JP2014154320A - Connection structure of oxide superconductive wire rod and superconductive apparatus - Google Patents

Connection structure of oxide superconductive wire rod and superconductive apparatus Download PDF

Info

Publication number
JP2014154320A
JP2014154320A JP2013022406A JP2013022406A JP2014154320A JP 2014154320 A JP2014154320 A JP 2014154320A JP 2013022406 A JP2013022406 A JP 2013022406A JP 2013022406 A JP2013022406 A JP 2013022406A JP 2014154320 A JP2014154320 A JP 2014154320A
Authority
JP
Japan
Prior art keywords
oxide superconducting
superconducting wire
layer
oxide
superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013022406A
Other languages
Japanese (ja)
Inventor
Shinji Fujita
真司 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2013022406A priority Critical patent/JP2014154320A/en
Publication of JP2014154320A publication Critical patent/JP2014154320A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PROBLEM TO BE SOLVED: To provide the connection structure of oxide superconductive wire rods having no generation of a level difference in connected parts, and a superconductive apparatus provided with the connection structure.SOLUTION: Provided is a connection structure of respective superconductive wire rods each having a tape-shaped base material, and an intermediate layer, an oxide superconducting layer, a protective layer and a metal stabilizing layer formed at the upper part of the base material, and, regarding the respective edge parts to be connected in the superconductive wire rods, the respective edge faces of the connection parts are butt-joined via a conductive joining material.

Description

本発明は、酸化物超電導線材の接続構造体及び超電導機器に関する。   The present invention relates to an oxide superconducting wire connection structure and a superconducting device.

低損失の導電材料として酸化物超電導体を用いたケーブル、コイル、モーター、マグネットなどの超電導機器が開発されている。これらの超電導機器に用いられる超電導体として、例えば、Bi系超電導線材(BiSrCaCu8+δ:Bi2212、BiSrCaCu10+δ:Bi2223)やRE−123系超電導線材(REBaCu7−x:REはYやGdなどを含む希土類元素)が知られている。
一般にRE−123系の酸化物超電導線材は、テープ状の金属基材上に結晶配向性の良好な中間層を介し酸化物超電導層を成膜した後、この酸化物超電導層を覆うようにAgからなる保護層やCuからなる金属安定化層を積層し、必要に応じ外周に絶縁処理を施して超電導線材としている。前記金属安定化層は、超電導線材が何らかの原因で超電導状態から常電導状態に転位した際の電流パスとして設けられている。
Superconducting devices such as cables, coils, motors and magnets using oxide superconductors as low-loss conductive materials have been developed. As a superconductor used in these superconducting devices, for example, Bi-based superconducting wires (Bi 2 Sr 2 CaCu 2 O 8 + δ: Bi2212, Bi 2 Sr 2 Ca 2 Cu 3 O 10 + δ: Bi2223) or RE-123-based superconducting wires ( REBa 2 Cu 3 O 7-x : RE is a rare earth element including Y and Gd).
In general, an RE-123-based oxide superconducting wire is formed by forming an oxide superconducting layer on a tape-shaped metal substrate through an intermediate layer having good crystal orientation, and then covering the oxide superconducting layer with Ag. A protective layer made of Cu and a metal stabilizing layer made of Cu are laminated, and if necessary, an insulation treatment is applied to the outer periphery to obtain a superconducting wire. The metal stabilizing layer is provided as a current path when the superconducting wire is dislocated from the superconducting state to the normal conducting state for some reason.

このようなテープ状の酸化物超電導線材の接続構造として、以下の特許文献1、2に記載された構造が知られている。   As such a tape-shaped oxide superconducting wire connecting structure, the structures described in the following Patent Documents 1 and 2 are known.

特表2003−505887号公報Special table 2003-50587 gazette 再公表WO2001/033580号公報Republished WO2001 / 033580

先の特許文献1、2に記載の接続構造は、接続部において超電導線材どうしを重ね合わせているため、接続部の厚さが接続していない部分と比較して厚くなる。このような厚い部分が局所的に存在する超電導線材を超電導コイル等の線材どうしが重なる構造に適用すると、接続部のエッジで隣接する超電導線材の対応箇所が機械的に劣化する可能性がある。
また、局所的に厚い部分を有する酸化物超電導線材を超電導コイルに応用した場合、接続部において局所的に電流密度が低下するため、超電導コイルによる発生磁場の均一性が悪くなる可能性がある。
In the connection structures described in Patent Documents 1 and 2, since the superconducting wires are superposed on each other at the connection portion, the thickness of the connection portion is larger than that of the unconnected portion. When a superconducting wire having such a thick portion locally is applied to a structure in which wires such as a superconducting coil overlap each other, there is a possibility that the corresponding portion of the superconducting wire adjacent at the edge of the connecting portion is mechanically deteriorated.
In addition, when an oxide superconducting wire having a locally thick portion is applied to a superconducting coil, the current density is locally reduced at the connecting portion, which may deteriorate the uniformity of the magnetic field generated by the superconducting coil.

本発明は、前記事情に鑑みなされたもので、接続部分の厚さが増加しない構成とした酸化物超電導線材の接続構造とその製造方法および前記接続構造を備えた超電導機器の提供を目的とする。   The present invention has been made in view of the above circumstances, and an object thereof is to provide a connection structure of an oxide superconducting wire having a structure in which the thickness of a connection portion does not increase, a manufacturing method thereof, and a superconducting device including the connection structure. .

本発明の酸化物超電導線材の接続構造体は、テープ状の基材と、該基材の上方に形成された中間層、酸化物超電導層、保護層、金属安定化層を有してなる超電導線材どうしの接続構造であり、前記超電導線材の接続するべき端部どうしについて、それらの接続端面どうしが導電性接合材を介し突き合わせ接合されたことを特徴とする。
導電性接合材を介する接続端面どうしの導電性接合材を介する突き合わせ接合であるならば、導電性接合材を介し酸化物超電導層どうしを最短距離で接続できる。
また、重ね合わせ接続構造などの場合に生じる接続端部の段差を無くすることができる。このため、酸化物超電導線材をコイル化する場合、下層側の酸化物超電導線材の上に上層側の酸化物超電導線材を巻き付ける場合に段差が生じなくなり、段差に起因する酸化物超電導線材への歪の付加が無くなるので、接続部分において超電導特性の劣化を生じないコイルを提供できる。
また、酸化物超電導線材には基材と金属安定化層が備えられているので、導電性接合材を介し基材同士あるいは金属安定化層どうしを接合することで、接合強度の高い接続構造体を提供できる。
An oxide superconducting wire connecting structure according to the present invention comprises a tape-like base material, an intermediate layer formed above the base material, an oxide superconducting layer, a protective layer, and a metal stabilizing layer. It is a connection structure between wires, and the end portions to be connected of the superconducting wires are butt-joined with each other via a conductive bonding material.
In the case of butt joining between the connecting end faces via the conductive bonding material via the conductive bonding material, the oxide superconducting layers can be connected with the shortest distance via the conductive bonding material.
Further, it is possible to eliminate a step at the connection end portion that occurs in the case of an overlapping connection structure or the like. For this reason, when the oxide superconducting wire is coiled, a step does not occur when the upper oxide superconducting wire is wound on the lower oxide superconducting wire, and the distortion to the oxide superconducting wire due to the step is eliminated. Therefore, it is possible to provide a coil that does not cause deterioration of the superconducting characteristics at the connection portion.
In addition, since the oxide superconducting wire is provided with a base material and a metal stabilization layer, a connection structure having high joint strength can be obtained by joining the base materials or the metal stabilization layers via a conductive joint material. Can provide.

本発明の接続構造体において、前記超電導線材の接続端面が該超電導線材の長さ方向に直交する端面からなることを特徴とする。
テープ状の超電導線材の長さ方向に直交する端面同士について導電性接合材を介し突き合わせ接合するならば、最も単純な接続構造でテープ状の酸化物超電導線材どうしを接合できる。また、一方の酸化物超電導線材の酸化物超電導層と他方の酸化物超電導線材の酸化物超電導層を導電性接合材を介し最短距離で接続できる。
In the connection structure of the present invention, the connection end face of the superconducting wire is composed of an end face perpendicular to the length direction of the superconducting wire.
If the end faces orthogonal to the length direction of the tape-shaped superconducting wire are butt-joined via the conductive bonding material, the tape-shaped oxide superconducting wires can be joined with the simplest connection structure. In addition, the oxide superconducting layer of one oxide superconducting wire and the oxide superconducting layer of the other oxide superconducting wire can be connected via a conductive bonding material at the shortest distance.

本発明の接続構造体において、前記超電導線材の接続端部に該接続端部の幅をその基端側から先端側にかけて徐々に少なくする傾斜継手部が形成され、一方の超電導線材の傾斜継手部の傾斜端面と他方の超電導線材の傾斜継手部の傾斜端面どうしが導電性接合材を介し突き合わせ接合された構造にできる。
導電性接合材による接合部分を超電導線材の長さ方向に対し斜めに配置した接続構造体を得ることができる。この構造によれば、幅の小さい酸化物超電導線材であっても導電性接合材による接合部分の長さを確保できるため、接合強度の高い接合構造体を提供可能となる。
In the connection structure of the present invention, an inclined joint portion for gradually reducing the width of the connection end portion from the base end side to the tip end side is formed at the connection end portion of the superconducting wire. The sloped end face of the other superconducting wire and the sloped end face of the sloped joint portion of the other superconducting wire can be butt-joined via a conductive joining material.
It is possible to obtain a connection structure in which the joint portion made of the conductive joint material is disposed obliquely with respect to the length direction of the superconducting wire. According to this structure, even if the oxide superconducting wire has a small width, it is possible to ensure the length of the joining portion by the conductive joining material, and thus it is possible to provide a joining structure having high joining strength.

本発明の接続構造体において、前記超電導線材の接続端部に該接続端部の幅を該接続端部の長さ方向に部分的に少なくする部分を設けた鍵型継手部が形成され、一方の超電導線材の鍵型継手部の側面と他方の超電導線材の鍵型継手部の側面どうしが導電性接合材を介し突き合わせ接合された構造にできる。
鍵型継手部どうしの接合であるならば、側面どうしを導電性接合材によって接合すると、一方の鍵型継手部の凹凸と他方の鍵型継手部の凹凸どうしを嵌合させた状態で一方の酸化物超電導線材と他方の酸化物超電導線材を接合できるので、接合強度が向上するとともに、導電性接合材を介し接合する部分の面積を多く確保できるので、電気的接合性に優れた接続構造体を提供できる。
In the connection structure of the present invention, a key-type joint portion is formed in which the connection end portion of the superconducting wire is provided with a portion that partially reduces the width of the connection end portion in the length direction of the connection end portion, The side surface of the key-type joint portion of the superconducting wire and the side surface of the key-type joint portion of the other superconducting wire can be joined together with a conductive joint material.
If the key-type joints are joined to each other, when the side surfaces are joined with the conductive joint material, one key-type joint and the other key-type joint are unevenly fitted together. Since the oxide superconducting wire and the other oxide superconducting wire can be joined, the joint strength is improved, and a large area of the part to be joined through the conductive joining material can be secured, so that the connection structure has excellent electrical joining properties. Can provide.

本発明の接続構造体において、前記一方の超電導線材の継手部と前記他方の超電導線材の継手部を突き合わせ接合した超電導線材どうしの接続端部の幅が該接続端部以外の部分の前記超電導線材の幅と同等にされ、前記継手部同士を突き合わせ接合した接続端部の厚さが該接続端部以外の部分の前記超電導線材の厚さと同等にされた構造にできる。
前記接続構造体によれば、接続する対になる超電導線材の幅を接合部分において変えることなく接合できるとともに、接続部分に段差の生じていない接続構造体を提供できる。
In the connection structure of the present invention, the width of the connection end portion of the superconducting wires obtained by butt-joining the joint portion of the one superconducting wire and the joint portion of the other superconducting wire is the portion other than the connection end portion. The thickness of the connecting end where the joints are butted and joined to each other can be made equal to the thickness of the superconducting wire other than the connecting end.
According to the connection structure, it is possible to provide a connection structure that can be joined without changing the width of the superconducting wire to be connected in the joining portion and in which no step is generated in the connecting portion.

本発明の超電導機器は、先のいずれかに記載された酸化物超電導線材の接続構造体を備えたことを特徴とする。
酸化物超電導線材の接続部分に段差の無い構造を備えた超電導機器を提供できるので、接続部分に段差を生じていた従来構造に比べ段差部分の発生に起因する超電導特性劣化の生じていない超電導機器を提供できる。
The superconducting device of the present invention is characterized by including the oxide superconducting wire connecting structure described in any of the above.
Since it is possible to provide a superconducting device having a structure without a step at the connecting portion of the oxide superconducting wire, a superconducting device in which the superconducting characteristics are not deteriorated due to the generation of a stepped portion compared to the conventional structure in which the connecting portion has a stepped portion is provided. Can provide.

