JP2017091808A - Method for producing oxide superconducting wire rod and method for producing superconducting coil - Google Patents

Method for producing oxide superconducting wire rod and method for producing superconducting coil Download PDF

Info

Publication number
JP2017091808A
JP2017091808A JP2015220566A JP2015220566A JP2017091808A JP 2017091808 A JP2017091808 A JP 2017091808A JP 2015220566 A JP2015220566 A JP 2015220566A JP 2015220566 A JP2015220566 A JP 2015220566A JP 2017091808 A JP2017091808 A JP 2017091808A
Authority
JP
Japan
Prior art keywords
bonding material
layer
material layer
superconducting
oxide superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015220566A
Other languages
Japanese (ja)
Inventor
俊男 毛利
Toshio Mori
俊男 毛利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2015220566A priority Critical patent/JP2017091808A/en
Publication of JP2017091808A publication Critical patent/JP2017091808A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a superconducting wire rod capable of suppressing the defect of joining in a stabilization material, and a method for producing a superconducting coil.SOLUTION: A superconducting laminated body 15 with a constitution where an intermediate layer 12, an oxide superconducting layer 13 and a protective layer 14 are laminated in this order on either face of a tape-like base material 11 is prepared, the first joining material layer 16 is formed so as to cover at least a part of the outer face of the superconducting laminated layer 15, the superconducting laminated body 15 formed with the first joining material layer 16 is covered with a stabilization material 18 formed with the second joining layer 17 in such a manner that the second joining material layer 17 faces the first joining material layer 16, thereafter, heating is performed to a temperature at which the first joining material layer 16 and the second joining material layer 17 are melted, and the superconducting laminated body 15 and the stabilization material 18 are joined via the first joining material layer 16 and the second joining material layer 17.SELECTED DRAWING: Figure 1

Description

本発明は、酸化物超電導線材の製造方法及び超電導コイルの製造方法に関する。   The present invention relates to a method for manufacturing an oxide superconducting wire and a method for manufacturing a superconducting coil.

近年、一般式BiSrCaCu8+δ(Bi2212)またはBiSrCaCu10+δ(Bi2223)で表されるBi系超電導体、あるいは、一般式REBaCu7−X(RE123)で表される希土類系超電導体を用いた超電導線材の開発が進められている。なお、希土類元素REがYの場合に限らず、希土類系は、しばしばY系と呼ばれている。 In recent years, a Bi-based superconductor represented by the general formula Bi 2 Sr 2 CaCu 2 O 8 + δ (Bi2212) or Bi 2 Sr 2 Ca 2 Cu 3 O 10 + δ (Bi2223), or the general formula REBa 2 Cu 3 O 7-X Development of a superconducting wire using a rare earth-based superconductor represented by (RE123) is underway. In addition, the rare earth element RE is not limited to Y, but the rare earth element is often called a Y element.

希土類系の超電導線材の構成の一つとして、金属テープ等からなる基材上に中間層を介して酸化物超電導層を積層した後、酸化物超電導層を保護するAg等の保護層を形成し、さらに、Cu等の安定化材を形成した構造が知られている(例えば、特許文献1参照)。安定化材は、酸化物超電導層が何らかの原因で超電導状態から常電導状態に転移した際(クエンチ時)に発生する過電流をバイパスするための電流経路(パス)として設けられている。Ni合金等の強度が高い材料からなるテープ状の基材を用いた場合、長手方向に高い引張強度を有する。   As one of the structures of rare earth-based superconducting wires, an oxide superconducting layer is laminated on a base material made of metal tape or the like through an intermediate layer, and then a protective layer such as Ag for protecting the oxide superconducting layer is formed. Furthermore, a structure in which a stabilizing material such as Cu is formed is known (for example, see Patent Document 1). The stabilizing material is provided as a current path (path) for bypassing an overcurrent generated when the oxide superconducting layer transitions from the superconducting state to the normal conducting state for some reason (when quenching). When a tape-shaped substrate made of a material having high strength such as Ni alloy is used, it has high tensile strength in the longitudinal direction.

特許第5753589号公報Japanese Patent No. 5755589

酸化物超電導層を含む積層体の周囲に安定化材を半田付け等により接合する際、接合不良が起こるおそれがある。接合不良が起こると、特性の劣化や、歩留りの低下のおそれがあるため、改善が望まれる。   When the stabilizer is joined to the periphery of the laminate including the oxide superconducting layer by soldering or the like, there is a risk of poor joining. If a bonding failure occurs, there is a risk of deterioration of characteristics and a decrease in yield, so improvement is desired.

本発明は、上記事情に鑑みてなされたものであり、安定化材の接合不良を抑制することが可能な酸化物超電導線材の製造方法及び超電導コイルの製造方法を提供することを課題とする。   This invention is made | formed in view of the said situation, and makes it a subject to provide the manufacturing method of the oxide superconducting wire which can suppress the joining defect of a stabilizer, and the manufacturing method of a superconducting coil.

前記課題を解決するため、本発明は、テープ状の基材の一方の面上に、中間層と酸化物超電導層と保護層がこの順に積層された構成の超電導積層体を準備する工程と、前記超電導積層体の外面の少なくとも一部とを覆うように、第1の接合材層を形成する工程と、安定化材の面上に、第2の接合材層を形成する工程と、前記第2の接合材層が前記第1の接合材層と対向し、かつ、前記安定化材が、前記超電導積層体の外面の少なくとも一部とを覆うように、前記第2の接合材層が形成された安定化材を、前記第1の接合材層が形成された超電導積層体に被せる工程と、前記第1の接合材層および前記第2の接合材層が溶融状態となる温度に加熱して、前記第1の接合材層および前記第2の接合材層を介して、前記超電導積層体と前記安定化材とを接合する工程と、を有することを特徴とする酸化物超電導線材の製造方法を提供する。   In order to solve the above problems, the present invention provides a step of preparing a superconducting laminate having a configuration in which an intermediate layer, an oxide superconducting layer, and a protective layer are laminated in this order on one surface of a tape-shaped substrate; A step of forming a first bonding material layer so as to cover at least a part of the outer surface of the superconducting laminate, a step of forming a second bonding material layer on the surface of the stabilizing material, The second bonding material layer is formed so that two bonding material layers face the first bonding material layer and the stabilizing material covers at least a part of the outer surface of the superconducting laminate. A step of placing the stabilized material on the superconducting laminate on which the first bonding material layer is formed, and heating to a temperature at which the first bonding material layer and the second bonding material layer are in a molten state. And the superconducting laminate and the stabilizing material through the first bonding material layer and the second bonding material layer. To have, and bonding the provide a method of manufacturing an oxide superconducting wire according to claim.

