密に覆った例を示す。
酸化物超電導線材4、5、6の酸化物超電導層12上には保護層13が設けられ、酸化物超電導層12が水分により劣化することを防いでいる。しかしながら、当該保護層13は、ピンホールが発生しやすく水分の浸入を確実に防ぐことできない場合があり、空気中等に含まれる水分と反応し超電導特性が低下する虞がある。また、図4に示す、接続構造体32において、第1、第2及び第3の酸化物超電導線材4、5、6の端部4a、5a、6a、6bは露出しているため、係る端部4a、5a、6a、6bにおいて酸化物超電導層12が水分と反応し超電導特性が劣化する虞がある。
そこで、接続構造体32を含む酸化物超電導線材4、5、6をめっき被覆層20により被覆し、水分の浸入を防ぐ構造を有する酸化物超電導線材33を形成することができる。
(Coated connection structure)
FIG. 5A shows an example in which the oxide superconducting wires 4, 5, and 6 connected by the connection structure 32 of the second embodiment are covered with the plating coating layer 20 in an airtight manner.
A protective layer 13 is provided on the oxide superconducting layer 12 of the oxide superconducting wires 4, 5, and 6 to prevent the oxide superconducting layer 12 from being deteriorated by moisture. However, the protective layer 13 is likely to generate pinholes and cannot reliably prevent the ingress of moisture, and may react with moisture contained in the air or the like to deteriorate the superconducting characteristics. Further, in the connection structure 32 shown in FIG. 4, the end portions 4a, 5a, 6a, and 6b of the first, second, and third oxide superconducting wires 4, 5, and 6 are exposed. In the portions 4a, 5a, 6a, and 6b, the oxide superconducting layer 12 may react with moisture to deteriorate the superconducting characteristics.
Thus, the oxide superconducting wire 33 including the connection structure 32 can be covered with the plating coating layer 20 to form the oxide superconducting wire 33 having a structure that prevents moisture from entering.

めっき被覆層20の厚さとしては、10μm以上100μm以下が望ましい。めっき被覆層20の厚さが10μmより小さい場合においては、めっき被覆層20にピンホールが発生する可能性があり、当該ピンホールより水分が浸入する虞がある。また、めっき被覆層20の厚さが100μmを超える場合は、酸化物超電導線材33の厚みが厚くなりすぎて、使用上不都合が生じる場合があるのみならず、めっきコストの増加を招く。よって、めっき被覆層20の厚さは10μm以上100μm以下であることが望ましい。   The thickness of the plating coating layer 20 is desirably 10 μm or more and 100 μm or less. When the thickness of the plating coating layer 20 is smaller than 10 μm, a pinhole may occur in the plating coating layer 20, and there is a possibility that moisture may enter from the pinhole. Moreover, when the thickness of the plating coating layer 20 exceeds 100 μm, the thickness of the oxide superconducting wire 33 becomes too thick, which may cause inconvenience in use, and also increases the plating cost. Therefore, the thickness of the plating coating layer 20 is desirably 10 μm or more and 100 μm or less.

常温では基材10や酸化物超電導層12等は、保護層13に比べて電気抵抗が大きいため、通常の電解めっき法のみではめっき被覆層20を形成することは困難である。したがって、無電解めっきのみで10μm以上の厚さを有するめっき被覆層20を形成するか、または無電解めっき法により金属で覆った後、電解めっき法によりさらに金属層を厚くする方法をとることができる。
めっき被覆層20に使用する金属としては、銅、ニッケル、金、銀、クロム、錫などを挙げることができ、これ等の金属のうち一種又は二種以上を組み合わせて用いる事ができる。
また、めっき被覆層20に使用する金属として良導電性を有するものを用いた場合は、めっき被覆層20は、保護層13と共に事故時に発生する過電流をバイパスする役割を担う安定化層として機能する。
Since the base material 10 and the oxide superconducting layer 12 have a higher electrical resistance than the protective layer 13 at room temperature, it is difficult to form the plating coating layer 20 only by a normal electrolytic plating method. Therefore, the plating coating layer 20 having a thickness of 10 μm or more can be formed only by electroless plating, or after the metal coating is covered with a metal by the electroless plating method, the metal layer can be further thickened by the electrolytic plating method. it can.
Examples of the metal used for the plating coating layer 20 include copper, nickel, gold, silver, chromium, tin, and the like, and one or a combination of two or more of these metals can be used.
Further, when a metal having good conductivity is used as the metal used for the plating coating layer 20, the plating coating layer 20 functions as a stabilization layer that plays a role of bypassing overcurrent generated at the time of an accident together with the protective layer 13. To do.