本発明によれば、酸化物超電導線材どうしを接続する構造体において接続部分を厚くすることが無く、段差の無い接続構造体を提供できる。このため、この酸化物超電導線材をコイル化した場合に下層側の酸化物超電導線材の上に上層側の酸化物超電導線材を配置しても、接続部分の上下に位置する他の酸化物超電導線材に負荷が作用することがなくなり、超電導特性の劣化を生じない接続構造体を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, in a structure which connects an oxide superconducting wire, it does not thicken a connection part but can provide the connection structure without a level | step difference. For this reason, when this oxide superconducting wire is coiled, even if the oxide superconducting wire on the lower layer side is disposed on the oxide superconducting wire on the lower layer side, other oxide superconducting wires positioned above and below the connecting portion Thus, it is possible to provide a connection structure in which a load does not act on the substrate and the superconducting characteristics are not deteriorated.

図1(a)は、本発明に係る第1実施形態の酸化物超電導線材の接続構造体の平面図、図1(b)は、同接続構造体の断面図。FIG. 1A is a plan view of a connection structure of an oxide superconducting wire according to the first embodiment of the present invention, and FIG. 1B is a cross-sectional view of the connection structure. 図2(a)は、本発明に係る第2実施形態の酸化物超電導線材の接続構造体の平面図、図2(b)は、同接続構造体の断面図。Fig.2 (a) is a top view of the connection structure of the oxide superconducting wire of 2nd Embodiment which concerns on this invention, FIG.2 (b) is sectional drawing of the connection structure. 図3(a)は、本発明に係る第3実施形態の酸化物超電導線材の接続構造体の平面図、図3(b)は、同接続構造体の断面図。FIG. 3A is a plan view of a connection structure of an oxide superconducting wire according to a third embodiment of the present invention, and FIG. 3B is a cross-sectional view of the connection structure. 図4(a)は、本発明に係る第4実施形態の酸化物超電導線材の接続構造体の平面図、図4(b)は、同接続構造体の断面図。FIG. 4A is a plan view of a connection structure of an oxide superconducting wire according to a fourth embodiment of the present invention, and FIG. 4B is a cross-sectional view of the connection structure. 図5は本発明に係る第5実施形態の酸化物超電導線材の接続構造体の平面図。FIG. 5 is a plan view of an oxide superconducting wire connecting structure according to a fifth embodiment of the present invention. 図6は本発明に係る第6実施形態の酸化物超電導線材の接続構造体の平面図。FIG. 6 is a plan view of an oxide superconducting wire connecting structure according to a sixth embodiment of the present invention. 図7は本発明に係る第7実施形態の酸化物超電導線材の接続構造体の平面図。FIG. 7 is a plan view of an oxide superconducting wire connecting structure according to a seventh embodiment of the present invention. 本発明に係る酸化物超電導線材の接続構造体を備えた超電導ケーブルの一例を示す斜視図。The perspective view which shows an example of the superconducting cable provided with the connection structure of the oxide superconducting wire which concerns on this invention. 本発明に係る酸化物超電導線材の接続構造体を備えた超電導限流器の一例を示す斜視図。The perspective view which shows an example of the superconducting current limiting device provided with the connection structure of the oxide superconducting wire which concerns on this invention. 本発明に係る酸化物超電導線材の接続構造体を備えた超電導モーターの一例を示す斜視図。The perspective view which shows an example of the superconducting motor provided with the connection structure of the oxide superconducting wire which concerns on this invention. 本発明に係る酸化物超電導線材の接続構造体を備えた超電導コイルの一例を示す斜視図。The perspective view which shows an example of the superconducting coil provided with the connection structure of the oxide superconducting wire which concerns on this invention. 実施例で製造した接続構造体における接続抵抗を示すグラフ。The graph which shows the connection resistance in the connection structure manufactured in the Example.

以下、本発明に係る酸化物超電導線材の接続構造体の第1実施形態を図面に基づいて詳細に説明する。なお、本発明は以下説明の実施形態に限定されるものではない。また、以下の説明で用いる図面は、本発明の特徴をわかりやすくするため、便宜上、要部となる部分を拡大して示している場合があり、各構成要素の寸法比率などが実際と同じであるとは限らない。
図1は第1実施形態に係る酸化物超電導線材の接続構造体を示すもので、この接続構造体Aに適用されている酸化物超電導線材1は、テープ状の基材10の一面(表面)の上方に、中間層11、酸化物超電導層12、保護層13、金属安定化層14を積層し構成されている。酸化物超電導線材1において、基材10上に中間層11、酸化物超電導層12、保護層13を積層してテープ状の超電導積層体15が構成されている。
本実施形態において2本の酸化物超電導線材1がそれらの端部の端面1aどうしを所定の厚さの導電性接合材2を介し突き合わせ接合して接続構造体Aが構成されている。
Hereinafter, a first embodiment of a connection structure of oxide superconducting wires according to the present invention will be described in detail with reference to the drawings. The present invention is not limited to the embodiments described below. In addition, the drawings used in the following description may show the main parts in an enlarged manner for convenience in order to make the features of the present invention easier to understand, and the dimensional ratios of the respective components are the same as the actual ones. Not always.
FIG. 1 shows an oxide superconducting wire connecting structure according to the first embodiment. The oxide superconducting wire 1 applied to the connecting structure A is one surface (surface) of a tape-like substrate 10. The intermediate layer 11, the oxide superconducting layer 12, the protective layer 13, and the metal stabilizing layer 14 are laminated on the upper side. In the oxide superconducting wire 1, a tape-like superconducting laminate 15 is configured by laminating an intermediate layer 11, an oxide superconducting layer 12, and a protective layer 13 on a base material 10.
In the present embodiment, two oxide superconducting wires 1 butt-join the end faces 1a of their end portions through a conductive bonding material 2 having a predetermined thickness to form a connection structure A.

以下に酸化物超電導線材1を構成する各要素について説明する。
酸化物超電導線材1において基材10は、可撓性を有する長尺の超電導線材とするためにテープ状やシート状あるいは薄板状であることが好ましい。また、基材10に用いられる材料は、機械的強度が比較的高く、耐熱性があり、線材に加工することが容易な金属を有しているものが好ましく、例えば、ステンレス鋼、ハステロイ等のニッケル合金等の各種耐熱性金属材料、もしくはこれら各種金属材料上にセラミックスを配した材料などが挙げられる。中でも、市販品であれば、Ni合金の1種として知られているハステロイ(商品名、米国ヘインズ社製)が好適である。このハステロイの種類には、モリブデン、クロム、鉄、コバルト等の成分量が異なる、ハステロイB、C、G、N、W等が挙げられ、ここではいずれの種類も使用できる。また、基材10の厚さは、目的に応じて適宜調整すれば良く、通常は10〜500μm、好ましくは20〜200μmである。また、基材2として、ニッケル合金に集合組織を導入した配向Ni−W合金テープ基材等を適用することもできる。
Below, each element which comprises the oxide superconducting wire 1 is demonstrated.
In the oxide superconducting wire 1, the base material 10 is preferably in the form of a tape, a sheet, or a thin plate in order to make a long superconducting wire having flexibility. The material used for the substrate 10 is preferably a material having a relatively high mechanical strength, heat resistance, and a metal that can be easily processed into a wire, such as stainless steel and hastelloy. Examples thereof include various heat-resistant metal materials such as nickel alloys, or materials obtained by arranging ceramics on these various metal materials. Among these, a commercially available product is preferably Hastelloy (trade name, manufactured by Haynes, USA), which is known as a kind of Ni alloy. This kind of Hastelloy includes Hastelloy B, C, G, N, W, etc., which have different amounts of components such as molybdenum, chromium, iron, cobalt, etc., and any kind can be used here. Moreover, what is necessary is just to adjust the thickness of the base material 10 suitably according to the objective, and is 10-500 micrometers normally, Preferably it is 20-200 micrometers. Moreover, as the base material 2, an oriented Ni—W alloy tape base material in which a texture is introduced into a nickel alloy can also be applied.

中間層11は、拡散防止層またはベッド層からなる下地層と、配向層と、キャップ層がこの順に積層された構造を一例として適用することができる。
拡散防止層は、この層よりも上面側に他の層を形成する際に加熱処理した結果、基材10や他の層が熱履歴を受ける場合、基材10の構成元素の一部が拡散し、不純物として酸化物超電導層12側に混入することを抑制する機能を有する。拡散防止層の具体的な例として、上記機能を発現し得るものであれば特に限定されないが、不純物の混入を防止する効果が比較的高いAl、Si、又はGZO(GdZr)等から構成される単層構造あるいは複層構造が望ましい。
As the intermediate layer 11, a structure in which an underlayer composed of a diffusion prevention layer or a bed layer, an alignment layer, and a cap layer are laminated in this order can be applied as an example.
When the base material 10 or another layer receives a thermal history as a result of heat treatment when forming another layer on the upper surface side of this layer, a part of the constituent elements of the base material 10 diffuses. And it has a function which suppresses mixing into the oxide superconducting layer 12 side as an impurity. A specific example of the diffusion preventing layer is not particularly limited as long as it can exhibit the above functions, but Al 2 O 3 , Si 3 N 4 , or GZO (Gd A single layer structure or a multilayer structure composed of 2 Zr 2 O 7 ) or the like is desirable.

ベッド層は、基材10と酸化物超電導層12との界面における構成元素の反応を抑え、この層よりも上に設けられる層の配向性を向上させるために用いられる。ベッド層の具体的な構造としては、上記機能を発現し得るものであれば特に限定されないが、耐熱性が高いY、CeO、La、Dy、Er、Eu、Hoなどの希土類酸化物から構成される単層構造あるいは複層構造が望ましい。拡散防止層とベッド層は両方設けても良く、また、どちらか一方のみ設けても良く、配向層の構成材料によっては略しても良い。 The bed layer is used to suppress the reaction of the constituent elements at the interface between the base material 10 and the oxide superconducting layer 12 and improve the orientation of the layer provided above this layer. The specific structure of the bed layer is not particularly limited as long as it can exhibit the above functions, but Y 2 O 3 , CeO 2 , La 2 O 3 , Dy 2 O 3 , Er 2 O, which have high heat resistance. 3 , a single layer structure or a multilayer structure composed of rare earth oxides such as Eu 2 O 3 and Ho 2 O 3 is desirable. Both the diffusion preventing layer and the bed layer may be provided, or only one of them may be provided, and may be omitted depending on the constituent material of the alignment layer.

配向層は、その上に形成されるキャップ層や酸化物超電導層12の結晶配向性を制御する機能と、基材10の構成元素が酸化物超電導層12へ拡散することを抑制する機能と、基材10と酸化物超電導層12との熱膨張率や格子定数といった物理的特性の差を緩和する機能等を有するものである。配向層の構成材料は、前記機能を発現し得るものであれば特に限定されない。GdZr、MgO、ZrO−Y(YSZ)等の金属酸化物を用いると、後述するイオンビームアシスト蒸着法(以下、IBAD法と呼ぶことがある。)において、結晶配向性の高い層が得られ、キャップ層と酸化物超電導層6の結晶配向性をより良好なものとすることができるため、特に好適である。 The alignment layer has a function of controlling the crystal orientation of the cap layer and the oxide superconducting layer 12 formed thereon, a function of suppressing the constituent elements of the substrate 10 from diffusing into the oxide superconducting layer 12, It has a function of alleviating a difference in physical properties such as a coefficient of thermal expansion and a lattice constant between the base material 10 and the oxide superconducting layer 12. The constituent material of the alignment layer is not particularly limited as long as it can exhibit the above functions. When a metal oxide such as Gd 2 Zr 2 O 7 , MgO, or ZrO 2 —Y 2 O 3 (YSZ) is used, a crystal is formed in an ion beam assisted deposition method (hereinafter sometimes referred to as IBAD method). This is particularly preferable because a highly oriented layer can be obtained and the crystal orientation of the cap layer and the oxide superconducting layer 6 can be improved.

キャップ層は、酸化物超電導層12の結晶配向性を配向層と同等ないしそれ以上強く制御し、酸化物超電導層12を構成する元素の中間層11側への拡散や、酸化物超電導層12の積層時に使用するガスと中間層11との反応を抑制する機能等を有するものである。キャップ層の構成材料は、上記機能を発現し得るものであれば特に限定されないが、CeO、Y、Al、Gd、ZrO、Ho、Nd、LMnO等の金属酸化物が酸化物超電導層6との格子整合性の観点から好適である。そのなかでも、酸化物超電導層12とのマッチング性から、CeOあるいはLMnOが特に好適である。ここで、キャップ層にCeOを用いる場合、キャップ層は、Ceの一部が他の金属原子又は金属イオンで置換されたCe−M−O系酸化物を含んでいても良い。 The cap layer controls the crystal orientation of the oxide superconducting layer 12 to be equal to or higher than that of the oriented layer to diffuse the elements constituting the oxide superconducting layer 12 toward the intermediate layer 11, It has a function of suppressing the reaction between the gas used during lamination and the intermediate layer 11. The material of the cap layer is not particularly limited as long as it can express the above functions, CeO 2, Y 2 O 3 , Al 2 O 3, Gd 2 O 3, ZrO 2, Ho 2 O 3, Nd 2 Metal oxides such as O 3 and LMnO 3 are preferable from the viewpoint of lattice matching with the oxide superconducting layer 6. Among these, CeO 2 or LMnO 3 is particularly suitable from the viewpoint of matching with the oxide superconducting layer 12. Here, when CeO 2 is used for the cap layer, the cap layer may include a Ce—M—O-based oxide in which part of Ce is substituted with another metal atom or metal ion.