前記基材裏面側の幅方向の両端部を覆うように前記第1の接合材層を形成し、前記安定化材が、前記基材裏面側の幅方向の両端部を覆うように、前記第2の接合材層が形成された安定化材を、前記第1の接合材層が形成された超電導積層体に被せることも可能である。
前記基材裏面において、前記基材裏面と前記安定化材の幅方向における両端部との間に形成される凹部を、第3の接合材層により覆う工程を有することも可能である。
The first bonding material layer is formed so as to cover both end portions in the width direction on the substrate back surface side, and the stabilizing material covers the both end portions in the width direction on the substrate back surface side. It is also possible to cover the stabilizing material on which the two bonding material layers are formed on the superconducting laminate on which the first bonding material layer is formed.
In the back surface of the base material, it is also possible to include a step of covering a recess formed between the back surface of the base material and both end portions in the width direction of the stabilizing material with a third bonding material layer.

前記第1の接合材層と前記第2の接合材層とが、同種の金属を少なくとも1種含むことも可能である。
前記第1の接合材層および前記第2の接合材層は、亜鉛、インジウム、ガリウム、スズ、ビスマス、鉛を少なくとも1種含むことも可能である。
前記超電導積層体に対して、前記第1の接合材層を、接合材のスパッタ、接合材のめっき、溶融した接合材から選択される1または2以上により形成することも可能である。
The first bonding material layer and the second bonding material layer may contain at least one kind of metal.
The first bonding material layer and the second bonding material layer may include at least one kind of zinc, indium, gallium, tin, bismuth, and lead.
It is also possible to form the first bonding material layer on the superconducting laminate by one or more selected from sputtering of bonding material, plating of bonding material, and molten bonding material.

また、本発明は、前記酸化物超電導線材の製造方法により酸化物超電導線材を製造する工程と、前記酸化物超電導線材を使用して超電導コイルを製造する工程を有することを特徴とする超電導コイルの製造方法を提供する。   The present invention further includes a step of manufacturing an oxide superconducting wire by the method of manufacturing the oxide superconducting wire, and a step of manufacturing a superconducting coil using the oxide superconducting wire. A manufacturing method is provided.

本発明は、第1の接合材層および第2の接合材層を介して、超電導積層体と前記安定化材とを接合することにより、超電導積層体に対する安定化材の接合不良を抑制することができる。   The present invention suppresses bonding failure of the stabilizing material to the superconducting laminate by joining the superconducting laminate and the stabilizing material via the first joining material layer and the second joining material layer. Can do.

超電導線材の一例を示す断面図である。It is sectional drawing which shows an example of a superconducting wire. 接合材層を形成した超電導積層体の一例を示す断面図である。It is sectional drawing which shows an example of the superconducting laminated body in which the joining material layer was formed. 接合材層を形成した安定化材の一例を示す断面図である。It is sectional drawing which shows an example of the stabilizer which formed the bonding material layer.

以下、好適な実施形態に基づき、図面を参照して本発明を説明する。   Hereinafter, based on a preferred embodiment, the present invention will be described with reference to the drawings.

図1に、本実施形態の超電導線材の一例の断面図を示す。この断面図は、超電導線材の長手方向に垂直な断面の構造を模式的に示している。超電導線材10は、超電導積層体15と、超電導積層体の周囲に設けられた安定化材18と、超電導積層体15と安定化材18とを接合する接合材層16,17とを含む。   In FIG. 1, sectional drawing of an example of the superconducting wire of this embodiment is shown. This sectional view schematically shows the structure of a cross section perpendicular to the longitudinal direction of the superconducting wire. Superconducting wire 10 includes a superconducting laminate 15, a stabilizing material 18 provided around the superconducting laminate, and bonding material layers 16 and 17 that join the superconducting laminate 15 and the stabilizing material 18.

図2に、超電導積層体15の一例の断面図を示す。超電導積層体15は、テープ状の基材11と、基材11の一方の面11a上に、中間層12と酸化物超電導層13と保護層14がこの順に積層された構成を有する。基材11、中間層12、酸化物超電導層13、保護層14等の各層が積層される方向が厚さ方向である。幅方向は、長手方向及び厚さ方向に垂直な方向である。   FIG. 2 shows a cross-sectional view of an example of the superconducting laminate 15. The superconducting laminate 15 has a configuration in which an intermediate layer 12, an oxide superconducting layer 13, and a protective layer 14 are laminated in this order on a tape-like substrate 11 and one surface 11a of the substrate 11. The direction in which the layers such as the substrate 11, the intermediate layer 12, the oxide superconducting layer 13, and the protective layer 14 are laminated is the thickness direction. The width direction is a direction perpendicular to the longitudinal direction and the thickness direction.

基材11は、テープ状の金属基材であり、厚さ方向の両側に、それぞれ主面(一方の面11a及びこれに対向する裏面11b)を有する。基材11を構成する金属の具体例として、ハステロイ(登録商標)に代表されるニッケル合金、ステンレス鋼、ニッケル合金に集合組織を導入した配向Ni−W合金などが挙げられる。基材11の厚さは、目的に応じて適宜調整すれば良く、例えば10〜500μmの範囲である。基材11の裏面11b、側面11c、またはその両方には、接合性を改善するため、Ag,Cu等の金属薄膜をスパッタ等により形成してもよい。   The base material 11 is a tape-shaped metal base material, and has main surfaces (one surface 11a and a back surface 11b opposite to the surface) on both sides in the thickness direction. Specific examples of the metal constituting the substrate 11 include nickel alloys typified by Hastelloy (registered trademark), stainless steel, and oriented Ni—W alloys in which a texture is introduced into the nickel alloy. What is necessary is just to adjust the thickness of the base material 11 suitably according to the objective, for example, it is the range of 10-500 micrometers. A metal thin film such as Ag or Cu may be formed on the back surface 11b, the side surface 11c, or both of the base material 11 by sputtering or the like in order to improve the bondability.

中間層12は、基材11と酸化物超電導層13との間に設けられる。中間層12は、多層構成でもよく、例えば基材11側から酸化物超電導層13側に向かう順で、拡散防止層、ベッド層、配向層、キャップ層等を有してもよい。これらの層は必ずしも1層ずつ設けられるとは限らず、一部の層を省略する場合や、同種の層を2以上繰り返し積層する場合もある。   The intermediate layer 12 is provided between the base material 11 and the oxide superconducting layer 13. The intermediate layer 12 may have a multilayer structure, and may include, for example, a diffusion prevention layer, a bed layer, an alignment layer, a cap layer, and the like in the order from the substrate 11 side to the oxide superconducting layer 13 side. These layers are not necessarily provided one by one, and some layers may be omitted, or two or more of the same kind of layers may be laminated repeatedly.