図5(b)に、第2実施形態の接続構造体32によって接続された酸化物超電導線材4、5、6を金属テープ21によって外部と気密に覆った例を示す。
金属テープ21は、接続構造体32を含む酸化物超電導線材4、5、6の周囲を気密に被覆するように半田層23を介して形成され、水分の浸入を防ぐ構造を有する酸化物超電導線材34を構成する。
FIG. 5B shows an example in which the oxide superconducting wires 4, 5, and 6 connected by the connection structure 32 of the second embodiment are covered with the metal tape 21 in an airtight manner.
The metal tape 21 is formed through the solder layer 23 so as to airtightly cover the periphery of the oxide superconducting wires 4, 5, 6 including the connection structure 32, and has a structure that prevents moisture from entering. 34 is configured.

金属テープ21による被覆された構成を有する酸化物超電導線材34は、片面又は両面に半田層23を設けた金属テープ21の面上に、接続構造体32を含む酸化物超電導線材4、5、6を配置し、酸化物超電導線材4、5、6の周面を横断面略C字型をなすように包み込んで折り曲げ加工し、半田層23を加熱溶融させてロールにより加圧することにより形成することができる。また、酸化物超電導線材4、5、6の外周に半田層23を設けた金属テープ21を螺旋巻きにするなどして気密に被覆して形成しても良い。   The oxide superconducting wire 34 having a structure covered with the metal tape 21 is formed on the surface of the metal tape 21 provided with the solder layer 23 on one side or both sides, and the oxide superconducting wires 4, 5, 6 including the connection structure 32. Is formed by wrapping and bending the peripheral surfaces of the oxide superconducting wires 4, 5, and 6 so as to form a substantially C-shaped cross section, and heating and melting the solder layer 23 and pressurizing it with a roll. Can do. Alternatively, the oxide superconducting wires 4, 5, 6 may be formed so as to be hermetically covered by spirally winding a metal tape 21 provided with a solder layer 23 on the outer periphery.

金属テープ21と接続構造体32とは半田層23を介して接合される。接続構造体32は、第3の酸化物超電導線材6が橋渡しされているため、第3の酸化物超電導線材6の端部6a、6b近傍に段差を有するが、係る段差部分は、半田充填部23aによって充填されていることが望ましい。また、第1及び第2の酸化物超電導線材4、5の端部4a、5a間に形成される間隙7も、半田充填部23bによって充填されていることが望ましい。
なお、図5(b)は模式的に示した断面図であり、接続構造体32に構成される段差が強調して表示されているが、実際は接続構造体32の長手方向長さに対して、当該段差は十分小さく、半田によって容易に充填することができる。
The metal tape 21 and the connection structure 32 are joined via the solder layer 23. The connection structure 32 has a step near the ends 6a and 6b of the third oxide superconducting wire 6 because the third oxide superconducting wire 6 is bridged. It is desirable to be filled with 23a. Further, it is desirable that the gap 7 formed between the end portions 4a and 5a of the first and second oxide superconducting wires 4 and 5 is also filled with the solder filling portion 23b.
Note that FIG. 5B is a schematic cross-sectional view showing the steps formed in the connection structure 32 in an emphasized manner, but actually the length in the longitudinal direction of the connection structure 32 is shown. The step is sufficiently small and can be easily filled with solder.