酸化物超電導層12は、超電導状態の時に電流を流す機能を有するものである。酸化物超電導層12に用いられる材料には、通常知られている組成の酸化物超電導体からなるものを広く適用することができ、例えば、Y系超電導体などの銅酸化物超電導体などが挙げられる。Y系超電導体の組成は、例えば、REBaCu7−x(REはY、La、Nd、Sm、Er、Gd等の希土類元素、xは酸素欠損を表す。)が挙げられ、具体的には、Y123(YBaCu7−x)、Gd123(GdBaCu7−x)が挙げられる。この酸化物超電導体の母物質は絶縁体であるが、酸素アニール処理により酸素を取り込むことで結晶構造の整った酸化物超電導体となり、超電導特性を示す性質を持っている。酸化物超電導層12がこのような優れた結晶配向性を示すためには、上述の良好な結晶配向性のキャップ層上に成膜されていることによる。
このような優れた結晶配向性の酸化物超電導層12であるならば、超電導導体20として臨界温度以下に冷却し、通電した場合、優れた臨界電流特性を発揮する。
The oxide superconducting layer 12 has a function of flowing current when in the superconducting state. As the material used for the oxide superconducting layer 12, a material composed of an oxide superconductor having a generally known composition can be widely applied. Examples thereof include a copper oxide superconductor such as a Y-based superconductor. It is done. Examples of the composition of the Y-based superconductor include REBa 2 Cu 3 O 7-x (RE is a rare earth element such as Y, La, Nd, Sm, Er, Gd, and x is oxygen deficiency). thereof include, Y123 (YBa 2 Cu 3 O 7-x), include Gd123 (GdBa 2 Cu 3 O 7 -x). Although the base material of this oxide superconductor is an insulator, it becomes an oxide superconductor with a well-crystallized structure by incorporating oxygen by oxygen annealing, and has the property of exhibiting superconducting properties. In order for the oxide superconducting layer 12 to exhibit such excellent crystal orientation, the oxide superconducting layer 12 is formed on the above-described cap layer having good crystal orientation.
If the oxide superconducting layer 12 has such an excellent crystal orientation, the superconducting conductor 20 exhibits excellent critical current characteristics when cooled to below the critical temperature and energized.

保護層13は、酸化物超電導線材1への通電時、何らかの事故により発生する過電流をバイパスする電流路となり、酸化物超電導層12に酸素を取り込ませやすくするために、加熱時には酸素を透過しやすくする機能を有する。このため、保護層13は、Agあるいは少なくともAgを含む材料から形成されることが好ましい。また、保護層13を形成する材料は、Au、Ptなどの貴金属を含む混合物もしくは合金であってもよく、これらを複数用いてもよい。   The protective layer 13 becomes a current path that bypasses an overcurrent generated due to some accident when the oxide superconducting wire 1 is energized, and in order to make it easier for oxygen to be taken into the oxide superconducting layer 12, the protective layer 13 transmits oxygen during heating. Has a function to facilitate. For this reason, it is preferable that the protective layer 13 is formed from Ag or a material containing at least Ag. The material for forming the protective layer 13 may be a mixture or alloy containing a noble metal such as Au or Pt, or a plurality of these may be used.

本実施形態では超電導積層体15の上に金属安定化層14が設けられている。金属安定化層14は、酸化物超電導線材1の用途により異なる。例えば、超電導ケーブルや超電導モーターなどに使用する場合は、何らかの事故によりクエンチが起こり、酸化物超電導層12が常電導状態に転移した時に発生する過電流を転流させるバイパスのメイン部として用いられる。このとき、金属安定化層14に用いられる材料は、銅、Cu−Zn合金(黄銅)、Cu−Ni合金等の銅合金、アルミ、アルミ合金、ステンレス等の比較的安価な材質からなるものを用いることが好ましく、中でも高い導電性を有し、安価であることから銅を用いることが好ましい。また、酸化物超電導線材1を超電導限流器に使用する場合、安定化層は、クエンチが起こり常電導状態に転移した時に発生する過電流を瞬時に抑制するために用いられる。この用途の場合、金属安定化層14に用いられる材料は、例えば、Ni−Cr等のNi系合金等の高抵抗金属が挙げられる。   In the present embodiment, the metal stabilization layer 14 is provided on the superconducting laminate 15. The metal stabilization layer 14 varies depending on the application of the oxide superconducting wire 1. For example, when used for a superconducting cable, a superconducting motor, or the like, it is used as a main part of a bypass that commutates an overcurrent generated when a quench occurs due to some accident and the oxide superconducting layer 12 transitions to a normal conducting state. At this time, the material used for the metal stabilization layer 14 is made of a relatively inexpensive material such as copper, a Cu-Zn alloy (brass), a copper alloy such as a Cu-Ni alloy, aluminum, an aluminum alloy, or stainless steel. It is preferable to use copper, and it is preferable to use copper because it has high conductivity and is inexpensive. Further, when the oxide superconducting wire 1 is used for a superconducting fault current limiter, the stabilization layer is used to instantaneously suppress an overcurrent generated when a quench occurs and the state transitions to a normal conducting state. In the case of this application, examples of the material used for the metal stabilization layer 14 include a high resistance metal such as a Ni-based alloy such as Ni—Cr.

金属安定化層14は主に金属テープの貼合わせ構造あるいはめっき層などにより構成される。金属安定化層14を金属テープの貼合わせ構造とする場合、金属安定化層14の内面側に半田等の導電性接合材を設ける。図1(b)に示す構造では導電性接合材の表示を略しているが、導電性接合材を構成する半田等のスズ合金として例えば、Sn、Sn−Ag系合金、Sn−Bi系合金、Sn−Cu系合金、Sn−Zn系合金などのSnを主成分とする合金よりなる鉛フリー半田、Pb−Sn系合金半田、共晶半田、低温半田などが挙げられ、これらの半田を1種、又は2種以上組み合わせて使用することもできる。   The metal stabilization layer 14 is mainly composed of a metal tape bonding structure or a plating layer. When the metal stabilizing layer 14 has a metal tape bonding structure, a conductive bonding material such as solder is provided on the inner surface side of the metal stabilizing layer 14. In the structure shown in FIG. 1B, the display of the conductive bonding material is omitted, but as a tin alloy such as solder constituting the conductive bonding material, for example, Sn, Sn—Ag alloy, Sn—Bi alloy, Examples include lead-free solder made of an alloy containing Sn as a main component, such as Sn—Cu alloy, Sn—Zn alloy, Pb—Sn alloy solder, eutectic solder, low temperature solder, and the like. , Or a combination of two or more.

図1に示す酸化物超電導線材1の端部には、酸化物超電導線材1の長さ方向に直交する端面1aが形成され、2本のテープ状の酸化物超電導線材1がそれらの端面1aどうしを対向させてそれらの間に所定厚さの導電性接合材2を介在させて電気的かつ機械的に接合されている。また、酸化物超電導線材1の端面1aどうしはその幅方向及び厚さ方向に段差部を生じないように位置合わせされて接続されている。従って、接続部分において図1(a)に示すように酸化物超電導線材1の側面同士は同一平面に沿うように位置合わせされ、図1(b)に示すように酸化物超電導線材1の上面どうしと下面どうしは同一平面に沿うように位置合わせされている。
ここで用いられている導電性接合材は、先に説明した金属テープの貼合わせ構造の場合に用いる導電性接合材と同等のものを用いることができる。なお、基材10がハステロイなどのニッケル合金の場合、半田付けに使用するヤニ入りフラックスとして酸の強い物を用いれば、基材10どうしの結合も可能となる。
An end face 1a perpendicular to the length direction of the oxide superconducting wire 1 is formed at the end of the oxide superconducting wire 1 shown in FIG. 1, and two tape-like oxide superconducting wires 1 are formed between the end faces 1a. Are electrically and mechanically bonded with a conductive bonding material 2 having a predetermined thickness interposed therebetween. Further, the end faces 1a of the oxide superconducting wire 1 are aligned and connected so as not to form a step portion in the width direction and the thickness direction. Accordingly, the side surfaces of the oxide superconducting wire 1 are aligned along the same plane as shown in FIG. 1 (a) at the connecting portion, and the top surfaces of the oxide superconducting wire 1 are connected as shown in FIG. 1 (b). And the lower surface are aligned so as to be along the same plane.
The conductive bonding material used here can be the same as the conductive bonding material used in the case of the metal tape bonding structure described above. When the base material 10 is a nickel alloy such as Hastelloy, the base materials 10 can be connected to each other by using a strong acid as the flux containing the resin used for soldering.

また、導電性接合材2の厚さ(酸化物超電導線材1の長さ方向に沿う厚さ)について、特に制限はないが、数μm〜数10μm程度の厚さとすることができる。   Moreover, there is no restriction | limiting in particular about the thickness (thickness in alignment with the length direction of the oxide superconducting wire 1) of the electroconductive joining material 2, It can be set as the thickness of about several micrometers-several tens of micrometers.

図1に示す接続構造体Aは、テープ状の酸化物超電導線材1どうしをそれらの端面1aを介し導電性接合材2により機械的かつ電気的に接合した構造である。ここで、導電性接合材2は、一方の酸化物超電導線材1の基材10どうし、金属安定化層14どうしを機械的に十分な強度で接続するので、酸化物超電導線材1、1どうしの接合構造として必要十分な接続強度を得ることができる。なお、基材10としてNi合金を用いる場合、金属安定化層14を構成する金属材料の方が半田等の導電性接合材2との密着性が高いので、基材10との密着性が仮に低くても、金属安定化層14どうしが導電性接合材2に密着していれば必要な接続強度を得ることができる。
なお、図1に示す形態では導電性接合材2が酸化物超電導線材1の端面1aどうしの間に納まっている構造を例示しているが、導電性接合材2が金属安定化層14の表面側に多少はみ出して金属安定化層14の表面側に付着している構造でも良い。また、導電性接合材2が基材10の裏面側に多少はみ出して基材10の裏面側に付着している構造でも良い。酸化物超電導線材1の外部に導電性接合材2が多少はみ出すとしても支障はない。
なお、酸化物超電導線材1どうしを接合する場合、接合する端面1aどうしで位置ずれしないように酸化物超電導線材1どうしをこれらと同程度の幅の溝を有する治具を用いて互いの中心どうしをずれないように位置合わせしつつ接合することが好ましい。上述の治具の溝に両方の酸化物超電導線材1の端部どうしを押し込んで上から抑えつつ位置決めしてから半田付けすることが好ましい。なお、この際に半田が線材周囲に多少はみ出したとしても、接続部における半田のはみ出し量は少なく、接続部における幅の増加はほとんど生じない。
The connection structure A shown in FIG. 1 has a structure in which tape-shaped oxide superconducting wires 1 are mechanically and electrically joined to each other by a conductive joining material 2 through their end faces 1a. Here, the conductive bonding material 2 mechanically connects the bases 10 of the one oxide superconducting wire 1 and the metal stabilizing layer 14 with sufficient mechanical strength, so that the oxide superconducting wires 1 and 1 are connected to each other. Necessary and sufficient connection strength can be obtained as a joint structure. In addition, when using Ni alloy as the base material 10, since the metal material which comprises the metal stabilization layer 14 has higher adhesiveness with the conductive joining materials 2 such as solder, the adhesiveness with the base material 10 is temporarily Even if it is low, the required connection strength can be obtained if the metal stabilizing layers 14 are in close contact with the conductive bonding material 2.
1 illustrates a structure in which the conductive bonding material 2 is accommodated between the end faces 1a of the oxide superconducting wire 1, but the conductive bonding material 2 is the surface of the metal stabilization layer 14. A structure that protrudes somewhat to the side and adheres to the surface side of the metal stabilizing layer 14 may be used. Further, a structure in which the conductive bonding material 2 protrudes somewhat on the back surface side of the base material 10 and adheres to the back surface side of the base material 10 may be employed. Even if the conductive bonding material 2 protrudes somewhat outside the oxide superconducting wire 1, there is no problem.
When joining the oxide superconducting wires 1 to each other, the oxide superconducting wires 1 are mutually centered by using a jig having a groove having the same width so that the end faces 1a to be joined are not displaced. It is preferable to join while aligning so as not to shift. It is preferable that soldering is performed after the ends of both oxide superconducting wires 1 are pushed into the groove of the jig described above and positioned while being suppressed from above. At this time, even if the solder slightly protrudes around the wire rod, the amount of solder protruding from the connecting portion is small, and the width at the connecting portion hardly increases.