拡散防止層は、基材11の成分の一部が拡散し、不純物として酸化物超電導層13側に混入することを抑制する機能を有する。拡散防止層は、例えば、Si、Al、GZO(GdZr)等から構成される。拡散防止層の厚さは、例えば10〜400nmである。 The diffusion preventing layer has a function of suppressing a part of the components of the base material 11 from diffusing and mixing as impurities into the oxide superconducting layer 13 side. The diffusion preventing layer is made of, for example, Si 3 N 4 , Al 2 O 3 , GZO (Gd 2 Zr 2 O 7 ) or the like. The thickness of the diffusion preventing layer is, for example, 10 to 400 nm.

ベッド層は、基材11と酸化物超電導層13との界面における反応を低減し、ベッド層の上に形成される層の配向性を向上するために用いられる。ベッド層の材質としては、例えばY、Er、CeO、Dy、Eu、Ho、La等が挙げられる。ベッド層の厚さは、例えば10〜100nmである。 The bed layer is used to reduce the reaction at the interface between the substrate 11 and the oxide superconducting layer 13 and to improve the orientation of the layer formed on the bed layer. Examples of the material of the bed layer include Y 2 O 3 , Er 2 O 3 , CeO 2 , Dy 2 O 3 , Eu 2 O 3 , Ho 2 O 3 , and La 2 O 3 . The thickness of the bed layer is, for example, 10 to 100 nm.

配向層は、その上のキャップ層の結晶配向性を制御するために2軸配向する物質から形成される。配向層の材質としては、例えば、GdZr、MgO、ZrO−Y(YSZ)、SrTiO、CeO、Y、Al、Gd、Zr、Ho、Nd等の金属酸化物を例示することができる。この配向層はIBAD(Ion-Beam-Assisted Deposition)法で形成することが好ましい。 The orientation layer is formed from a biaxially oriented material in order to control the crystal orientation of the cap layer thereon. Examples of the material of the alignment layer include Gd 2 Zr 2 O 7 , MgO, ZrO 2 —Y 2 O 3 (YSZ), SrTiO 3 , CeO 2 , Y 2 O 3 , Al 2 O 3 , Gd 2 O 3 , Examples thereof include metal oxides such as Zr 2 O 3 , Ho 2 O 3 , and Nd 2 O 3 . This alignment layer is preferably formed by an IBAD (Ion-Beam-Assisted Deposition) method.

キャップ層は、上述の配向層の表面に成膜されて、結晶粒が面内方向に自己配向し得る材料からなる。キャップ層の材質としては、例えば、CeO、Y、Al、Gd、ZrO、YSZ、Ho、Nd、LaMnO等が挙げられる。キャップ層の厚さは、50〜5000nmの範囲が挙げられる。 The cap layer is formed on the surface of the above-described alignment layer, and is made of a material that allows crystal grains to self-align in the in-plane direction. The material of the cap layer, for example, CeO 2, Y 2 O 3 , Al 2 O 3, Gd 2 O 3, ZrO 2, YSZ, Ho 2 O 3, Nd 2 O 3, LaMnO 3 , and the like. Examples of the thickness of the cap layer include a range of 50 to 5000 nm.

酸化物超電導層13は、酸化物超電導体から構成される。酸化物超電導体としては、特に限定されないが、例えば一般式REBaCu7−X(RE123)で表される希土類系酸化物超電導体が挙げられる。希土類元素REとしては、Sc、Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Luのうちの1種又は2種以上が挙げられる。中でも、Y、Gd、Eu、Smの1種か、又はこれら元素の2種以上の組み合わせが好ましい。超電導層の厚さは、例えば0.5〜5μm程度である。この厚さは、長手方向に均一であることが好ましい。酸素欠損量は、例えば0.0〜0.5程度である。 The oxide superconducting layer 13 is composed of an oxide superconductor. The oxide superconductor is not particularly limited, for example, the general formula REBa 2 Cu 3 O 7-X (RE123) with rare earth-based oxide superconductor represented the like. Examples of the rare earth element RE include one or more of Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu. It is done. Among these, one of Y, Gd, Eu, and Sm, or a combination of two or more of these elements is preferable. The thickness of the superconducting layer is, for example, about 0.5 to 5 μm. This thickness is preferably uniform in the longitudinal direction. The oxygen deficiency X is, for example, about 0.0 to 0.5.

保護層14は、事故時に発生する過電流をバイパスしたり、酸化物超電導層13と保護層14の上に設けられる層との間で起こる化学反応を抑制したりする等の機能を有する。保護層14の材質としては、例えば銀(Ag)、銅(Cu)、金(Au)、金と銀との合金、その他の銀合金、銅合金、金合金などが挙げられる。保護層14は、少なくとも図2に示すように酸化物超電導層13の表面(厚さ方向で、基材11側に対する反対側の面)を覆っている。さらに、保護層14が、酸化物超電導層13の側面、中間層12の側面、基材11の側面11cおよび裏面11bから選択される領域の一部または全部を覆ってもよい。   The protective layer 14 has functions such as bypassing overcurrent generated at the time of an accident and suppressing a chemical reaction occurring between the oxide superconducting layer 13 and a layer provided on the protective layer 14. Examples of the material of the protective layer 14 include silver (Ag), copper (Cu), gold (Au), an alloy of gold and silver, other silver alloys, copper alloys, and gold alloys. As shown in FIG. 2, the protective layer 14 covers at least the surface of the oxide superconducting layer 13 (the surface on the side opposite to the substrate 11 side in the thickness direction). Furthermore, the protective layer 14 may cover part or all of the region selected from the side surface of the oxide superconducting layer 13, the side surface of the intermediate layer 12, the side surface 11c and the back surface 11b of the substrate 11.