金属テープ21を構成する金属材料としては、特に限定されないが銅、黄銅(Cu−Zn合金)、Cu−Ni合金等の銅合金、ステンレス等の比較的安価な材質からなるものを用いることが好ましく、中でも高い導電性を有し、安価であることから銅製が好ましい。また、酸化物超電導線材34を超電導限流器に使用する場合においては、金属テープ21に用いられる材料は、例えば、Ni−Cr等のNi系合金等の高抵抗金属を用いる事が良い。   Although it does not specifically limit as a metal material which comprises the metal tape 21, It is preferable to use what consists of comparatively cheap materials, such as copper, brass (Cu-Zn alloy), copper alloys, such as Cu-Ni alloy, and stainless steel. Of these, copper is preferable because it has high conductivity and is inexpensive. When the oxide superconducting wire 34 is used for a superconducting fault current limiter, the material used for the metal tape 21 is preferably a high resistance metal such as a Ni-based alloy such as Ni—Cr.

金属テープ21で接続構造体32を含む酸化物超電導線材4、5、6を被覆した場合においても、めっき被覆層20で被覆した場合と同様の効果を得ることができる。   Even when the oxide superconducting wires 4, 5, 6 including the connection structure 32 are covered with the metal tape 21, the same effect as that obtained when the plating coating layer 20 is used can be obtained.

以下、実施例を示して本発明をさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
(試料の作製)
幅10mm、厚さ0.1mmのテープ状のハステロイ(米国ヘインズ社製商品名)製の基材上に、スパッタ法によりAl(拡散防止層;膜厚150nm)を成膜し、その上に、イオンビームスパッタ法によりY(ベッド層;膜厚20nm)を成膜した。次いで、このベッド層上に、イオンビームアシスト蒸着法(IBAD法)によりMgO(金属酸化物層;膜厚10nm)を形成し、その上にパルスレーザー蒸着法(PLD法)により0.5μm厚のCeO(キャップ層)を成膜した。次いでCeO層上にPLD法により2.0μm厚のGdBaCu7−δ(酸化物超電導層)を形成し、さらに酸化物超電導層上にスパッタ法により10μm厚のAg層(保護層)を形成した。これによって、図1に示す酸化物超電導積層体を複数作製した。この酸化物超電導線材を以下の実施例及び比較例で共通して使用する。
EXAMPLES Hereinafter, although an Example is shown and this invention is demonstrated further in detail, this invention is not limited to these Examples.
(Sample preparation)
An Al 2 O 3 (diffusion prevention layer; film thickness 150 nm) film was formed by sputtering on a tape-shaped Hastelloy (trade name, manufactured by Haynes, USA) having a width of 10 mm and a thickness of 0.1 mm. On top, Y 2 O 3 (bed layer; film thickness 20 nm) was formed by ion beam sputtering. Next, MgO (metal oxide layer; film thickness: 10 nm) is formed on the bed layer by ion beam assisted vapor deposition (IBAD method), and 0.5 μm thick is formed thereon by pulse laser vapor deposition (PLD method). CeO 2 (cap layer) was formed. Next, a 2.0 μm-thick GdBa 2 Cu 3 O 7-δ (oxide superconducting layer) is formed on the CeO 2 layer by a PLD method, and a 10 μm-thick Ag layer (protective layer) is formed on the oxide superconducting layer by a sputtering method. ) Was formed. Thereby, a plurality of oxide superconducting laminates shown in FIG. 1 were produced. This oxide superconducting wire is commonly used in the following examples and comparative examples.