前記酸化物超電導線材1の端面1aは製造した酸化物超電導線材1の端部を何らかの手段で切断して切断面に異物や介在物の無いできるだけ平滑面とした端面1aとすることが好ましい。このため、製造した酸化物超電導線材1の端部を切断して端面とする場合、鋏や切断具などを用いて切断すると、切断面近傍の酸化物超電導層12が損傷し、接続部における超電導特性が劣化するので、レーザーによる切断面とすることが好ましい。
また、切断面を清浄化するため、切断面を研磨して異物や形状不良などを無くしてできるだけ平滑な清浄面としてから接合することが好ましい。鋏等の切断具を用いて機械的に切断すると、基材10の硬度が金属安定化層14の硬度より高いので、酸化物超電導線材1の切断面が均一かつ平滑な切断面になり難く、切断面に凹凸や不均一部分が生じ易い。この点において酸化物超電導線材1をレーザー切断する方が機械的な切断よりも平滑な切断面を得やすい。
The end face 1a of the oxide superconducting wire 1 is preferably an end face 1a which is made as smooth as possible by cutting off the end of the manufactured oxide superconducting wire 1 by some means and having no foreign matter or inclusions on the cut surface. For this reason, in the case where the end portion of the manufactured oxide superconducting wire 1 is cut to form an end surface, the oxide superconducting layer 12 in the vicinity of the cut surface is damaged by cutting with a scissors or a cutting tool, and the superconductivity at the connection portion Since characteristics deteriorate, it is preferable to use a laser-cut surface.
Further, in order to clean the cut surface, it is preferable that the cut surface is polished to eliminate foreign matters and shape defects so that the surface is as smooth as possible before joining. When mechanically cut using a cutting tool such as a scissors, the hardness of the base material 10 is higher than the hardness of the metal stabilizing layer 14, so that the cut surface of the oxide superconducting wire 1 is less likely to be a uniform and smooth cut surface. Irregularities and uneven portions are likely to occur on the cut surface. In this respect, it is easier to obtain a smooth cut surface by laser cutting the oxide superconducting wire 1 than by mechanical cutting.

図1に示す接続構造体Aによれば、接合した酸化物超電導線材1、1を臨界温度以下に冷却して一方の酸化物超電導線材1の酸化物超電導層12に通電することにより、他方の酸化物超電導線材1の酸化物超電導層12に電流を流すことができる。一方の酸化物超電導線材1に流れた電流は、接続構造体Aにおいて一方の酸化物超電導層12から導電性接合材2を介して他方の酸化物超電導線材1の酸化物超電導層12に流れる。あるいは電流の一部は保護層13あるいは金属安定化層14と導電性接合材2を介して他方の酸化物超電導線材1側に流れる。
接続構造体Aにおいては一方の酸化物超電導線材1の酸化物超電導層12の端部と、他方の酸化物超電導線材1の酸化物超電導層12の端部が、薄い導電性接合材2を介し近接位置で接合されているので、良好な電気的接合性を得ることができる。また、保護層13と金属安定化層14を介し電流が流れるとして、導電性接合材2を介し極めて近い位置の保護層13と金属安定化層14を介する通電経路なので、流路抵抗をできる限り小さくでき、接続部分における発熱量を少なくできる。
According to the connection structure A shown in FIG. 1, the joined oxide superconducting wires 1, 1 are cooled to a critical temperature or lower and energized to the oxide superconducting layer 12 of one oxide superconducting wire 1, thereby A current can be passed through the oxide superconducting layer 12 of the oxide superconducting wire 1. In the connection structure A, the current flowing in one oxide superconducting wire 1 flows from one oxide superconducting layer 12 to the oxide superconducting layer 12 of the other oxide superconducting wire 1 through the conductive bonding material 2. Alternatively, a part of the current flows to the other oxide superconducting wire 1 side through the protective layer 13 or the metal stabilizing layer 14 and the conductive bonding material 2.
In the connection structure A, the end portion of the oxide superconducting layer 12 of one oxide superconducting wire 1 and the end portion of the oxide superconducting layer 12 of the other oxide superconducting wire 1 are interposed through the thin conductive bonding material 2. Since it is joined at a close position, good electrical joining can be obtained. In addition, assuming that a current flows through the protective layer 13 and the metal stabilization layer 14, the flow path resistance is as much as possible because it is an energization path through the protective layer 13 and the metal stabilization layer 14 located very close via the conductive bonding material 2. It can be made smaller, and the amount of heat generated at the connecting portion can be reduced.

図2は第2実施形態に係る酸化物超電導線材の接続構造体を示すもので、この接続構造体Bに適用されている酸化物超電導線材3は、テープ状の基材10の一面(表面)上に、中間層11、酸化物超電導層12、保護層13を積層して超電導積層体15を構成し、この超電導積層体15の外周を金属安定化層14Aで覆って構成されている。
本実施形態において2本の酸化物超電導線材3がそれらの端部の端面3aどうしを層状の導電性接合材2を介し突き合わせ接合して接続構造体Bが構成されている。
FIG. 2 shows an oxide superconducting wire connecting structure according to the second embodiment. The oxide superconducting wire 3 applied to the connecting structure B is one surface (surface) of a tape-like substrate 10. A superconducting laminate 15 is formed by laminating the intermediate layer 11, the oxide superconducting layer 12, and the protective layer 13, and the outer periphery of the superconducting laminate 15 is covered with a metal stabilizing layer 14A.
In the present embodiment, two oxide superconducting wires 3 butt-join the end faces 3a of their end portions through the layered conductive bonding material 2 to form a connection structure B.

第2実施形態で用いられている基材10、中間層11、酸化物超電導層12、保護層13は第1実施形態で用いられていた基材10、中間層11、酸化物超電導層12、保護層13と同等である。
第2実施形態で用いられている金属安定化層14Aは、第1実施形態で用いられていた金属安定化層14と同等材料からなるが、超電導積層体15の外周を覆うように設けられている点が異なる。超電導積層体15の外周を覆う構造において、超電導積層体15の全周を完全に覆っている構造でも良いし、基材10の裏面側を少し残す形で横断面C字型に超電導積層体15を覆った構造を採用しても良い。超電導積層体15の全周を覆った構造の場合は、めっき層により形成されたCuからなる金属安定化層14Aを例示することができ、基材10の裏面側の一部を残して超電導積層体15の外周を覆った構造は、Cuなどの金属テープをロールやダイスを用いたテープフォーミング法により横断面C字型に塑性変形させて被覆した構造を適用できる。
The base material 10, the intermediate layer 11, the oxide superconducting layer 12, and the protective layer 13 used in the second embodiment are the base material 10, the intermediate layer 11, the oxide superconducting layer 12 used in the first embodiment, It is equivalent to the protective layer 13.
The metal stabilization layer 14A used in the second embodiment is made of the same material as the metal stabilization layer 14 used in the first embodiment, but is provided so as to cover the outer periphery of the superconducting laminate 15. Is different. The structure covering the outer periphery of the superconducting laminate 15 may be a structure in which the entire circumference of the superconducting laminate 15 is completely covered, or the superconducting laminate 15 having a C-shaped cross section so that the back side of the substrate 10 is left a little. You may adopt the structure which covered. In the case of a structure covering the entire circumference of the superconducting laminate 15, a metal stabilization layer 14 </ b> A made of Cu formed by a plating layer can be exemplified, and the superconducting laminate is left leaving a part of the back surface side of the substrate 10. The structure covering the outer periphery of the body 15 can be a structure in which a metal tape such as Cu is plastically deformed into a C-shaped cross section by a tape forming method using a roll or a die.

第2実施形態の構造では、超電導積層体15の外周を覆う金属安定化層14Aを備えた2本の酸化物超電導線材3が、それらの端面3aどうしを対向させ、端面どうしの間に導電性接合材2を配して接合され、接続構造体Bが構成されている。2本の酸化物超電導線材3を接続する導電性接合材2は、先の第1実施形態の導電性接合材2と同等である。端面3aが酸化物超電導線材3の長さ方向に直交する端面である構成は、先の第1実施形態の端面1aと同等である。
第2実施形態の接続構造体Bが、先の接続構造体Aと異なる点は、端面3aにおいて超電導積層体15の外周を覆うように金属安定化層14Aが設けられているので、端面外周位置に存在する金属安定化層14Aどうしが導電性接合材2により機械的かつ電気的に接合されている点である。金属安定化層14Aの内側に設けられている超電導積層体15の端面どうしが導電性接合材2を介し突き合わせ接合されている点については、先の第1実施形態の構造と同等である。
このような構造を有する接続構造体Bでは、導電性接合材2に対し密着性に優れた金属安定化層14Aを端面3aの周囲を囲むように設け、先の第1実施形態よりも広い面積で安定化層14Aどうしを接続できるので、第1実施形態の構造よりも接続強度の高い構造にすることができる。
In the structure of the second embodiment, the two oxide superconducting wires 3 provided with the metal stabilizing layer 14A covering the outer periphery of the superconducting laminate 15 have their end faces 3a facing each other and are electrically conductive between the end faces. The connection structure B is configured by bonding the bonding material 2 and bonding them. The conductive bonding material 2 that connects the two oxide superconducting wires 3 is the same as the conductive bonding material 2 of the first embodiment. The configuration in which the end surface 3a is an end surface orthogonal to the length direction of the oxide superconducting wire 3 is the same as the end surface 1a of the first embodiment.
The connection structure B of the second embodiment is different from the previous connection structure A in that the metal stabilization layer 14A is provided so as to cover the outer periphery of the superconducting laminate 15 at the end surface 3a. The metal stabilizing layers 14A existing in the region are mechanically and electrically joined to each other by the conductive joining material 2. The point that the end surfaces of the superconducting laminate 15 provided inside the metal stabilizing layer 14A are butt-joined via the conductive bonding material 2 is the same as the structure of the first embodiment.
In the connection structure B having such a structure, the metal stabilization layer 14A having excellent adhesion to the conductive bonding material 2 is provided so as to surround the periphery of the end face 3a, and has a larger area than the first embodiment. Since the stabilization layers 14A can be connected to each other, a structure with higher connection strength than the structure of the first embodiment can be obtained.

更に、酸化物超電導積層体15の外周を金属安定化層14Aで覆って酸化物超電導層12を密閉した構造となっているので、金属安定化層14Aの内側の酸化物超電導層12側への水分浸入を防止できる。また、接続部分においても超電導積層体15を囲んだ金属安定化層14Aが接続部分内側の酸化物超電導層12側への水分浸入を防止する。
希土類系の酸化物超電導体の中には、水分と反応する材料があり、酸化物超電導層12を水分による劣化から防止できる構造が重要と考えられる。このため、超電導積層体15の外周を金属安定化層14Aで覆うとともに、接続部分においても導電性接合材2とともに金属安定化層14Aにより酸化物超電導層12側への水分浸入防止できる構造とするならば、水分浸入による超電導特性劣化の生じない接続構造体Bを提供できる。
その他の作用効果については先の第1実施形態の接続構造体Aと同様に得ることができる。
Furthermore, since the outer periphery of the oxide superconducting laminate 15 is covered with the metal stabilizing layer 14A and the oxide superconducting layer 12 is sealed, the oxide superconducting layer 12A inside the metal stabilizing layer 14A is directed to the oxide superconducting layer 12 side. Can prevent moisture intrusion. In addition, the metal stabilization layer 14A surrounding the superconducting laminate 15 also prevents moisture from entering the oxide superconducting layer 12 inside the connecting portion at the connecting portion.
Among rare earth oxide superconductors, there are materials that react with moisture, and a structure that can prevent the oxide superconducting layer 12 from being deteriorated by moisture is considered important. For this reason, the outer periphery of the superconducting laminate 15 is covered with the metal stabilizing layer 14A, and also at the connection portion, the metal stabilizing layer 14A together with the conductive bonding material 2 can prevent moisture from entering the oxide superconducting layer 12 side. Then, it is possible to provide a connection structure B that does not cause deterioration of superconducting characteristics due to moisture intrusion.
Other operational effects can be obtained in the same manner as the connection structure A of the first embodiment.

図3は第3実施形態に係る酸化物超電導線材の接続構造体を示すもので、この実施形態の接続構造体Cに適用されている酸化物超電導線材4は、テープ状の基材10の一面(表面)上に、中間層11、酸化物超電導層12、保護層13、金属安定化層14Cを積層し構成されている点においては第1実施形態の構造と同等である。酸化物超電導線材1において、基材10上に中間層11、酸化物超電導層12、保護層13を積層して超電導積層体15が構成されている。   FIG. 3 shows a connection structure of oxide superconducting wire according to the third embodiment. The oxide superconducting wire 4 applied to the connection structure C of this embodiment is one surface of a tape-like substrate 10. The structure is the same as that of the first embodiment in that the intermediate layer 11, the oxide superconducting layer 12, the protective layer 13, and the metal stabilizing layer 14C are stacked on the (surface). In the oxide superconducting wire 1, a superconducting laminate 15 is configured by laminating an intermediate layer 11, an oxide superconducting layer 12, and a protective layer 13 on a substrate 10.