安定化材18は、図1に示すように、超電導積層体15の周囲で、基材11の一方の面11a上に積層された層の外面(例えば、酸化物超電導層13上の保護層14)側から幅方向に屈曲した断面形状を有する金属テープからなる。これにより、酸化物超電導層13の側面を安定に覆うことができるため、超電導線材10の耐水性を向上することができる。安定化材18に用いられる材料は、超電導線材10の用途により異なってもよい。例えば、超電導ケーブルや超電導モータなどに使用する場合は、常電導状態への転移時に発生する過電流を転流させるバイパスのメイン部として機能する必要があるため、良導電性の金属が好適に用いられる。良導電性の金属として、銅、銅合金、アルミニウム、アルミニウム合金等の金属が挙げられる。また、超電導限流器に使用する場合は、常電導状態への転移時に発生する過電流を瞬時に抑制する必要があるため、高抵抗金属が好適に用いられる。高抵抗金属として、例えば、Ni−Cr等のNi系合金などが挙げられる。   As shown in FIG. 1, the stabilizer 18 is formed around the superconducting laminate 15, and the outer surface of the layer laminated on the one surface 11 a of the substrate 11 (for example, the protective layer 14 on the oxide superconducting layer 13. And a metal tape having a cross-sectional shape bent in the width direction from the side. Thereby, since the side surface of the oxide superconducting layer 13 can be covered stably, the water resistance of the superconducting wire 10 can be improved. The material used for the stabilizer 18 may vary depending on the use of the superconducting wire 10. For example, when used for superconducting cables, superconducting motors, etc., it is necessary to function as the main part of the bypass that commutates the overcurrent generated at the transition to the normal conducting state. It is done. Examples of the highly conductive metal include metals such as copper, copper alloy, aluminum, and aluminum alloy. Moreover, when using for a superconducting fault current limiter, since it is necessary to instantaneously suppress the overcurrent generated at the time of transition to the normal conducting state, a high resistance metal is preferably used. Examples of the high resistance metal include Ni-based alloys such as Ni-Cr.

本実施形態の場合、安定化材18は、超電導積層体15において、基材11の一方の面11a上に積層された層の外面(図1では保護層14の表面)を覆う第1の部分18aと、超電導積層体15の両側面を覆う第2の部分18bと、基材裏面11b(またはその面上に形成された他の層の表面)の側端縁を覆う第3の部分18cとを含む。安定化材18を構成する金属テープは、第1の部分18aの幅方向の両側にそれぞれ第2の部分18b及び第3の部分18cをこの順で有することができる。第3の部分18cは、基材裏面11bの幅方向の両端部を覆うように、金属テープの両端部から構成することが好ましい。第3の部分18cは、基材11の裏面11b上において、両側端縁から幅方向の中央部に向けてさらに延在することができる。   In the case of this embodiment, the stabilizing material 18 is a first portion that covers the outer surface of the layer laminated on the one surface 11a of the substrate 11 (the surface of the protective layer 14 in FIG. 1) in the superconducting laminate 15. 18a, a second portion 18b covering both side surfaces of the superconducting laminate 15, and a third portion 18c covering the side edge of the substrate back surface 11b (or the surface of another layer formed on the surface) including. The metal tape constituting the stabilizing member 18 can have a second portion 18b and a third portion 18c in this order on both sides in the width direction of the first portion 18a. It is preferable to comprise the 3rd part 18c from the both ends of a metal tape so that the both ends of the width direction of the base material back surface 11b may be covered. The third portion 18 c can further extend from both side edges toward the center in the width direction on the back surface 11 b of the substrate 11.

安定化材18は、接合材層16,17により、超電導積層体15と接合される。例えば、安定化材18の第1の部分18aと保護層14との間、安定化材18の第2の部分18bと超電導積層体15の側面との間、安定化材18の第3の部分18cと基材裏面11bとの間に、それぞれ接合材を設けてもよい。   The stabilizing material 18 is bonded to the superconducting laminate 15 by the bonding material layers 16 and 17. For example, between the first portion 18 a of the stabilizer 18 and the protective layer 14, between the second portion 18 b of the stabilizer 18 and the side surface of the superconducting laminate 15, and the third portion of the stabilizer 18. A bonding material may be provided between 18c and the substrate back surface 11b.

接合材層16,17を構成する接合材としては、例えばSn−Pb系、Pb−Sn−Sb系、Sn−Pb−Bi系、Bi−Sn系、Sn−Cu系、Sn−Pb−Cu系、Sn−Ag系などの半田、Sn、Sn合金、In、In合金、Zn、Zn合金、Ga、Ga合金などの金属が挙げられる。接合材の融点は、例えば500℃以下、さらには300℃以下が挙げられる。   Examples of the bonding material constituting the bonding material layers 16 and 17 include Sn—Pb, Pb—Sn—Sb, Sn—Pb—Bi, Bi—Sn, Sn—Cu, and Sn—Pb—Cu. , Sn-Ag solder, metals such as Sn, Sn alloy, In, In alloy, Zn, Zn alloy, Ga, Ga alloy. The melting point of the bonding material is, for example, 500 ° C. or lower, and further 300 ° C. or lower.

基材裏面11bと安定化材18の第3の部分18cとで囲まれる部分には、第3の接合材層19を設けることができる。第3の接合材層19は、接合材層16,17の材料として例示されたのと同様な半田などの金属を供給して形成することができる。このほか、溶接部により第3の接合材層19を構成することもできる。溶接部は、溶接時に周囲の部材から拡散した材料、例えば基材11、安定化材18、接合材層16,17等の材料を含んでもよい。溶接部を形成する際、さらに外部から金属等の材料が供給されてもよい。第3の接合材層19の外面は、安定化材18の外面から突出または凹んでもよく、あるいは同一平面でもよい。   A third bonding material layer 19 can be provided in a portion surrounded by the substrate back surface 11 b and the third portion 18 c of the stabilizing material 18. The third bonding material layer 19 can be formed by supplying a metal such as solder similar to that exemplified as the material of the bonding material layers 16 and 17. In addition, the 3rd joining material layer 19 can also be comprised by a welding part. The welded portion may include materials diffused from surrounding members during welding, for example, materials such as the base material 11, the stabilizing material 18, and the bonding material layers 16 and 17. When forming the welded portion, a material such as metal may be supplied from the outside. The outer surface of the third bonding material layer 19 may protrude or dent from the outer surface of the stabilizing material 18, or may be coplanar.

図1では、基材裏面11bは、安定化材18又は接合材層16,17,19により全面が覆われているが、裏面11bの一部が露出されることもあり得る。また、図1では、接合材層16,17,19の境界を明瞭に図示しているが、各接合材が半田付け、溶接等により結合した結果、製品において各接合材層16,17,19の境界が明瞭でなくともよい。接合材層19を形成する前に、接合材層16が基材裏面11bの全面等(第3の接合材層19が形成される領域を含む範囲)を覆っていてもよい。   In FIG. 1, the entire surface of the substrate back surface 11 b is covered with the stabilizing material 18 or the bonding material layers 16, 17, and 19, but a part of the back surface 11 b may be exposed. Further, in FIG. 1, the boundaries of the bonding material layers 16, 17, and 19 are clearly illustrated. The boundary may not be clear. Before forming the bonding material layer 19, the bonding material layer 16 may cover the entire surface of the substrate back surface 11 b and the like (a range including a region where the third bonding material layer 19 is formed).