上述した酸化物超電導線材を一対用意し、これらの保護層を向かい合わせて端部近傍を80mm重ね合わせ、幅10mm、長さ40mm(即ち図3(a)におけるH14=40mm)、厚み25μmのAgからなる箔を挟んで重ね合わせた。なお、一対の酸化物超電導線材の各端部から箔までの距離は、それぞれ20mm(即ち図3(a)におけるH16=20mm)とした。 A pair of the oxide superconducting wires described above is prepared, these protective layers are faced to each other, and the vicinity of the end portion is overlapped by 80 mm, the width is 10 mm, the length is 40 mm (that is, H 14 = 40 mm in FIG. 3A), and the thickness is 25 μm. The foils made of Ag were stacked on top of each other. The distance from each end of the pair of oxide superconducting wires to the foil was 20 mm (that is, H 16 = 20 mm in FIG. 3A).

次に、箔を挟んだ部分をステンレス製のバイスにより挟持し箔に10MPaの圧力を加え、その状態のまま酸素雰囲気下の加熱炉に格納し、500℃、5hの熱処理を行うことで、箔と一対の酸化物超電導線材の保護層を拡散接合すると同時に、酸素アニール処理を行い、拡散接合体を構成した(図3(b)参照)。
さらに、前記拡散接合体を加熱炉から取り出し十分に冷却した後、20μmのIn半田箔を差し込み、250℃に加熱した半田ごてによってIn半田を溶融させた後に凝固させることで半田接合層を形成し、接続構造体を構成し(図3(c)参照)、実施例1の試料を作製した。
Next, the portion sandwiching the foil is sandwiched between stainless steel vice, a pressure of 10 MPa is applied to the foil, the state is stored in a heating furnace in an oxygen atmosphere, and heat treatment is performed at 500 ° C. for 5 hours. And a protective layer of a pair of oxide superconducting wires were diffusion bonded, and at the same time, an oxygen annealing treatment was performed to form a diffusion bonded body (see FIG. 3B).
Further, after the diffusion bonded body is taken out from the heating furnace and sufficiently cooled, a 20 μm In solder foil is inserted, and the In solder is melted by a soldering iron heated to 250 ° C. and then solidified to form a solder bonding layer. Then, a connection structure was formed (see FIG. 3C), and the sample of Example 1 was manufactured.

上述の実施例1の作製手順において、一対の酸化物超電導線材を酸素アニール処理した後、80mm重ね合わせ、重ね合わせた領域全体をIn半田によって接合し比較例1の接続構造体を作製した。
また、上述の実施例1の作製手順において、一対の酸化物超電導線材を80mm重ね合わせ、重ね合わせた領域と同形状のAgの箔をバイスにより挟持し箔に10MPaの圧力を加え、その状態のまま酸素雰囲気下の加熱炉に格納し、拡散接合と同時に酸素アニール処理を行う熱処理(実施例1と同条件)により比較例2の接続構造体を作製した。
In the preparation procedure of Example 1 described above, a pair of oxide superconducting wires were subjected to oxygen annealing treatment, and then overlapped by 80 mm, and the entire overlapped region was joined by In solder to produce a connection structure of Comparative Example 1.
Further, in the manufacturing procedure of Example 1 described above, a pair of oxide superconducting wires are overlapped by 80 mm, an Ag foil having the same shape as the overlapped region is sandwiched by a vice, and a pressure of 10 MPa is applied to the foil. The connection structure of Comparative Example 2 was fabricated by heat treatment (same conditions as in Example 1) in which it was stored in a heating furnace in an oxygen atmosphere as it was and oxygen annealing treatment was performed simultaneously with diffusion bonding.