本実施形態において2本の酸化物超電導線材4がそれらの先端部の傾斜端面4aどうしを所定厚さの導電性接合材2を介し突き合わせ接合して接続構造体Cが構成されている。第1実施形態の構造と異なる点は、酸化物超電導線材4の接続端部側に、酸化物超電導線材4の幅を徐々に少なくする傾斜継手部4Aが形成され、これらの傾斜継手部4Aの傾斜端面4aどうしが導電性接合材5を介し接合された点である。傾斜継手部4Aの傾斜部分は、接続するべき2本の酸化物超電導線材4において同じ傾斜率で反対向きあり、傾斜端面4aどうしを位置合わせして導電性接合材5により接続することで、酸化物超電導線材4、4はその接続部分の幅方向と厚さ方向に段差部を生じないように接続されている。
即ち、接続部分において図3(a)に示すように酸化物超電導線材4の傾斜端面同士は同一平面に沿うように位置合わせされ、図3(b)に示すように酸化物超電導線材4の上面どうしと下面どうしは同一平面に沿うように位置合わせされている。
In the present embodiment, two oxide superconducting wires 4 butt-join the inclined end surfaces 4a of their tip portions through the conductive bonding material 2 having a predetermined thickness to form a connection structure C. A difference from the structure of the first embodiment is that inclined joint portions 4A for gradually reducing the width of the oxide superconducting wire 4 are formed on the connection end portion side of the oxide superconducting wire 4, and the inclined joint portions 4A This is a point where the inclined end faces 4 a are joined via the conductive joining material 5. The inclined portion of the inclined joint portion 4A is opposite in the two oxide superconducting wires 4 to be connected at the same inclination rate, and the inclined end surfaces 4a are aligned and connected by the conductive bonding material 5, thereby oxidizing. The superconducting wire rods 4 and 4 are connected so as not to form a step portion in the width direction and the thickness direction of the connecting portion.
That is, the inclined end faces of the oxide superconducting wire 4 are aligned along the same plane as shown in FIG. 3 (a) at the connection portion, and the upper surface of the oxide superconducting wire 4 is shown in FIG. 3 (b). The two and the bottom are aligned with each other along the same plane.

図3に示す接続構造体Cにおいては、一方の酸化物超電導線材4の傾斜継手部4Aと他方の酸化物超電導線材4の傾斜継手部4Aとの間に介在される導電性接合材5が先の第1実施形態の導電性接合材2よりも長くされているので、第1実施形態の構造よりも接続強度を高くすることが可能である。また、酸化物超電導線材4の傾斜継手部4Aにおける傾斜端面4aの傾斜角度を調整することにより導電性接合材5の長さを調整することが可能となり、導電性接合材5の長さに応じた任意の接続抵抗を得ることができる。即ち、傾斜継手部4Aの傾斜端面4aの傾斜角度を調整することにより接続抵抗を調整できる。   In the connection structure C shown in FIG. 3, the conductive bonding material 5 interposed between the inclined joint portion 4A of one oxide superconducting wire 4 and the inclined joint portion 4A of the other oxide superconducting wire 4 is first. Since it is made longer than the conductive bonding material 2 of the first embodiment, it is possible to make the connection strength higher than that of the structure of the first embodiment. Moreover, it becomes possible to adjust the length of the conductive bonding material 5 by adjusting the inclination angle of the inclined end surface 4a in the inclined joint portion 4A of the oxide superconducting wire 4, and according to the length of the conductive bonding material 5. Any connection resistance can be obtained. That is, the connection resistance can be adjusted by adjusting the inclination angle of the inclined end face 4a of the inclined joint portion 4A.

図3に示す接続構造体Cを得るには、第1実施形態の酸化物超電導線材1の端面1aを製造する場合に用いた鋏などの切断器具を用いた切断方法あるいはレーザーを用いたレーザー切断法のいずれかを実施する場合、酸化物超電導線材4の端部に対し斜め方向に切断する処理を行えばよい。傾斜端面4aの表面仕上や清浄化については第1実施形態の酸化物超電導線材1の端面1aを仕上処理する場合と同様に行うことができる。
その他作用効果については第1実施形態の接続構造体Aと同様である。
In order to obtain the connection structure C shown in FIG. 3, a cutting method using a cutting tool such as a scissors used in manufacturing the end surface 1a of the oxide superconducting wire 1 of the first embodiment or laser cutting using a laser. When any one of the methods is performed, a process of cutting the end portion of the oxide superconducting wire 4 in an oblique direction may be performed. Surface finishing and cleaning of the inclined end surface 4a can be performed in the same manner as in the case of finishing the end surface 1a of the oxide superconducting wire 1 of the first embodiment.
Other operational effects are the same as those of the connection structure A of the first embodiment.

図4は第4実施形態に係る酸化物超電導線材の接続構造体を示すもので、この実施形態の接続構造体Dに適用されている酸化物超電導線材6は、テープ状の基材10の一面(表面)上に、中間層11、酸化物超電導層12、保護層13を積層して超電導積層体15を構成し、この超電導積層体15の外周を金属安定化層14Dで覆って構成されている。
本実施形態において2本の酸化物超電導線材6がそれらの先端部の傾斜端面6aどうしを所定厚さの導電性接合材7を介し突き合わせ接合して接続構造体Dが構成されている。
FIG. 4 shows an oxide superconducting wire connecting structure according to a fourth embodiment. The oxide superconducting wire 6 applied to the connecting structure D of this embodiment is a surface of a tape-like substrate 10. On the (surface), an intermediate layer 11, an oxide superconducting layer 12, and a protective layer 13 are laminated to form a superconducting laminate 15, and the outer periphery of the superconducting laminate 15 is covered with a metal stabilizing layer 14D. Yes.
In the present embodiment, two oxide superconducting wires 6 butt-join the inclined end faces 6a of their tip portions via a conductive bonding material 7 having a predetermined thickness to form a connection structure D.

第4実施形態で用いられている金属安定化層14Dは、第2実施形態で用いられていた金属安定化層14と同等材料からなり、超電導積層体15の外周を覆うように設けられている点も同様である。超電導積層体15の外周を覆う構造において、超電導積層体15の外周が完全に覆われている構造でも良いし、基材10の裏面側を少し残す形で横断面C字型に超電導積層体15が覆われた構造を採用しても良い。超電導積層体15の外周全部が覆われた構造の場合は、めっき層により形成されたCuからなる金属安定化層14Dを例示することができ、基材10の裏面側の一部を残して超電導積層体15の外周が覆われた構造は、Cuなどの金属テープをロールやダイスを用いたテープフォーミング法により横断面C字型に塑性変形させて被覆した構造を適用できる。   The metal stabilization layer 14 </ b> D used in the fourth embodiment is made of the same material as the metal stabilization layer 14 used in the second embodiment, and is provided so as to cover the outer periphery of the superconducting laminate 15. The same applies to the point. The structure covering the outer periphery of the superconducting laminate 15 may be a structure in which the outer periphery of the superconducting laminate 15 is completely covered, or the superconducting laminate 15 having a C-shaped cross section in a form leaving the back side of the substrate 10 a little. A structure in which is covered may be adopted. In the case of a structure in which the entire outer periphery of the superconducting laminate 15 is covered, a metal stabilization layer 14D made of Cu formed by a plating layer can be exemplified, and the superconductivity is left with a part on the back side of the substrate 10 being left. The structure in which the outer periphery of the laminate 15 is covered can be a structure in which a metal tape such as Cu is plastically deformed into a C-shaped cross section by a tape forming method using a roll or a die.

酸化物超電導線材6の接続端部側に、酸化物超電導線材6の幅を徐々に少なくする傾斜継手部6Aが形成され、これらの傾斜継手部6Aの傾斜端面6aどうしが導電性接合材7を介し接合された点は先の第3実施形態の構造と同様である。傾斜継手部6Aの傾斜部分は接続される2本の酸化物超電導線材6において同じ傾斜率で反対向きあり、傾斜端面6aどうしを位置合わせして導電性接合材7により接続することで、酸化物超電導線材6、6はそれらの接続部分の幅方向と厚さ方向に段差部を生じないように接続されている。
即ち、接続部分において図4(a)に示すように酸化物超電導線材6の傾斜端面同士は同一平面に沿うように位置合わせされ、図4(b)に示すように酸化物超電導線材6の上面どうしと下面どうしは同一平面に沿うように位置合わせされている。
An inclined joint portion 6A for gradually reducing the width of the oxide superconducting wire 6 is formed on the connecting end portion side of the oxide superconducting wire 6, and the inclined end surfaces 6a of these inclined joint portions 6A connect the conductive bonding material 7 to each other. The point joined via is the same as the structure of the third embodiment. The inclined portions of the inclined joint portion 6A are opposite to each other in the two oxide superconducting wires 6 to be connected with the same inclination rate, and the inclined end faces 6a are aligned and connected by the conductive bonding material 7, thereby providing an oxide. The superconducting wires 6 and 6 are connected so that no stepped portion is formed in the width direction and the thickness direction of their connecting portions.
That is, the inclined end faces of the oxide superconducting wire 6 are aligned along the same plane as shown in FIG. 4 (a) at the connecting portion, and the upper surface of the oxide superconducting wire 6 is shown in FIG. 4 (b). The two and the bottom are aligned with each other along the same plane.

図4に示す接続構造体Dにおいては、一方の酸化物超電導線材6の傾斜継手部6Aと他方の酸化物超電導線材6の傾斜継手部6Aとの間に介在される導電性接合材7が先の第1実施形態の導電性接合材2よりも長いので、第1実施形態の構造よりも接続強度を高くすることが可能である。また、酸化物超電導線材6の傾斜継手部6Aにおける傾斜端面6aの傾斜角度を調整することにより導電性接合材7の長さを調整することが可能となり、導電性接合材7の長さに応じた任意の接続抵抗を得ることができる。即ち、傾斜継手部6Aの傾斜端面6aの傾斜角度を調整することにより接続抵抗を調整できる。   In the connection structure D shown in FIG. 4, the conductive bonding material 7 interposed between the inclined joint portion 6 </ b> A of one oxide superconducting wire 6 and the inclined joint portion 6 </ b> A of the other oxide superconducting wire 6 is first. Since it is longer than the conductive bonding material 2 of the first embodiment, it is possible to make the connection strength higher than that of the structure of the first embodiment. Moreover, it becomes possible to adjust the length of the conductive bonding material 7 by adjusting the inclination angle of the inclined end surface 6a in the inclined joint portion 6A of the oxide superconducting wire 6, and according to the length of the conductive bonding material 7. Any connection resistance can be obtained. That is, the connection resistance can be adjusted by adjusting the inclination angle of the inclined end surface 6a of the inclined joint portion 6A.

更に、酸化物超電導積層体15の外周を金属安定化層14Dで覆って酸化物超電導層12を密閉した構造となっているので、金属安定化層14Dの内側の酸化物超電導層12側への水分浸入を防止できる。また、接続部分においても超電導積層体15を囲んだ金属安定化層14Dが接続部分内側の酸化物超電導層12側への水分浸入を防止する。
希土類系の酸化物超電導体の中には、水分と反応性を有する料があり、酸化物超電導層12を水分による劣化から防止できる構造が重要と考えられる。このため、超電導積層体15の外周を金属安定化層14Dで覆うとともに、接続部分においても導電性接合材7とともに金属安定化層14Dにより酸化物超電導層12側への水分浸入防止できる構造とするならば、水分浸入による超電導特性劣化の生じない接続構造体Dを提供できる。
その他の作用効果については先の第3実施形態の接続構造体Aと同様に得ることができる。
Further, since the outer periphery of the oxide superconducting laminate 15 is covered with the metal stabilization layer 14D and the oxide superconducting layer 12 is hermetically sealed, the oxide superconducting layer 12D inside the metal stabilizing layer 14D is directed to the oxide superconducting layer 12 side. Can prevent moisture intrusion. In addition, the metal stabilization layer 14D surrounding the superconducting laminate 15 also prevents moisture from entering the oxide superconducting layer 12 inside the connecting portion at the connecting portion.
Among rare earth-based oxide superconductors, there are materials that are reactive with moisture, and a structure that can prevent the oxide superconducting layer 12 from being deteriorated by moisture is considered important. For this reason, the outer periphery of the superconducting laminate 15 is covered with the metal stabilizing layer 14D, and also at the connecting portion, the metal stabilizing layer 14D together with the conductive bonding material 7 can prevent moisture from entering the oxide superconducting layer 12 side. Then, it is possible to provide a connection structure D that does not cause deterioration of superconducting characteristics due to moisture penetration.
Other functions and effects can be obtained in the same manner as the connection structure A of the third embodiment.

図5は第5実施形態に係る酸化物超電導線材の接続構造体を示すもので、この実施形態の接続構造体Eに適用されている酸化物超電導線材8は、テープ状の基材10の一面(表面)上に、中間層11、酸化物超電導層12、保護層13を積層して超電導積層体15を構成し、この超電導積層体15の表面を金属安定化層14Eで覆って構成されている。
本実施形態において2本の酸化物超電導線材8がそれらの先端部の端面8aどうしを層状の導電性接合材9を介し突き合わせ接合して接続構造体Eが構成されている。
FIG. 5 shows an oxide superconducting wire connecting structure according to a fifth embodiment. The oxide superconducting wire 8 applied to the connecting structure E of this embodiment is a surface of a tape-like substrate 10. On the (surface), an intermediate layer 11, an oxide superconducting layer 12, and a protective layer 13 are laminated to form a superconducting laminate 15, and the surface of the superconducting laminate 15 is covered with a metal stabilizing layer 14E. Yes.
In this embodiment, two oxide superconducting wires 8 butt-join the end faces 8a of their tip portions through a layered conductive bonding material 9 to form a connection structure E.