超電導積層体15の周囲に安定化材18及び接合材層16,17,19を設ける方法としては、図2に示すように、第1の接合材層16を超電導積層体15の外面に設ける工程、図3に示すように、第2の接合材層17を安定化材18の内面に設ける工程の後、超電導積層体15の周囲に安定化材18を配置する工程、超電導積層体15の外形に沿って安定化材18を折り曲げる工程(フォーミング)、超電導積層体15及び安定化材18を加熱及び加圧して接合材層16,17の一部又は全部を溶融させる工程(再溶融、リフロー)、加圧を継続しながら全体を冷却して接合材を固化させる工程を含む方法が挙げられる。超電導積層体15に第1の接合材層16を設ける工程と、安定化材18に第2の接合材層17を設ける工程の順序は任意である。   As a method of providing the stabilizer 18 and the bonding material layers 16, 17, 19 around the superconducting laminate 15, a step of providing the first bonding material layer 16 on the outer surface of the superconducting laminate 15 as shown in FIG. 2. 3, after the step of providing the second bonding material layer 17 on the inner surface of the stabilizer 18, the step of disposing the stabilizer 18 around the superconductor laminate 15, the outer shape of the superconductor laminate 15. Bending the stabilizing material 18 along (forming), and heating and pressurizing the superconducting laminate 15 and the stabilizing material 18 to melt part or all of the bonding material layers 16 and 17 (remelting, reflow). And a method including a step of solidifying the bonding material by cooling the whole while continuing the pressurization. The order of the step of providing the first bonding material layer 16 on the superconducting laminate 15 and the step of providing the second bonding material layer 17 on the stabilizing material 18 are arbitrary.

第1の接合材層16を超電導積層体15の外面に設ける工程においては、第1の接合材層16が、超電導積層体15の外面(例えば、保護層14側と両側面11c側と基材裏面11b側)の少なくとも一部とを覆うように形成することが好ましい。安定化材18を基材裏面11bの幅方向の両端部と接合するため、第1の接合材層16が基材裏面11bの幅方向の両端部を覆うように形成することが好ましい。第1の接合材層16が、超電導積層体15の外面全周を覆ってもよい。第1の接合材層16を形成する方法としては、接合材をスパッタする方法、接合材をめっきする方法(電気めっき等)、溶融した接合材を用いる方法(溶融めっき等)、これらの2以上の組み合わせ等が挙げられる。   In the step of providing the first bonding material layer 16 on the outer surface of the superconducting laminate 15, the first bonding material layer 16 is formed on the outer surface of the superconducting laminate 15 (for example, the protective layer 14 side, the side surfaces 11c side, and the base material). It is preferably formed so as to cover at least a part of the back surface 11b side). In order to join the stabilizing material 18 to both ends in the width direction of the substrate back surface 11b, it is preferable to form the first bonding material layer 16 so as to cover both ends in the width direction of the substrate back surface 11b. The first bonding material layer 16 may cover the entire outer surface of the superconducting laminate 15. As a method of forming the first bonding material layer 16, a method of sputtering a bonding material, a method of plating a bonding material (electroplating, etc.), a method of using a molten bonding material (hot plating, etc.), two or more of these And the like.

基材11の側面11cに対して、超電導積層体15の側面(例えば、中間層12、酸化物超電導層13、保護層14の端部)の位置が揃っていない場合、超電導積層体15の側面全体を第1の接合材層16で覆うことにより、超電導積層体15の側面(幅方向の両端部)が保護層14で覆われていない場合でも、第2の接合材層17との接合がより確実になるので好ましい。さらなる態様としては、超電導積層体15の全周を平滑な第1の接合材層16で覆うこと、断面の隅部(例えば、基材11および保護層14の幅方向の両端部)の上で第1の接合材層16の外面に丸みを持たせること、超電導積層体15の幅方向の中央部に比べて両端部の上では第1の接合材層16を厚くすること等も挙げられる。   When the positions of the side surfaces of the superconducting laminate 15 (for example, the end portions of the intermediate layer 12, the oxide superconducting layer 13, and the protective layer 14) are not aligned with the side surface 11c of the substrate 11, the side surfaces of the superconducting laminate 15 By covering the whole with the first bonding material layer 16, even when the side surfaces (both ends in the width direction) of the superconducting laminate 15 are not covered with the protective layer 14, the bonding with the second bonding material layer 17 can be performed. Since it becomes more reliable, it is preferable. As a further aspect, covering the entire circumference of the superconducting laminate 15 with the smooth first bonding material layer 16, on the corners of the cross section (for example, both ends in the width direction of the base material 11 and the protective layer 14). For example, the outer surface of the first bonding material layer 16 may be rounded, and the first bonding material layer 16 may be thicker on both ends than the central portion in the width direction of the superconducting laminate 15.

第2の接合材層17を安定化材18の内面に設ける工程においては、第2の接合材層17を、安定化材18の少なくとも片面に形成する。安定化材18が超電導積層体15に対向する側の面(内面)だけでなく、安定化材18の幅方向の端部または外面にも、第2の接合材層17と同様な接合材層を形成してもよい。第2の接合材層17を安定化材18の上に形成する範囲は、安定化材18の内面のうち全面または一部であり、安定化材18を超電導積層体15の上に被せたときに、第2の接合材層17が第1の接合材層16と対向する領域を含むことが好ましい。安定化材18の内面全体に、平滑または一様な第2の接合材層17を形成することも好ましい。第2の接合材層17を形成する方法としては、接合材をスパッタする方法、接合材をめっきする方法(電気めっき等)、溶融した接合材を用いる方法(溶融めっき等)、これらの2以上の組み合わせ等が挙げられる。   In the step of providing the second bonding material layer 17 on the inner surface of the stabilizing material 18, the second bonding material layer 17 is formed on at least one surface of the stabilizing material 18. The same bonding material layer as the second bonding material layer 17 is provided not only on the surface (inner surface) on the side where the stabilizing material 18 faces the superconducting laminate 15 but also on the end or outer surface in the width direction of the stabilizing material 18. May be formed. The range in which the second bonding material layer 17 is formed on the stabilizing material 18 is the entire surface or a part of the inner surface of the stabilizing material 18, and the stabilizing material 18 is covered on the superconducting laminate 15. Further, it is preferable that the second bonding material layer 17 includes a region facing the first bonding material layer 16. It is also preferable to form a smooth or uniform second bonding material layer 17 on the entire inner surface of the stabilizing material 18. As a method of forming the second bonding material layer 17, a method of sputtering a bonding material, a method of plating a bonding material (electroplating, etc.), a method of using a molten bonding material (hot plating, etc.), two or more of these And the like.