(評価方法及び結果)
実施例1並びに比較例1、2の各試料の接続構造体について、接続抵抗の測定と曲げ試験を行った。接続抵抗の測定は、各試料を液体窒素中で接続構造体を介して電流を流すことによって測定した。また、曲げ試験は、各試料の接続構造体を積層方向に沿って曲げ半径200mm、100mm、50mmで曲げたのち、目視にて拡散接合部及び半田接合部に損傷がないかを目視によって判定した。
表1に接続抵抗の測定結果を接合部の面積と共に示す。
また、表2に曲げ試験の結果を目視により損傷が見られなかったものを○、損傷が見られたものを×として示す。
なお、表1を参照するにあたって、接続抵抗の値は、桁の違い(10の指数の違い)に注意すること。
(Evaluation method and results)
The connection structures of the samples of Example 1 and Comparative Examples 1 and 2 were subjected to connection resistance measurement and bending test. The connection resistance was measured by passing an electric current through each connection sample in liquid nitrogen. Also, in the bending test, the connection structure of each sample was bent at a bending radius of 200 mm, 100 mm, and 50 mm along the stacking direction, and then it was visually determined whether or not the diffusion bonding portion and the solder bonding portion were damaged. .
Table 1 shows the measurement results of the connection resistance together with the area of the joint.
Table 2 shows the results of the bending test as ◯ when no damage was observed by visual inspection, and x when damage was observed.
When referring to Table 1, pay attention to the difference in digits (difference in index of 10) in connection resistance values.

Figure 2014130730
Figure 2014130730

Figure 2014130730
Figure 2014130730

(実施例及び比較例の比較)
表1の接続抵抗値の値を参照して実施例1並びに比較例1、2を比較すると、比較例2(拡散接合のみによる接続)の接続抵抗が最も低く、次いで実施例1(拡散接合と半田接合による接続)の接続抵抗が低くなっており、比較例1(半田接合のみのよる接続)の接続抵抗が最も高くなっている。
一方、表2の曲げ試験の結果を参照すると、比較例2では、曲げ半径100mm、50mmにおいて、接合部での損傷が見られた。これに対して、実施例1及び比較例1では損傷が見られなかった。
これらから、拡散接合のみによる接続(比較例2)では、接続抵抗を低くできるものの、曲げに対する機械的強度が弱く、100mm以下の曲げで接合部分が損傷してしまうことが分かった。また、半田接合のみによる接続(比較例1)では、50mm以上の曲げに対して損傷がなく機械的強度が高いが接続抵抗が比較的高いことが確認された。
拡散接合と半田接合による接続(実施例1)は、機械的強度を確保しつつ接続抵抗も低い接続構造体が実現されており、機械的強度と接続抵抗のバランスのとれた接続構造体であると言える。
これらより、本発明に係る本接続構造体及び接続方法の優位性が確認された。
(Comparison of Examples and Comparative Examples)
When Example 1 and Comparative Examples 1 and 2 are compared with reference to the values of connection resistance values in Table 1, the connection resistance of Comparative Example 2 (connection only by diffusion bonding) is the lowest, and then Example 1 (diffusion bonding and The connection resistance of the connection by solder bonding) is low, and the connection resistance of Comparative Example 1 (connection by only solder bonding) is the highest.
On the other hand, referring to the results of the bending test in Table 2, in Comparative Example 2, damage at the joint was observed at bending radii of 100 mm and 50 mm. In contrast, no damage was observed in Example 1 and Comparative Example 1.
From these results, it was found that the connection resistance can be lowered by connection only by diffusion bonding (Comparative Example 2), but the mechanical strength against bending is weak, and the joint portion is damaged by bending of 100 mm or less. In addition, it was confirmed that in the connection only by solder bonding (Comparative Example 1), the bending resistance of 50 mm or more is not damaged and has high mechanical strength but relatively high connection resistance.
The connection by diffusion bonding and solder bonding (Example 1) is a connection structure in which mechanical strength is ensured and connection resistance is low, and the mechanical strength and connection resistance are balanced. It can be said.
From these, the superiority of the present connection structure and connection method according to the present invention was confirmed.