酸化物超電導線材8の接続端部側に、酸化物超電導線材8の幅を線材の長さ方向に部分的に少なくする平面視凹凸型の部分を有する鍵型継手部8Aが形成され、これらの鍵型継手部8Aの側面8aどうしが導電性接合材9を介し接合されている。
鍵型継手部8Aの凹凸部8Bは接続される2本の酸化物超電導線材8において同じ大きさで反対向きあり、側面8aどうしの凹凸部8Bを嵌め合わせて導電性接合材9により接続することで、酸化物超電導線材8、8はその接続部分の幅方向と厚さ方向に段差部を生じないように接続されている。即ち、接続部分において図5に示すように酸化物超電導線材8、8の側面どうしは同一平面に沿うように位置合わせされ、酸化物超電導線材8、8の上面どうしと下面どうしは同一平面に沿うように位置合わせされている。
On the connection end portion side of the oxide superconducting wire 8, a key joint portion 8 </ b> A having an uneven portion in plan view that partially reduces the width of the oxide superconducting wire 8 in the length direction of the wire is formed. The side surfaces 8 a of the key joint 8 </ b> A are joined together via the conductive joining material 9.
The concavo-convex portion 8B of the key joint 8A has the same size and opposite direction in the two oxide superconducting wires 8 to be connected, and the concavo-convex portions 8B of the side surfaces 8a are fitted together and connected by the conductive bonding material 9. Thus, the oxide superconducting wires 8 and 8 are connected so that no stepped portion is formed in the width direction and the thickness direction of the connecting portion. That is, as shown in FIG. 5, the side surfaces of the oxide superconducting wires 8 and 8 are aligned along the same plane as shown in FIG. 5, and the upper and lower surfaces of the oxide superconducting wires 8 and 8 are along the same plane. So that they are aligned.

図5に示す接続構造体Eは、一方の酸化物超電導線材8の鍵型継手部8Aと他方の酸化物超電導線材8の鍵型継手部8Aとの間に介在される導電性接合材9を先の第1実施形態の導電性接合材よりも長くできるので、先の実施形態の構造よりも接続強度を高くすることが可能である。更に、酸化物超電導線材8、8はそれらの鍵型継手部8Aどうしを嵌め合わせて接続されているので、鍵型継手部8Aどうしの機械的嵌合構造による接合強度も併せて高い接続強度を得ることができる。
また、酸化物超電導線材8の鍵型継手部8Aの長さを調整することにより導電性接合材9の長さを調整することが可能となり、導電性接合材9の長さに応じた任意の接続抵抗を得ることができる。更に、鍵型継手部8Aはその長さ(接続長)を大きくしなくとも導電性接合材9の接合面積と大きな面積を確保できる。
その他の構造は先の第1実施形態の構造で得られる作用効果と同等である。
また、図5に示す鍵型継手部8Aに形成される凹凸部8Bの数は図5に示す数に制限するものではなく、1つ以上、任意の数を形成して良い。
The connection structure E shown in FIG. 5 includes a conductive bonding material 9 interposed between a key joint 8A of one oxide superconducting wire 8 and a key joint 8A of the other oxide superconducting wire 8. Since it can be made longer than the conductive bonding material of the first embodiment, the connection strength can be made higher than that of the structure of the previous embodiment. Furthermore, since the oxide superconducting wires 8 and 8 are connected by fitting the key-type joint portions 8A to each other, the joint strength due to the mechanical fitting structure between the key-type joint portions 8A is also high. Can be obtained.
In addition, it is possible to adjust the length of the conductive bonding material 9 by adjusting the length of the key joint 8A of the oxide superconducting wire 8, and any length corresponding to the length of the conductive bonding material 9 can be obtained. Connection resistance can be obtained. Furthermore, the key-type joint portion 8A can secure a joining area and a large area of the conductive joining material 9 without increasing the length (connection length).
Other structures are the same as those obtained by the structure of the first embodiment.
Further, the number of the concavo-convex portions 8B formed in the key joint portion 8A shown in FIG. 5 is not limited to the number shown in FIG. 5, and one or more arbitrary numbers may be formed.

図6は第6実施形態に係る酸化物超電導線材の接続構造体を示すもので、この実施形態の接続構造体Fに適用されている酸化物超電導線材16は、テープ状の基材10の一面(表面)上に、中間層11、酸化物超電導層12、保護層13を積層して超電導積層体15を構成し、この超電導積層体15の表面を金属安定化層14Fで覆って構成されている。
本実施形態において2本の酸化物超電導線材16がそれらの先端部の端面16aどうしを所定厚さの導電性接合材17を介し突き合わせ接合して接続構造体Fが構成されている。
FIG. 6 shows an oxide superconducting wire connecting structure according to a sixth embodiment. The oxide superconducting wire 16 applied to the connecting structure F of this embodiment is a surface of a tape-like substrate 10. On the (surface), an intermediate layer 11, an oxide superconducting layer 12, and a protective layer 13 are laminated to form a superconducting laminate 15, and the surface of the superconducting laminate 15 is covered with a metal stabilizing layer 14F. Yes.
In this embodiment, two oxide superconducting wires 16 butt-join the end faces 16a of their tip portions with a conductive bonding material 17 having a predetermined thickness to form a connection structure F.

酸化物超電導線材16の接続端部側に、酸化物超電導線材16の幅を線材の長さ方向に部分的に少なくする平面視波型の部分を有する鍵型継手部16Aが形成され、これらの鍵型継手部16Aの側面16aどうしが導電性接合材17を介し接合されている。
鍵型継手部16Aの凹凸部16Bは接続される2本の酸化物超電導線材16において同じ大きさで反対向きあり、側面16aどうしの凹凸部16Bを嵌め合わせて導電性接合材17により接続することで、酸化物超電導線材16、16はその接続部分の幅方向と厚さ方向に段差部を生じないように接続されている。即ち、接続部分において図6に示すように酸化物超電導線材16、16の側面どうしは同一平面に沿うように位置合わせされ、酸化物超電導線材16、16の上面どうしと下面どうしは同一平面に沿うように位置合わせされている。
On the connection end portion side of the oxide superconducting wire 16, a key joint 16 </ b> A having a planar view wave-shaped portion that partially reduces the width of the oxide superconducting wire 16 in the length direction of the wire is formed. The side surfaces 16 a of the key-shaped joint portion 16 </ b> A are joined together via the conductive joining material 17.
The concavo-convex portion 16B of the key joint 16A has the same size and opposite direction in the two oxide superconducting wires 16 to be connected, and the concavo-convex portions 16B between the side surfaces 16a are fitted together and connected by the conductive bonding material 17. Thus, the oxide superconducting wires 16 and 16 are connected so that no stepped portion is formed in the width direction and the thickness direction of the connecting portion. That is, as shown in FIG. 6, the side surfaces of the oxide superconducting wires 16 and 16 are aligned along the same plane as shown in FIG. 6, and the upper and lower surfaces of the oxide superconducting wires 16 and 16 are along the same plane. So that they are aligned.

図6に示す接続構造体Fは、一方の酸化物超電導線材16の鍵型継手部16Aと他方の酸化物超電導線材16の鍵型継手部16Aとの間に介在される導電性接合材17を先の第1実施形態の導電性接合材よりも長くできるので、先の第1実施形態の構造よりも接続強度を高くすることが可能である。更に、酸化物超電導線材16、16はそれらの鍵型継手部16Aどうしを嵌め合わせて接続されているので、鍵型継手部16Aどうしの機械的嵌合構造による接合強度も併せて高い接続強度を得ることができる。
また、酸化物超電導線材16の鍵型継手部16Aの長さを調整することにより導電性接合材17の長さを調整することが可能となり、導電性接合材17の長さに応じた任意の接続抵抗を得ることができる。
その他の構造は先の第1実施形態の構造で得られる作用効果と同等である。
A connection structure F shown in FIG. 6 includes a conductive bonding material 17 interposed between a key joint 16A of one oxide superconducting wire 16 and a key joint 16A of the other oxide superconducting wire 16. Since it can be made longer than the conductive bonding material of the first embodiment, it is possible to make the connection strength higher than that of the structure of the first embodiment. Further, since the oxide superconducting wires 16 and 16 are connected by fitting the key joints 16A to each other, the joint strength due to the mechanical fitting structure of the key joints 16A is also high. Can be obtained.
Moreover, it becomes possible to adjust the length of the conductive bonding material 17 by adjusting the length of the key-type joint portion 16A of the oxide superconducting wire 16, and any length corresponding to the length of the conductive bonding material 17 can be obtained. Connection resistance can be obtained.
Other structures are the same as those obtained by the structure of the first embodiment.

図7は第7実施形態に係る酸化物超電導線材の接続構造体を示すもので、この形態の接続構造体Gに適用されている酸化物超電導線材18は、テープ状の基材10の一面(表面)上に、中間層11、酸化物超電導層12、保護層13を積層して超電導積層体15を構成し、この超電導積層体15の表面を金属安定化層14Gで覆って構成されている。
本実施形態において2本の酸化物超電導線材18がそれらの先端部の端面18aどうしを層状の導電性接合材19を介し突き合わせ接合して接続構造体Gが構成されている。
FIG. 7 shows an oxide superconducting wire connecting structure according to a seventh embodiment. The oxide superconducting wire 18 applied to the connecting structure G of this embodiment is a surface of the tape-shaped substrate 10 ( The superconducting laminate 15 is formed by laminating the intermediate layer 11, the oxide superconducting layer 12, and the protective layer 13 on the surface), and the surface of the superconducting laminate 15 is covered with the metal stabilizing layer 14G. .
In this embodiment, two oxide superconducting wires 18 butt-join the end surfaces 18a of their tip portions through a layered conductive bonding material 19 to form a connection structure G.

酸化物超電導線材18の接続端部側に、酸化物超電導線材18の幅を部分的に少なくする平面視凸型の部分を有する鍵型継手部18Aが形成され、これらの鍵型継手部18Aの側面16aどうしと先端面どうしが導電性接合材19を介し接合されている。
鍵型継手部18Aは接続される2本の酸化物超電導線材18において同じ大きさで反対向きであり、鍵型継手部18Aどうしを突き合わせて導電性接合材19により接続することで、酸化物超電導線材18、18はその接続部分の幅方向と厚さ方向に段差部を生じないように接続されている。即ち、接続部分において図7に示すように酸化物超電導線材18、18の側面どうしは同一平面に沿うように位置合わせされ、酸化物超電導線材18、18の上面どうしと下面どうしは同一平面に沿うように位置合わせされている。
On the connection end portion side of the oxide superconducting wire 18, a key joint 18A having a convex portion in plan view that partially reduces the width of the oxide superconducting wire 18 is formed. The side surfaces 16 a and the front end surfaces are joined to each other through a conductive joining material 19.
The key-type joint portion 18A has the same size and opposite direction in the two oxide superconducting wires 18 to be connected, and the key-type joint portion 18A is abutted and connected by the conductive bonding material 19, whereby the oxide superconductor The wire rods 18 and 18 are connected so as not to produce a step portion in the width direction and the thickness direction of the connecting portion. That is, as shown in FIG. 7, the side surfaces of the oxide superconducting wires 18 and 18 are aligned along the same plane as shown in FIG. 7, and the upper and lower surfaces of the oxide superconducting wires 18 and 18 are along the same plane. So that they are aligned.

図7に示す接続構造体Gは、一方の酸化物超電導線材18の鍵型継手部18Aと他方の酸化物超電導線材18の鍵型継手部18Aとの間に介在される導電性接合材19を先の第1実施形態の導電性接合材よりも長くできるので、先の第1実施形態の構造よりも接続強度を高くすることが可能である。
また、酸化物超電導線材18の鍵型継手部18Aの長さを調整することにより導電性接合材19の長さを調整することが可能となり、導電性接合材19の長さに応じた任意の接続抵抗を得ることができる。
その他の構造は先の第1実施形態の構造で得られる作用効果と同等である。
The connection structure G shown in FIG. 7 includes a conductive joint material 19 interposed between a key joint portion 18A of one oxide superconducting wire 18 and a key joint portion 18A of the other oxide superconducting wire 18. Since it can be made longer than the conductive bonding material of the first embodiment, it is possible to make the connection strength higher than that of the structure of the first embodiment.
Further, it is possible to adjust the length of the conductive bonding material 19 by adjusting the length of the key joint portion 18A of the oxide superconducting wire 18, and any length corresponding to the length of the conductive bonding material 19 can be obtained. Connection resistance can be obtained.
Other structures are the same as those obtained by the structure of the first embodiment.

図5から図7に示す接続構造体E、F、Gは、金属安定化層14E、14F、14Gをいずれも酸化物超電導線材8、16、18の表面側に形成した例として説明したが、これらの金属安定化層14E、14F、14Gで金属安定化層の全周を囲む構造としても良い。この構造にすることにより、内部の酸化物超電導層側への水分浸入を防止できる効果がある。   The connection structures E, F, and G shown in FIGS. 5 to 7 have been described as examples in which the metal stabilizing layers 14E, 14F, and 14G are formed on the surface side of the oxide superconducting wires 8, 16, and 18, respectively. These metal stabilizing layers 14E, 14F, and 14G may have a structure that surrounds the entire circumference of the metal stabilizing layer. With this structure, there is an effect of preventing moisture from entering the oxide superconducting layer inside.