接合時には、超電導積層体15の外面に設けた第1の接合材層16と、安定化材18の内面に設けた第2の接合材層17とを互いに接触させた後に、第1の接合材層16および第2の接合材層17が溶融状態となる温度に加熱する。第1の接合材層16および第2の接合材層17を介して、超電導積層体15と安定化材18とを接合することにより、幅方向に屈曲した断面形状を有する安定化材18の接合不良を抑制することができる。   At the time of bonding, the first bonding material layer 16 provided on the outer surface of the superconducting laminate 15 and the second bonding material layer 17 provided on the inner surface of the stabilizing material 18 are brought into contact with each other, and then the first bonding material. The layer 16 and the second bonding material layer 17 are heated to a temperature at which they are in a molten state. By joining the superconducting laminate 15 and the stabilizing material 18 via the first joining material layer 16 and the second joining material layer 17, the stabilizing material 18 having a cross-sectional shape bent in the width direction is joined. Defects can be suppressed.

第1の接合材層16と第2の接合材層17とが、平滑面同士で接触すると、超電導積層体15と安定化材18との隙間が生じにくくなるので好ましい。あるいは、断面の隅部または側面上で接合材層を厚くすると、酸化物超電導層13と安定化材18との間に接合材が密着し、クエンチなどの際に酸化物超電導層13から安定化材18への通電がより確実となる。接合時に、接合材層16,17の表面の酸化膜の除去が好ましい。酸化膜の除去方法としては、フラックスの使用、プラズマ洗浄などを行うことが望ましい。   It is preferable that the first bonding material layer 16 and the second bonding material layer 17 are in contact with each other at a smooth surface because a gap between the superconducting laminate 15 and the stabilizing material 18 is less likely to occur. Alternatively, when the bonding material layer is thickened on the corner or side surface of the cross section, the bonding material adheres between the oxide superconducting layer 13 and the stabilizing material 18, and is stabilized from the oxide superconducting layer 13 during a quench or the like. Energization of the material 18 is more reliable. At the time of bonding, it is preferable to remove the oxide film on the surface of the bonding material layers 16 and 17. As a method for removing the oxide film, it is desirable to use flux, perform plasma cleaning, or the like.

接合材としては、亜鉛、インジウム、ガリウム、スズ、ビスマス、鉛などの金属や、これらの少なくとも1種含む合金が挙げられる。また、第1の接合材層16と第2の接合材層17とが、同種の金属(Zn,In,Ga,Sn,Bi,Pb等)を少なくとも1種含むことが好ましい。第1の接合材層16と第2の接合材層17の構成元素(不可避の不純物は除外する。)が同一であることが好ましく、さらに各接合材の組成または融点が同一または近接していることが好ましい。   Examples of the bonding material include metals such as zinc, indium, gallium, tin, bismuth, and lead, and alloys containing at least one of these. Further, it is preferable that the first bonding material layer 16 and the second bonding material layer 17 include at least one kind of the same metal (Zn, In, Ga, Sn, Bi, Pb, or the like). The constituent elements of the first bonding material layer 16 and the second bonding material layer 17 (except for inevitable impurities) are preferably the same, and the composition or melting point of each bonding material is the same or close. It is preferable.

安定化材18の材料として準備される金属テープの幅は、超電導積層体15の外周よりも短いことが好ましい。これにより、金属テープが超電導積層体15の外周を囲むように成形したとき、金属テープの幅方向の両端部同士が重なり合わないので、安定化材18の端部が超電導積層体15から浮き上がりにくくなる。金属テープの幅方向の両端部の間に生じる隙間は、半田や溶接等により第3の接合材層19(接合部、溶接部等)を設けて密閉することが好ましい。   The width of the metal tape prepared as the material for the stabilizer 18 is preferably shorter than the outer periphery of the superconducting laminate 15. Thereby, when the metal tape is molded so as to surround the outer periphery of the superconducting laminate 15, both ends in the width direction of the metal tape do not overlap each other, so that the end portion of the stabilizing material 18 is not easily lifted from the superconducting laminate 15. Become. It is preferable that the gap generated between both end portions in the width direction of the metal tape is sealed by providing a third bonding material layer 19 (joined portion, welded portion, etc.) by soldering or welding.

接合材は、1種類又は2種類に限らず、3種類以上使用することも可能である。このうち2種以上が第1の接合材層16に該当してもよく、また2種以上が第2の接合材層17に該当してもよい。   The bonding material is not limited to one type or two types, and three or more types can be used. Among these, two or more types may correspond to the first bonding material layer 16, and two or more types may correspond to the second bonding material layer 17.

フォーミングの具体例として、平坦な金属テープの上に超電導積層体を配置した後、フォーミングロール等を用いて、金属テープの幅方向の両端部をそれぞれ超電導積層体の側面に向けて折り曲げ、さらに、金属テープの幅方向の両端部を基材裏面に向かって折り曲げる工程が挙げられる。フォーミングによれば、同様の断面形状が超電導線材の長手方向に連続した製品を効率よく製造することができる。   As a specific example of forming, after placing the superconducting laminate on a flat metal tape, using a forming roll or the like, the both ends in the width direction of the metal tape are bent toward the side surfaces of the superconducting laminate, respectively. A step of bending both end portions of the metal tape in the width direction toward the back surface of the base material is exemplified. According to forming, a product in which similar cross-sectional shapes are continuous in the longitudinal direction of the superconducting wire can be efficiently manufactured.

金属テープの上に超電導積層体を配置する前に、金属テープの所定箇所で所定の折り曲げ角度の一部又は全部を予め折り曲げておくことも可能である。この場合、折り曲げた金属テープの内部に超電導積層体を容易に挿入できるよう、挿入の前は、超電導積層体の側面を覆うべき第2の部分と、基材裏面を覆うべき第3の部分との間で、折り曲げの角度を直角より小さくして、金属テーブの幅方向の両端部の隙間を広げておくことが好ましい。   Before placing the superconducting laminate on the metal tape, it is also possible to bend a part or all of a predetermined bending angle at a predetermined position of the metal tape in advance. In this case, before insertion, the second part that should cover the side surface of the superconducting laminate, and the third part that should cover the back surface of the substrate, so that the superconducting laminate can be easily inserted into the bent metal tape. In this case, it is preferable that the bending angle is smaller than the right angle so that the gaps at both ends in the width direction of the metal table are widened.