1…酸化物超電導線材、2、4…第1の酸化物超電導線材、2a、3a、4a、5a、6a、6b…端部、3、5…第2の酸化物超電導線材、6…第3の酸化物超電導線材、7…間隙、10…基材、11…中間層、12…酸化物超電導層、13…保護層、14…銀接合層、14A…箔、16…隙間、22…半田接合層、30…接続構造体、31…拡散接合体、H14、H16…長さ DESCRIPTION OF SYMBOLS 1 ... Oxide superconducting wire, 2, 4 ... 1st oxide superconducting wire, 2a, 3a, 4a, 5a, 6a, 6b ... End part, 3, 5 ... 2nd oxide superconducting wire, 6 ... 3rd Oxide superconducting wire, 7 ... gap, 10 ... substrate, 11 ... intermediate layer, 12 ... oxide superconducting layer, 13 ... protective layer, 14 ... silver bonding layer, 14A ... foil, 16 ... gap, 22 ... solder bonding Layer, 30 ... Connection structure, 31 ... Diffusion bonded body, H 14 , H 16 ... Length

Claims (6)

テープ状の基材に中間層と酸化物超電導層とAg又はAg合金からなる保護層とが積層されてなる一対の酸化物超電導線材の接続構造体であって、
前記一対の酸化物超電導線材の互いの端部近傍の前記保護層同士が対向して配置され、
前記対向して配置された保護層同士の少なくとも一部が銀接合層によって接合され、
前記対向して配置された保護層同士の少なくとも一部が半田接合層によって接合されていることを特徴とする酸化物超電導線材の接続構造体。
A connection structure of a pair of oxide superconducting wires in which an intermediate layer, an oxide superconducting layer, and a protective layer made of Ag or an Ag alloy are laminated on a tape-shaped substrate,
The protective layers in the vicinity of each other end of the pair of oxide superconducting wires are arranged to face each other,
At least a part of the opposing protective layers is bonded by a silver bonding layer,
A connecting structure for an oxide superconducting wire, wherein at least a part of the opposing protective layers are bonded by a solder bonding layer.
前記銀接合層が、前記一対の酸化物超電導線材の長手方向において、半田接合層によって挟まれていることを特徴とする請求項1に記載の酸化物超電導線材の接続構造体。   2. The oxide superconducting wire connecting structure according to claim 1, wherein the silver bonding layer is sandwiched between solder bonding layers in a longitudinal direction of the pair of oxide superconducting wires. 第1、第2、第3の酸化物超電導線材を備え、
前記第1の酸化物超電導線材及び第2の酸化物超電導線材が、前記接続しようとする端部同士を隣接させ、基材に対して酸化物超電導層を形成した側を揃えて配置され、
前記隣接された端部を跨るように、前記第1の酸化物超電導線材及び第2の酸化物超電導線材の保護層に前記第3の酸化物超電導線材の保護層が橋渡しされ、
前記第1及び第3の酸化物超電導線材の保護層同士、並びに前記第2及び第3の酸化物超電導線材の保護層同士の少なくとも一部が銀接合層によって接合され、
前記第1及び第3の酸化物超電導線材の保護層同士、並びに前記第2及び第3の酸化物超電導線材の保護層同士の少なくとも一部が半田接合層によって接合されていることを特徴とする請求項1又は2に記載の酸化物超電導線材の接続構造体。
Comprising first, second and third oxide superconducting wires;
The first oxide superconducting wire and the second oxide superconducting wire are arranged such that the ends to be connected are adjacent to each other, and the side on which the oxide superconducting layer is formed is aligned with the base material,
The protective layer of the third oxide superconducting wire is bridged to the protective layer of the first oxide superconducting wire and the second oxide superconducting wire so as to straddle the adjacent ends.
At least a part of the protective layers of the first and third oxide superconducting wires and the protective layers of the second and third oxide superconducting wires are bonded by a silver bonding layer,