「超電導ケーブル」
図1〜図7に示す接続構造体A〜Gにより接続された各酸化物超電導線材は、例えば、図8に例示する高温超電導ケーブル80に適用することができる。図8に示す高温超電導ケーブル80は、中心部に設けたフォーマ81の外周に酸化物超電導線材1を巻線状に複数層配置して超電導層1Sを形成し、その外周に絶縁層82と超電導シールド層1Uと保護層83を形成してコアケーブル85を構成し、このコアケーブル85を断熱管84の内部に冷媒流通用の間隙をあけて収容してなる。断熱管84は例えば内管84aと外管84cからなる2重管構造とされ、内管84aと外管84cとの間に真空断熱層84bが形成されている。超電導シールド層1Uは酸化物超電導線材1を複数層巻線状に配置して構成されている。
"Superconducting cable"
Each oxide superconducting wire connected by the connection structures A to G shown in FIGS. 1 to 7 can be applied to, for example, the high-temperature superconducting cable 80 illustrated in FIG. A high-temperature superconducting cable 80 shown in FIG. 8 forms a superconducting layer 1S by arranging a plurality of layers of the oxide superconducting wire 1 in a winding shape on the outer periphery of a former 81 provided at the center, and an insulating layer 82 and superconducting on the outer periphery thereof. The shield layer 1U and the protective layer 83 are formed to constitute the core cable 85, and the core cable 85 is accommodated inside the heat insulating tube 84 with a gap for refrigerant circulation. The heat insulating tube 84 has, for example, a double tube structure including an inner tube 84a and an outer tube 84c, and a vacuum heat insulating layer 84b is formed between the inner tube 84a and the outer tube 84c. Superconducting shield layer 1U is configured by arranging oxide superconducting wire 1 in a multi-layer winding shape.

このような高温超電導ケーブル80は長尺のケーブルとして作製されるので、超電導層1Sを形成する酸化物超電導線材1あるいは、超電導シールド層1Uを構成する酸化物超電導線材1を必要本数接続する構造が必要となる。このため、図1〜図7に示す接続構造体A〜Gを適用した酸化物超電導線材1が適用される。   Since such a high-temperature superconducting cable 80 is manufactured as a long cable, the oxide superconducting wire 1 forming the superconducting layer 1S or the oxide superconducting wire 1 constituting the superconducting shield layer 1U is connected in a necessary number. Necessary. For this reason, the oxide superconducting wire 1 to which the connection structures A to G shown in FIGS. 1 to 7 are applied.

「超電導限流器」
図1〜図7に示す接続構造体A〜Gのいずれかにより接続された酸化物超電導線材は、例えば、図9に示す超電導限流器99に適用できる。
図4に示す超電導限流器99において、図1〜図7に示す接続構造体A〜Gを備えた酸化物超電導線材は、巻胴に複数層に渡って巻回され超電導限流器用モジュール90を構成し、当該超電導限流器用モジュール90として液体窒素98が充填された液体窒素容器95に格納されている。さらに液体窒素容器95は、外部との熱を遮断する真空容器96の内部に格納されている。
"Superconducting fault current limiter"
The oxide superconducting wire connected by any one of the connection structures A to G shown in FIGS. 1 to 7 can be applied to the superconducting fault current limiter 99 shown in FIG. 9, for example.
In the superconducting fault current limiter 99 shown in FIG. 4, the oxide superconducting wire provided with the connection structures A to G shown in FIGS. 1 to 7 is wound around a winding drum over a plurality of layers, and the superconducting fault current limiting module 90. And is stored in a liquid nitrogen container 95 filled with liquid nitrogen 98 as the superconducting fault current limiter module 90. Further, the liquid nitrogen container 95 is stored inside a vacuum container 96 that blocks heat from the outside.

液体窒素容器95は、上部に、液体窒素充填部91と冷凍機93を有し、冷凍機93の下方には、熱アンカー92と熱板97が設けられている。
また、超電導限流器99は、超電導限流器用モジュール90に外部電源(図示略)を接続するための電流リード部94を有する。
以上のような、超電導限流器99の超電導限流器用モジュール90として使用する場合において、酸化物超電導線材は、先に説明したように金属安定化層にNi−Cr等の高抵抗金属を用いたものを使用する。
The liquid nitrogen container 95 has a liquid nitrogen filling part 91 and a refrigerator 93 in the upper part, and a heat anchor 92 and a hot plate 97 are provided below the refrigerator 93.
The superconducting current limiter 99 has a current lead portion 94 for connecting an external power source (not shown) to the superconducting current limiter module 90.
When used as the superconducting current limiter module 90 of the superconducting current limiter 99 as described above, the oxide superconducting wire uses a high resistance metal such as Ni—Cr for the metal stabilizing layer as described above. Use what you had.

「超電導モーター」
図1〜図7に示す接続構造体A〜Gのいずれかにより接続された酸化物超電導線材は、図10に示す超電導モーター130に適用することができる。
超電導モーター130は、円筒状の密閉型の容器131の内部に、回転自在に軸支された軸型の回転子132を備え構成されている。
回転軸133の中央部周囲側に、軸周りに複数の超電導モーター用コイル135が取り付けられ、これら複数の超電導モーター用コイル135の周囲側に容器131の内壁側に支持された銅コイルからなる複数の常電導コイル136が配置されている。
超電導モーター用コイル135は、図1〜図7に示す接続構造体A〜Gを有する酸化物超電導線材を矩形状のボビンに巻回して形成されている。
回転軸133の内部には冷却ガスを流入させるか流出させるための複数の配管が設けられ、外部に別途設けられている図示略の冷媒供給装置から容器131の内部に冷却ガスを導入し、冷却ガスにより超電導モーター用コイル135を臨界温度以下に冷却できるように構成されている。なお、超電導モーター用コイル135は臨界温度以下に冷却されるが、常電導コイル136は常温部として構成される。
"Superconducting motor"
The oxide superconducting wire connected by any of the connection structures A to G shown in FIGS. 1 to 7 can be applied to the superconducting motor 130 shown in FIG.
The superconducting motor 130 includes a cylindrical rotor 132 that is rotatably supported in a cylindrical sealed container 131.
A plurality of superconducting motor coils 135 are attached around the central portion of the rotating shaft 133, and a plurality of copper coils made of copper coils supported on the inner wall side of the container 131 around the plurality of superconducting motor coils 135. The normal conducting coil 136 is arranged.
The superconducting motor coil 135 is formed by winding an oxide superconducting wire having connection structures A to G shown in FIGS. 1 to 7 around a rectangular bobbin.
The rotating shaft 133 is provided with a plurality of pipes for allowing the cooling gas to flow in or out, and the cooling gas is introduced into the container 131 from a refrigerant supply device (not shown) separately provided outside to cool the cooling gas. The superconducting motor coil 135 can be cooled to a critical temperature or lower by gas. The superconducting motor coil 135 is cooled below the critical temperature, but the normal conducting coil 136 is configured as a normal temperature part.

図10(a)、(b)に示す超電導モーター130は、容器131の内部に冷却ガスを導入し、この冷却ガスにより超電導モーター用コイル135を臨界温度以下に冷却して使用する。常電導コイル136には別途図示略の電源から必要な電流を供給し、超電導モーター用コイル135にも別途図示略の電源から必要な電流を供給することで、両者のコイルが生成する磁場に起因した回転力により回転軸133を回転させて超電導モーター130として使用することができる。   The superconducting motor 130 shown in FIGS. 10A and 10B introduces a cooling gas into the container 131 and uses the cooling gas to cool the superconducting motor coil 135 below the critical temperature. A necessary current is supplied to the normal conducting coil 136 from a power supply (not shown) separately, and a necessary current is supplied to the superconducting motor coil 135 from a power supply (not shown) separately, resulting in a magnetic field generated by both coils. The rotating shaft 133 can be rotated by the rotational force thus used and used as the superconducting motor 130.

「超電導コイル」
図1〜図7に示す接続構造体A〜Gのいずれかにより接続された酸化物超電導線材を備えた図11(b)に示すパンケーキコイル101を構成することができる。またパンケーキコイル101を複数個積層し、それぞれのパンケーキコイル101同士を接続することにより、図11(a)に示す強力な磁力を発する超電導コイル100を形成することができる。
以上に説明したように、図1〜図7に示す接続構造A〜Gのいずれかを備えた酸化物超電導線材は、様々な超電導機器に使用可能である。
ここで、超電導機器は、前記酸化物超電導線材とそれらを接続する構造を有するものであれば特に限定されず、例えば、超電導ケーブル、超電導モーター、超電導限流器、超電導コイル、超電導変圧器、超電導電力貯蔵装置などを例示できる。
"Superconducting coil"
The pancake coil 101 shown in FIG. 11 (b) provided with the oxide superconducting wire connected by any one of the connection structures A to G shown in FIGS. 1 to 7 can be configured. Moreover, the superconducting coil 100 which emits the strong magnetic force shown to Fig.11 (a) can be formed by laminating | stacking several pancake coils 101 and connecting each pancake coil 101 mutually.
As described above, the oxide superconducting wire provided with any of the connection structures A to G shown in FIGS. 1 to 7 can be used for various superconducting devices.
Here, the superconducting device is not particularly limited as long as it has a structure connecting the oxide superconducting wires and the above, for example, a superconducting cable, a superconducting motor, a superconducting current limiter, a superconducting coil, a superconducting transformer, a superconducting device. An electric power storage device etc. can be illustrated.

以下、本発明の内容を、実施例を挙げてより具体的に説明するが、本発明は下記の実施例に限定されるものではない。
ハステロイ(商品名ハステロイC−276、米国ヘインズ社製)からなる幅10mm、厚さ100μmのテープ状の基材を複数用意し、表面を研磨した。
次に、以下の形成条件により、複数の基材の一面上に、拡散防止層、ベッド層、配向層およびキャップ層をこの順に積層した。各成膜の際には、成膜装置の内部にテープ状の基材を搬送する送り出しリールと巻き取りリールを設け、基材を所定の速度で移動させつつ基材上に順次成膜する処理を行った。
まず、イオンビームスパッタ法により、テープ状の基材の上にAlからなる膜厚100nmの拡散防止層を形成し、次に、イオンビームスパッタ法により、拡散防止層の上にYからなる膜厚20nmのベッド層を形成した。次に、IBAD法により、ベッド層の上にMgOからなる膜厚10nmの配向層を形成した。
Hereinafter, the content of the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples.
A plurality of tape-shaped substrates having a width of 10 mm and a thickness of 100 μm made of Hastelloy (trade name Hastelloy C-276, manufactured by Haynes, USA) were prepared, and the surface was polished.
Next, a diffusion prevention layer, a bed layer, an alignment layer, and a cap layer were laminated in this order on one surface of a plurality of substrates under the following formation conditions. When each film is formed, a feed reel and a take-up reel that transport the tape-shaped substrate are provided inside the film forming apparatus, and the film is sequentially formed on the substrate while moving the substrate at a predetermined speed. Went.
First, a 100 nm-thick diffusion prevention layer made of Al 2 O 3 is formed on a tape-like substrate by ion beam sputtering, and then Y 2 is formed on the diffusion prevention layer by ion beam sputtering. A bed layer made of O 3 and having a thickness of 20 nm was formed. Next, an alignment layer having a thickness of 10 nm made of MgO was formed on the bed layer by IBAD.

配向層を形成後、PLD法によりCeOからなる膜厚400nmのキャップ層を形成し、GdBaCu7−xなる組成の酸化物超電導層(厚さ2μm)を形成し、更に厚さ2μmのAgの保護層をスパッタ法により成膜し、積層体を得た。この積層体を500℃で10時間酸素雰囲気中において酸素アニール処理し、酸化物超電導積層体を得た。
次に、幅10mm、厚さ0.1mmのCuからなる金属テープであって、片面に厚さ2μmのSnメッキを施した金属テープを保護層上に接合し、保護層をSnの導電性接合材を介し金属安定化層で覆った構造の酸化物超電導線材を得た。
上述の工程で得た酸化物超電導導体を2本用意し、各超電導線材の端部を各端部の長さ方向に対し斜め方向にレーザー装置で切断し、各超電導線材の端部に傾斜継手部を形成した。1本の酸化物超電導線材の端部の傾斜継手部の傾斜端面と他の1本の酸化物超電導線材端部の傾斜継手部の傾斜端面は互い違いの方向に形成し、両者を図3に示す接続構造体のように接合できる形状とした。
After forming the alignment layer, a 400 nm-thick cap layer made of CeO 2 is formed by the PLD method, and an oxide superconducting layer (thickness 2 μm) having a composition of GdBa 2 Cu 3 O 7-x is formed. A protective layer of 2 μm Ag was formed by sputtering to obtain a laminate. This laminated body was subjected to oxygen annealing treatment in an oxygen atmosphere at 500 ° C. for 10 hours to obtain an oxide superconducting laminated body.
Next, a metal tape made of Cu having a width of 10 mm and a thickness of 0.1 mm, a metal tape having a Sn plating of 2 μm in thickness on one side is bonded onto the protective layer, and the protective layer is Sn conductively bonded An oxide superconducting wire having a structure covered with a metal stabilizing layer was obtained.
Two oxide superconducting conductors obtained in the above process are prepared, and the end of each superconducting wire is cut with a laser device in an oblique direction with respect to the length direction of each end, and an inclined joint is attached to the end of each superconducting wire. Part was formed. The inclined end surface of the inclined joint portion at the end of one oxide superconducting wire and the inclined end surface of the inclined joint portion at the other end of the oxide superconducting wire are formed in alternate directions, both of which are shown in FIG. The shape is such that it can be joined like a connection structure.