安定化材18の幅方向の両端部の隙間を覆う第3の接合材層19は、安定化材18を超電導積層体15に接合する工程の後で設けることも可能である。また、安定化材18を超電導積層体15に接合する工程中、再溶融した接合材層16,17を基材11の裏面11b又は安定化材18の内面に沿って濡れ拡がらせることにより、隙間を塞いで第3の接合材層19を形成することも可能である。基材11の裏面11bは、接合材が濡れやすいよう、メッキ等の表面処理を施してもよい。また、接合材層16,17,19の接合材の濡れる範囲を規制するため、表面処理の有無や種類を領域ごとに異ならせることもできる。   The third bonding material layer 19 covering the gaps at both ends in the width direction of the stabilizing material 18 can also be provided after the step of bonding the stabilizing material 18 to the superconducting laminate 15. Further, during the step of bonding the stabilizing material 18 to the superconducting laminate 15, the remelted bonding material layers 16 and 17 are spread along the back surface 11b of the base material 11 or the inner surface of the stabilizing material 18, It is also possible to form the third bonding material layer 19 by closing the gap. The back surface 11b of the base material 11 may be subjected to a surface treatment such as plating so that the bonding material is easily wetted. Moreover, in order to regulate the range in which the bonding material of the bonding material layers 16, 17, and 19 is wetted, the presence / absence and type of surface treatment can be varied for each region.

テープ状の超電導線材10を使用して超電導コイルを作製するには、超電導線材10を巻き枠の外周面に沿って必要な層数巻き付けてコイル形状(多層巻きコイル)とした後、巻き付けた超電導線材10を覆うようにエポキシ樹脂等の樹脂を含浸させて超電導線材10を固定することができる。超電導線材10をコイル形状に巻き付ける際、主として超電導線材10の厚さ方向がコイルの径方向となればよい。超電導積層体15における基材11側(裏側)と保護層14側(表側)のいずれかコイルの巻き中心側になるかは限定されない。   In order to produce a superconducting coil using the tape-shaped superconducting wire 10, the superconducting wire 10 is wound around the outer peripheral surface of the winding frame to form a coil shape (multilayer winding coil) and then wound. Superconducting wire 10 can be fixed by impregnating resin such as epoxy resin so as to cover wire 10. When the superconducting wire 10 is wound in a coil shape, the thickness direction of the superconducting wire 10 may be mainly the radial direction of the coil. It is not limited whether the base 11 side (back side) or the protective layer 14 side (front side) of the superconducting laminate 15 is on the winding center side of the coil.

超電導線材10の幅方向はコイルの中心軸に略平行であり、コイルで隣接するループ間では、主として超電導線材10の表側と裏側(場合により表側同士又は裏側同士)が向かい合う。そして、向かい合う超電導線材10の間には、含浸樹脂が充填されて、超電導線材10を相互に接着する。なお、局所的に超電導線材10にねじれや折り曲げ、接続部等を設けてコイルにおける超電導線材10の向きを変更することも可能である。   The width direction of the superconducting wire 10 is substantially parallel to the central axis of the coil, and between the loops adjacent to each other in the coil, the front side and the back side (in some cases, the front side or the back side in some cases) face each other. An impregnating resin is filled between the superconducting wires 10 facing each other, and the superconducting wires 10 are bonded to each other. It is also possible to locally change the direction of the superconducting wire 10 in the coil by providing the superconducting wire 10 with twists, bends, connecting portions, and the like.

本実施形態では、安定化材が、1枚の金属テープから、屈曲した断面形状を有するように成形されるので、耐久性が高く、加工コストも低減することができる。   In the present embodiment, since the stabilizing material is molded from a single metal tape so as to have a bent cross-sectional shape, durability is high and processing costs can be reduced.

以上、本発明を好適な実施形態に基づいて説明してきたが、本発明は上述の実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の改変が可能である。   As mentioned above, although this invention has been demonstrated based on suitable embodiment, this invention is not limited to the above-mentioned embodiment, A various change is possible in the range which does not deviate from the summary of this invention.

超電導線材は、安定化材の内部に空隙を有してもよい。例えば、屈曲した断面形状の安定化材と超電導積層体の側面との間に空隙を設けることもできる。
安定化材の加工はフォーミングに限られるものではなく、溶融押出や切削加工などにより、屈曲した断面形状となるように成形することも可能である。
安定化材の外面に、半田、めっき等により金属層を形成することも可能である。
超電導線材は、外部端子を有することができる。外部端子を有する箇所では、他の箇所と異なる断面構造を有してもよい。
The superconducting wire may have a void inside the stabilizing material. For example, a space can be provided between the bent cross-sectional stabilizer and the side surface of the superconducting laminate.
The processing of the stabilizing material is not limited to forming, but can be formed into a bent cross-sectional shape by melt extrusion or cutting.
It is also possible to form a metal layer on the outer surface of the stabilizing material by soldering, plating or the like.
The superconducting wire can have an external terminal. The portion having the external terminal may have a different cross-sectional structure from other portions.

10…超電導線材、11…基材、11a…一方の面、11b…基材裏面、11c…側面、12…中間層、13…酸化物超電導層、14…保護層、15…超電導積層体、16…第1の接合材層、17…第2の接合材層、18…安定化材、19…第3の接合材層。 DESCRIPTION OF SYMBOLS 10 ... Superconducting wire, 11 ... Base material, 11a ... One side, 11b ... Substrate back surface, 11c ... Side surface, 12 ... Intermediate layer, 13 ... Oxide superconducting layer, 14 ... Protective layer, 15 ... Superconducting laminate, 16 ... 1st joining material layer, 17 ... 2nd joining material layer, 18 ... Stabilizer, 19 ... 3rd joining material layer.

Claims (7)