The protective layers of the first and third oxide superconducting wires and at least a part of the protective layers of the second and third oxide superconducting wires are joined by a solder joint layer. The connection structure of the oxide superconducting wire according to claim 1 or 2.
請求項1から3の何れか一項に記載の接続構造体によって接続された酸化物超電導線材であって、
前記接続構造体を含む酸化物超電導線材の外周がめっき被覆層又は金属テープにより外部と気密に覆われていることを特徴とする酸化物超電導線材。
An oxide superconducting wire connected by the connection structure according to any one of claims 1 to 3,
An oxide superconducting wire, wherein an outer periphery of the oxide superconducting wire including the connection structure is airtightly covered with a plating coating layer or a metal tape.
テープ状の基材上に中間層と酸化物超電導層とAg又はAg合金からなる保護層を有する一対の酸化物超電導線材を用い、
前記一対の酸化物超電導線材の互いの端部近傍の前記保護層同士を対向させ、間にAg又はAg合金からなる箔を挟んで重ね合わせる工程と、
前記一対の酸化物超電導線材を介して前記箔を厚み方向から加圧しながら加熱し、前記保護層と前記箔とを拡散接合により接合し銀接合層を形成する工程と、
前記保護層同士が重ね合わされた部分であって、前記銀接合層が形成されていない領域の保護層同士を半田より接合する工程とを有していることを特徴とする酸化物超電導線材の接続方法。
Using a pair of oxide superconducting wires having a protective layer made of an intermediate layer, an oxide superconducting layer, and Ag or an Ag alloy on a tape-shaped substrate,
A step of facing the protective layers in the vicinity of each other end of the pair of oxide superconducting wires, and overlapping with a foil made of Ag or an Ag alloy interposed therebetween;
Heating while pressing the foil from the thickness direction through the pair of oxide superconducting wires, bonding the protective layer and the foil by diffusion bonding to form a silver bonding layer;
Connecting the oxide superconducting wire, wherein the protective layer is a portion where the protective layers are overlapped with each other, and the protective layer in a region where the silver bonding layer is not formed is bonded with solder. Method.
前記拡散接合により接合し銀接合層を形成する工程を酸素雰囲気下で行うことによって、同時に前記酸化物超電導層に酸素を供給してその結晶構造を整える酸素アニール処理を行うことを特徴とする請求項5に記載の酸化物超電導線材の接続方法。   The oxygen annealing process is performed, in which the step of forming a silver bonding layer by bonding by diffusion bonding is performed in an oxygen atmosphere, and oxygen annealing is simultaneously performed to supply oxygen to the oxide superconducting layer to adjust its crystal structure. Item 6. A method for connecting an oxide superconducting wire according to Item 5.
JP2012287611A 2012-12-28 2012-12-28 Connection structure and connection method of oxide superconductive wire material, and oxide superconductive wire material using the connection structure Pending JP2014130730A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012287611A JP2014130730A (en) 2012-12-28 2012-12-28 Connection structure and connection method of oxide superconductive wire material, and oxide superconductive wire material using the connection structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012287611A JP2014130730A (en) 2012-12-28 2012-12-28 Connection structure and connection method of oxide superconductive wire material, and oxide superconductive wire material using the connection structure