また、レーザー装置で酸化物超電導線材の端部を切断する際、切断角度を変えることにより、図3に示す突き合わせ長さを0mm、10mm、50mm、100mm、300mmに変更して試料を作製した。なお、突き合わせ長さ0mmの場合が図1の構造に相当する。よって、表において突き合わせ長さL=10mmの場合、接続面の長さは21/2×10mmとなる。
切断後の酸化物超電導線材どうしをSn:Pb=60:40の割合のSn合金半田を用いて突き合わせ接合し、接続構造体試料とした。
Further, when the end portion of the oxide superconducting wire was cut with a laser device, the butt length shown in FIG. 3 was changed to 0 mm, 10 mm, 50 mm, 100 mm, and 300 mm by changing the cutting angle to prepare a sample. The case where the butt length is 0 mm corresponds to the structure of FIG. Therefore, when the butt length L = 10 mm in the table, the length of the connection surface is 2 1/2 × 10 mm.
The oxide superconducting wires after cutting were butt-joined using Sn alloy solder in a ratio of Sn: Pb = 60: 40 to obtain a connection structure sample.

各接続構造体を有する酸化物超電導線材を液体窒素で77Kに冷却し、酸化物超電導線材に通電した場合の接続抵抗値を測定した。その結果を図12に示す。   The oxide superconducting wire having each connection structure was cooled to 77K with liquid nitrogen, and the connection resistance value was measured when the oxide superconducting wire was energized. The result is shown in FIG.

図12に示す測定結果から、接続抵抗は大凡接続長Lの値に反比例することが分かり、接続長Lを調整することで任意の抵抗値を得られることが分かる。
接続面積は大きい方が接続抵抗が小さくなるため、接続面積は大きい方が望ましい。接続長Lを過度に大きくすることなく接触面積を可能な限り大きくできる構造として、図5〜図7に示す構造を適用することが好ましい。
前記試料とは別に、上述の酸化物超電導線材を用いて同等のSn半田を用い、接続長L=25mmの接続構造体試料を作製し、その破断強度を測定したところ、20kgfを超える値を示したので、接続構造体として十分な破断強度を示した。なお、この程度の破断強度を有するのであれば超電導ケーブルの接続や小型の超電導マグネット用の超電導線材の接続に適用できる。
From the measurement results shown in FIG. 12, it can be seen that the connection resistance is approximately inversely proportional to the value of the connection length L, and that an arbitrary resistance value can be obtained by adjusting the connection length L.
The larger the connection area, the smaller the connection resistance. Therefore, the larger connection area is desirable. The structure shown in FIGS. 5 to 7 is preferably applied as a structure that can increase the contact area as much as possible without excessively increasing the connection length L.
Separately from the above sample, a connection structure sample having a connection length L = 25 mm was prepared using equivalent Sn solder using the above-described oxide superconducting wire, and its breaking strength was measured. As a result, a value exceeding 20 kgf was shown. Therefore, it showed a sufficient breaking strength as a connection structure. In addition, if it has such a breaking strength, it can be applied to the connection of a superconducting cable or a superconducting wire for a small superconducting magnet.

A、B、C、D、E、F、G…接続構造体、1、3、4、6,8、16、18…酸化物超電導線材、1a、3a…端面、4A、6A…傾斜継手部、4a、6a…傾斜端面、2、5、7、9、17、19…導電性接合材、8A、16A、18A…鍵型継手部、10…基材、11…中間層、12…酸化物超電導層、13…保護層、14、14A、14C、14D…金属安定化層、15…超電導積層体、80…超電導ケーブル(超電導機器)、99…超電導限流器(超電導機器)、130…超電導モーター(超電導機器)、100…超電導コイル(超電導機器)。   A, B, C, D, E, F, G ... Connection structure 1, 3, 4, 6, 8, 16, 18 ... Oxide superconducting wire, 1a, 3a ... End face, 4A, 6A ... Inclined joint 4a, 6a ... Inclined end face 2, 5, 7, 9, 17, 19 ... Conductive bonding material, 8A, 16A, 18A ... Key joint, 10 ... Base material, 11 ... Intermediate layer, 12 ... Oxide Superconducting layer, 13 ... protective layer, 14, 14A, 14C, 14D ... metal stabilization layer, 15 ... superconducting laminate, 80 ... superconducting cable (superconducting equipment), 99 ... superconducting current limiter (superconducting equipment), 130 ... superconducting Motor (superconducting equipment), 100 ... superconducting coil (superconducting equipment).

Claims (5)

テープ状の基材と、該基材の上方に形成された中間層、酸化物超電導層、保護層、金属安定化層を有してなる超電導線材どうしの接続構造であり、前記超電導線材の接続するべき端部どうしについて、それら接続端部の端面どうしが導電性接合材を介し突き合わせ接合されたことを特徴とする酸化物超電導線材の接続構造体。   A connection structure between a superconducting wire having a tape-like base material and an intermediate layer formed above the base material, an oxide superconducting layer, a protective layer, and a metal stabilizing layer, and connecting the superconducting wire A connection structure of oxide superconducting wires, characterized in that the end surfaces of the connection end portions are butt-joined with each other via conductive bonding materials. 前記超電導線材の接続端部の端面が該超電導線材の長さ方向に直交する端面からなることを特徴とする請求項1に記載の酸化物超電導線材の接続構造体。   2. The connection structure for an oxide superconducting wire according to claim 1, wherein an end surface of a connecting end portion of the superconducting wire is an end surface orthogonal to a length direction of the superconducting wire. 前記超電導線材の接続端部に該接続端部の幅をその基端側から先端側にかけて徐々に少なくする傾斜継手部が形成され、一方の超電導線材の傾斜継手部の傾斜端面と他方の超電導線材の傾斜継手部の傾斜端面どうしが導電性接合材を介し突き合わせ接合されたことを特徴とする請求項1に記載の酸化物超電導線材の接続構造体。   An inclined joint portion is formed in the connecting end portion of the superconducting wire so that the width of the connecting end portion gradually decreases from the base end side to the tip end side, and the inclined end surface of the inclined joint portion of one superconducting wire and the other superconducting wire material. The connecting structure for an oxide superconducting wire according to claim 1, wherein the inclined end surfaces of the inclined joint portion are butt-joined via a conductive bonding material. 前記超電導線材の接続端部に該接続端部の幅を該接続端部の長さ方向に部分的に少なくする部分を設けた鍵型継手部が形成され、一方の超電導線材の鍵型継手部の側面と他方の超電導線材の鍵型継手部の側面どうしが導電性接合材を介し突き合わせ接合されたことを特徴とする請求項1に記載の酸化物超電導線材の接続構造体。   A key-type joint portion provided with a portion for partially reducing the width of the connection end portion in the length direction of the connection end portion is formed at the connection end portion of the superconducting wire, and the key-type joint portion of one superconducting wire 2. The oxide superconducting wire connecting structure according to claim 1, wherein the side surface of the first superconducting wire and the side surface of the key joint portion of the other superconducting wire are butt-joined via a conductive bonding material. 請求項1〜4のいずれか一項に記載された酸化物超電導線材の接続構造体を備えた超電導機器。   The superconducting apparatus provided with the connection structure of the oxide superconducting wire as described in any one of Claims 1-4.
JP2013022406A 2013-02-07 2013-02-07 Connection structure of oxide superconductive wire rod and superconductive apparatus Pending JP2014154320A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013022406A JP2014154320A (en) 2013-02-07 2013-02-07 Connection structure of oxide superconductive wire rod and superconductive apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013022406A JP2014154320A (en) 2013-02-07 2013-02-07 Connection structure of oxide superconductive wire rod and superconductive apparatus

Publications (1)

Publication Number Publication Date
JP2014154320A true JP2014154320A (en) 2014-08-25

Family

ID=51576005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013022406A Pending JP2014154320A (en) 2013-02-07 2013-02-07 Connection structure of oxide superconductive wire rod and superconductive apparatus

Country Status (1)

Country Link
JP (1) JP2014154320A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160034795A (en) * 2014-09-22 2016-03-30 엘에스전선 주식회사 Superconducting cable
DE102015219956A1 (en) * 2015-10-14 2017-04-20 Bruker Hts Gmbh Superconductor structure for connecting strip conductors, in particular with a wavy or serrated seam
CN107077928A (en) * 2014-11-11 2017-08-18 Ls电线有限公司 Hyperconductive cable
KR102580374B1 (en) * 2022-05-26 2023-09-18 한국핵융합에너지연구원 Hybrid joint assembly of low temperature superconducting conduit conductor and high temperature superconducting conduit conductor, hybrid joint method low temperature superconducting conduit conductor and high temperature superconducting conduit conductor, and extension method of low temperature superconducting conduit conductor and high temperature superconducting conduit conductor therefor

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9959955B2 (en) 2014-09-22 2018-05-01 Ls Cable & System Ltd. Superconducting cable
WO2016047909A1 (en) * 2014-09-22 2016-03-31 엘에스전선 주식회사 Superconducting cable
CN106716558A (en) * 2014-09-22 2017-05-24 Ls电线有限公司 Superconducting cable
JP2017527974A (en) * 2014-09-22 2017-09-21 エルエス ケーブル アンド システム リミテッド. Superconducting cable
KR20160034795A (en) * 2014-09-22 2016-03-30 엘에스전선 주식회사 Superconducting cable
CN106716558B (en) * 2014-09-22 2019-03-01 Ls电线有限公司 Hyperconductive cable
KR102340762B1 (en) * 2014-09-22 2021-12-17 엘에스전선 주식회사 Superconducting cable
CN107077928A (en) * 2014-11-11 2017-08-18 Ls电线有限公司 Hyperconductive cable
CN107077928B (en) * 2014-11-11 2019-04-23 Ls电线有限公司 Hyperconductive cable
DE102015219956A1 (en) * 2015-10-14 2017-04-20 Bruker Hts Gmbh Superconductor structure for connecting strip conductors, in particular with a wavy or serrated seam
EP3157070B1 (en) * 2015-10-14 2018-08-01 Bruker HTS GmbH Superconductor structure for connecting belt conductors, in particular with a corrugated or serrated seam
US10418154B2 (en) 2015-10-14 2019-09-17 Bruker Hts Gmbh Superconducting structure for connecting tape conductors, in particular having a corrugated or serrated seam
KR102580374B1 (en) * 2022-05-26 2023-09-18 한국핵융합에너지연구원 Hybrid joint assembly of low temperature superconducting conduit conductor and high temperature superconducting conduit conductor, hybrid joint method low temperature superconducting conduit conductor and high temperature superconducting conduit conductor, and extension method of low temperature superconducting conduit conductor and high temperature superconducting conduit conductor therefor

Similar Documents

Publication Publication Date Title
JP5695803B2 (en) Oxide superconducting wire, its connection structure, and superconducting equipment
US9418776B2 (en) Oxide superconductor wire and superconducting coil
JP5568361B2 (en) Superconducting wire electrode joint structure, superconducting wire, and superconducting coil
JP2014154320A (en) Connection structure of oxide superconductive wire rod and superconductive apparatus
JP6101490B2 (en) Oxide superconducting wire connection structure and superconducting equipment
JP6101491B2 (en) Oxide superconducting wire and method for producing the same
JP2012256744A (en) Superconductive coil
JP6329736B2 (en) Laminated pancake type superconducting coil and superconducting equipment provided with the same
JP5775785B2 (en) Oxide superconducting wire and method for producing the same
JP6086852B2 (en) Oxide superconducting wire, connecting structure of oxide superconducting wire, connecting structure of oxide superconducting wire and electrode terminal, superconducting device including the same, and manufacturing method thereof
JP5693798B2 (en) Oxide superconducting wire
JP2013247011A (en) Oxide superconducting wire, and method of manufacturing the same
JP5887085B2 (en) Superconducting coil and manufacturing method thereof
JP5701247B2 (en) Oxide superconducting wire connection structure and connection method
JP2014130730A (en) Connection structure and connection method of oxide superconductive wire material, and oxide superconductive wire material using the connection structure
JP6069269B2 (en) Oxide superconducting wire, superconducting equipment, and oxide superconducting wire manufacturing method
JP6002602B2 (en) Oxide superconducting wire connection structure and manufacturing method thereof
WO2014104333A1 (en) Connection structure of oxide superconducting wires, method for producing same, and superconducting device
JP2014130793A (en) Connection structure of oxide superconductive wire material and its manufacturing method
JP6707164B1 (en) Superconducting wire connection structure and superconducting wire
JP2017091808A (en) Method for producing oxide superconducting wire rod and method for producing superconducting coil
JP2014110144A (en) Connection structure of oxide superconductive conductor and superconductive apparatus provided therewith
JP6031494B2 (en) Superconducting wire and superconducting coil using the same
JP2012209189A (en) Oxide superconducting wire material and method for manufacturing the same
JP2013187103A (en) Oxide superconducting wire and manufacturing method therefor