テープ状の基材の一方の面上に、中間層と酸化物超電導層とがこの順に積層され、さらに、少なくとも前記酸化物超電導層の表面を覆う保護層が設けられた構成の超電導積層体を準備する工程と、
前記超電導積層体の外面の少なくとも一部とを覆うように、第1の接合材層を形成する工程と、
安定化材の面上に、第2の接合材層を形成する工程と、
前記第2の接合材層が前記第1の接合材層と対向し、かつ、前記安定化材が、前記超電導積層体の外面の少なくとも一部とを覆うように、前記第2の接合材層が形成された安定化材を、前記第1の接合材層が形成された超電導積層体に被せる工程と、
前記第1の接合材層および前記第2の接合材層が溶融状態となる温度に加熱して、前記第1の接合材層および前記第2の接合材層を介して、前記超電導積層体と前記安定化材とを接合する工程と、
を有することを特徴とする酸化物超電導線材の製造方法。
A superconducting laminate having a structure in which an intermediate layer and an oxide superconducting layer are laminated in this order on one surface of a tape-like base material, and further, a protective layer covering at least the surface of the oxide superconducting layer is provided. A preparation process;
Forming a first bonding material layer so as to cover at least part of the outer surface of the superconducting laminate;
Forming a second bonding material layer on the surface of the stabilizing material;
The second bonding material layer so that the second bonding material layer faces the first bonding material layer and the stabilizing material covers at least a part of the outer surface of the superconducting laminate. Covering the stabilizing material formed with the superconducting laminate in which the first bonding material layer is formed;
Heating the first bonding material layer and the second bonding material layer to a temperature at which the first bonding material layer and the second bonding material layer are in a molten state, and via the first bonding material layer and the second bonding material layer, Bonding the stabilizing material;
A method for producing an oxide superconducting wire characterized by comprising:
前記基材裏面側の幅方向の両端部を覆うように前記第1の接合材層を形成し、前記安定化材が、前記基材裏面側の幅方向の両端部を覆うように、前記第2の接合材層が形成された安定化材を、前記第1の接合材層が形成された超電導積層体に被せることを特徴とする請求項1に記載の酸化物超電導線材の製造方法。   The first bonding material layer is formed so as to cover both end portions in the width direction on the substrate back surface side, and the stabilizing material covers the both end portions in the width direction on the substrate back surface side. 2. The method of manufacturing an oxide superconducting wire according to claim 1, wherein the stabilizing material on which the two bonding material layers are formed is placed on the superconducting laminate on which the first bonding material layer is formed. 前記基材裏面において、前記基材裏面と前記安定化材の幅方向における両端部との間に形成される凹部を、第3の接合材層により覆う工程を有することを特徴とする請求項1または2に記載の酸化物超電導線材の製造方法。   2. The method according to claim 1, further comprising a step of covering a recess formed between the substrate back surface and both end portions in the width direction of the stabilizing material with a third bonding material layer on the substrate back surface. Or the manufacturing method of the oxide superconducting wire of 2. 前記第1の接合材層と前記第2の接合材層とが、同種の金属を少なくとも1種含むことを特徴とする請求項1〜3のいずれか1項に記載の酸化物超電導線材の製造方法。   The said 1st joining material layer and the said 2nd joining material layer contain at least 1 sort (s) of the same kind of metal, The manufacturing of the oxide superconducting wire of any one of Claims 1-3 characterized by the above-mentioned. Method. 前記第1の接合材層および前記第2の接合材層は、亜鉛、インジウム、ガリウム、スズ、ビスマス、鉛を少なくとも1種含むことを特徴とする請求項1〜4のいずれか1項に記載の酸化物超電導線材の製造方法。   The first bonding material layer and the second bonding material layer each contain at least one kind of zinc, indium, gallium, tin, bismuth, and lead. Manufacturing method of oxide superconducting wire. 前記超電導積層体に対して、前記第1の接合材層を、接合材のスパッタ、接合材のめっき、溶融した接合材から選択される1または2以上により形成することを特徴とする請求項1〜5のいずれか1項に記載の酸化物超電導線材の製造方法。   2. The first bonding material layer is formed on the superconducting laminate by one or more selected from sputtering of bonding material, plating of bonding material, and molten bonding material. The manufacturing method of the oxide superconducting wire of any one of -5. 請求項1〜6のいずれか1項に記載の酸化物超電導線材の製造方法により酸化物超電導線材を製造する工程と、前記酸化物超電導線材を使用して超電導コイルを製造する工程を有することを特徴とする超電導コイルの製造方法。   It has the process of manufacturing an oxide superconducting wire with the manufacturing method of the oxide superconducting wire of any one of Claims 1-6, and the process of manufacturing a superconducting coil using the said oxide superconducting wire. A method of manufacturing a superconducting coil, which is characterized.
JP2015220566A 2015-11-10 2015-11-10 Method for producing oxide superconducting wire rod and method for producing superconducting coil Pending JP2017091808A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015220566A JP2017091808A (en) 2015-11-10 2015-11-10 Method for producing oxide superconducting wire rod and method for producing superconducting coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015220566A JP2017091808A (en) 2015-11-10 2015-11-10 Method for producing oxide superconducting wire rod and method for producing superconducting coil

Publications (1)

Publication Number Publication Date
JP2017091808A true JP2017091808A (en) 2017-05-25

Family

ID=58771785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015220566A Pending JP2017091808A (en) 2015-11-10 2015-11-10 Method for producing oxide superconducting wire rod and method for producing superconducting coil

Country Status (1)

Country Link
JP (1) JP2017091808A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019021553A (en) * 2017-07-20 2019-02-07 国立大学法人山梨大学 Superconduction wire and coil unit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019021553A (en) * 2017-07-20 2019-02-07 国立大学法人山梨大学 Superconduction wire and coil unit
US11227706B2 (en) 2017-07-20 2022-01-18 University Of Yamanashi Superconducting wire and coil unit

Similar Documents

Publication Publication Date Title
JP5695803B2 (en) Oxide superconducting wire, its connection structure, and superconducting equipment
EP3499519A1 (en) Oxide superconducting wire
JP6012658B2 (en) Oxide superconducting wire and manufacturing method thereof
JP6101491B2 (en) Oxide superconducting wire and method for producing the same
JP2014154320A (en) Connection structure of oxide superconductive wire rod and superconductive apparatus
JP6101490B2 (en) Oxide superconducting wire connection structure and superconducting equipment
WO2017104297A1 (en) Oxide super-conducting wire production method and super-conducting coil production method
JP2017091808A (en) Method for producing oxide superconducting wire rod and method for producing superconducting coil
JP2013247011A (en) Oxide superconducting wire, and method of manufacturing the same
JP2013084382A (en) Oxide superconductive wire, and method of manufacturing the same
JP6078522B2 (en) Superconducting wire and superconducting coil using the same
JP2014130730A (en) Connection structure and connection method of oxide superconductive wire material, and oxide superconductive wire material using the connection structure
JP6002602B2 (en) Oxide superconducting wire connection structure and manufacturing method thereof
JP2014130793A (en) Connection structure of oxide superconductive wire material and its manufacturing method
JP6031494B2 (en) Superconducting wire and superconducting coil using the same
JP5775810B2 (en) Manufacturing method of oxide superconducting wire
JP5640022B2 (en) Superconducting wire and external terminal joining method, and superconducting wire external terminal joining structure
WO2014104333A1 (en) Connection structure of oxide superconducting wires, method for producing same, and superconducting device
WO2021112181A1 (en) Connecting structure of oxide superconducting wire, superconducting coil, and method for connecting oxide superconducting wire
JP5701356B2 (en) Oxide superconducting wire and method for producing the same
JP6484658B2 (en) Oxide superconducting wire and superconducting coil
JP6652447B2 (en) Method for producing superconducting wire and method for producing superconducting coil
JP2019128982A (en) Superconducting wire rod and method for producing superconducting wire rod
JP2017103178A (en) Superconducting wire rod and method of manufacturing superconducting wire rod
JP2015011860A (en) Oxide superconductive wire rod and production method thereof