Publications (1)

Publication Number Publication Date
JP2014130730A true JP2014130730A (en) 2014-07-10

Family

ID=51408957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012287611A Pending JP2014130730A (en) 2012-12-28 2012-12-28 Connection structure and connection method of oxide superconductive wire material, and oxide superconductive wire material using the connection structure

Country Status (1)

Country Link
JP (1) JP2014130730A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017154228A1 (en) * 2016-03-11 2017-09-14 住友電気工業株式会社 Superconducting wire and method for manufacturing same
CN107393652A (en) * 2017-06-01 2017-11-24 上海超导科技股份有限公司 A kind of yttrium system superconducting tape with sealing joint in low-resistance and preparation method thereof
WO2021112250A1 (en) * 2019-12-05 2021-06-10 古河電気工業株式会社 Structure for connecting high-temperature superconducting wire materials, method for forming same, high-temperature superconducting wire material, and high-temperature superconducting coil

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017154228A1 (en) * 2016-03-11 2017-09-14 住友電気工業株式会社 Superconducting wire and method for manufacturing same
JP2017168424A (en) * 2016-03-11 2017-09-21 住友電気工業株式会社 Superconducting wire and manufacturing method of the same
CN107438887A (en) * 2016-03-11 2017-12-05 住友电气工业株式会社 Superconducting line and the method for manufacturing superconducting line
US10262781B2 (en) 2016-03-11 2019-04-16 Sumitomo Electric Industries, Ltd. Superconducting wire and method for manufacturing the same
CN107438887B (en) * 2016-03-11 2020-05-22 住友电气工业株式会社 Superconducting wire and method for manufacturing superconducting wire
DE112016000034B4 (en) * 2016-03-11 2021-06-10 Sumitomo Electric Industries, Ltd. Supra-conductive wire and process for its manufacture
CN107393652A (en) * 2017-06-01 2017-11-24 上海超导科技股份有限公司 A kind of yttrium system superconducting tape with sealing joint in low-resistance and preparation method thereof
WO2021112250A1 (en) * 2019-12-05 2021-06-10 古河電気工業株式会社 Structure for connecting high-temperature superconducting wire materials, method for forming same, high-temperature superconducting wire material, and high-temperature superconducting coil
CN114747092A (en) * 2019-12-05 2022-07-12 古河电气工业株式会社 Connection structure of high-temperature superconducting wire material, method for forming the same, high-temperature superconducting wire material, and high-temperature superconducting coil
US12119137B2 (en) 2019-12-05 2024-10-15 Furukawa Electric Co., Ltd. Connection structure of high temperature superconducting wires, method for forming same, high temperature superconducting wire, and high temperature superconducting coil
JP7568645B2 (en) 2019-12-05 2024-10-16 古河電気工業株式会社 Connection structure for high-temperature superconducting wires, method for forming same, high-temperature superconducting wires, and high-temperature superconducting coils

Similar Documents

Publication Publication Date Title
CN107077927B (en) The manufacturing method of oxide superconducting wire rod, superconducting apparatus and oxide superconducting wire rod
JP6178779B2 (en) Superconducting wire connection structure and manufacturing method of superconducting wire connection structure
WO2011129252A1 (en) Electrode unit joining structure for superconducting wire material, superconducting wire material, and superconducting coil
EP3499519A1 (en) Oxide superconducting wire
JPWO2014109326A1 (en) Oxide superconducting wire, its connection structure, and superconducting equipment
JP6101491B2 (en) Oxide superconducting wire and method for producing the same
JP6101490B2 (en) Oxide superconducting wire connection structure and superconducting equipment
JP6274975B2 (en) Oxide superconducting wire connecting structure manufacturing method and oxide superconducting wire connecting structure
JP2014220194A (en) Oxide superconductive wire material and production method thereof
JP2014154320A (en) Connection structure of oxide superconductive wire rod and superconductive apparatus
JP2013247011A (en) Oxide superconducting wire, and method of manufacturing the same
JP2014130730A (en) Connection structure and connection method of oxide superconductive wire material, and oxide superconductive wire material using the connection structure
JP6329736B2 (en) Laminated pancake type superconducting coil and superconducting equipment provided with the same
JP6069269B2 (en) Oxide superconducting wire, superconducting equipment, and oxide superconducting wire manufacturing method
JP5693798B2 (en) Oxide superconducting wire
JP5701247B2 (en) Oxide superconducting wire connection structure and connection method
JP2013084382A (en) Oxide superconductive wire, and method of manufacturing the same
JP6002602B2 (en) Oxide superconducting wire connection structure and manufacturing method thereof
WO2017104297A1 (en) Oxide super-conducting wire production method and super-conducting coil production method
JP2013037991A (en) Connection structure for oxide superconductive wire and connection method for oxide superconductive wire
WO2014104333A1 (en) Connection structure of oxide superconducting wires, method for producing same, and superconducting device
JP2014107149A (en) Oxide superconductive wire rod and connection structure of the oxide superconductive wire
JP2014130793A (en) Connection structure of oxide superconductive wire material and its manufacturing method
JP5775810B2 (en) Manufacturing method of oxide superconducting wire
JP2014154331A (en) Oxide superconductive wire material, connection structure of oxide superconductive wire materials, and method for manufacturing an oxide superconductive wire material