JP2013187103A - Oxide superconducting wire and manufacturing method therefor - Google Patents

Oxide superconducting wire and manufacturing method therefor Download PDF

Info

Publication number
JP2013187103A
JP2013187103A JP2012052606A JP2012052606A JP2013187103A JP 2013187103 A JP2013187103 A JP 2013187103A JP 2012052606 A JP2012052606 A JP 2012052606A JP 2012052606 A JP2012052606 A JP 2012052606A JP 2013187103 A JP2013187103 A JP 2013187103A
Authority
JP
Japan
Prior art keywords
oxide superconducting
cover member
layer
tape
superconducting wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012052606A
Other languages
Japanese (ja)
Inventor
Akira Kikutake
亮 菊竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2012052606A priority Critical patent/JP2013187103A/en
Publication of JP2013187103A publication Critical patent/JP2013187103A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an oxide superconducting wire constituted so as to prevent moisture from entering the interior thereof.SOLUTION: The oxide superconducting wire is constituted of an oxide superconducting laminate formed by laminating an intermediate layer, an oxide superconducting layer and a protective layer, in this order, on one side of a tape-like substrate. The oxide superconducting laminate is covered with a cover member composed of resin, which goes around the peripheral surface of the oxide superconducting laminate, and the seam of the edges thereof is bonded by thermocompression.

Description

本発明は、酸化物超電導積層体の全周を樹脂製のカバー部材により被覆した構造の酸化物超電導線材およびその製造方法に関する。   The present invention relates to an oxide superconducting wire having a structure in which the entire circumference of an oxide superconducting laminate is covered with a resin cover member, and a method for manufacturing the same.

RE−123系の酸化物超電導体(REBaCu7−X:REはYを含む希土類元素)は、液体窒素温度以上で超電導性を示し、電流損失が低いため、実用上極めて有望な素材とされており、これを線材に加工して電力供給用の導体あるいは磁気コイル等として使用することが要望されている。この酸化物超電導体を線材に加工するための方法として、金属テープなどの基材上に中間層を介し酸化物超電導層を形成し、酸化物超電導線材を製造する方法が研究されている。
また、酸化物超電導線材にあっては、酸化物超電導層上に薄い銀の安定化層を形成し、その上に銅などの良導電性金属材料からなる厚い安定化層を設けた構造が採用されている。前記銅の安定化層は、酸化物超電導層が超電導状態から常電導状態に遷移しようとしたとき、該酸化物超電導層の電流を転流させるバイパスとして機能させるための目的で設けられている。
An RE-123-based oxide superconductor (REBa 2 Cu 3 O 7-X : RE is a rare earth element including Y) exhibits superconductivity at a liquid nitrogen temperature or higher and has a low current loss. There is a demand for processing this into a wire and using it as a power supply conductor or magnetic coil. As a method for processing this oxide superconductor into a wire, a method of manufacturing an oxide superconducting wire by forming an oxide superconducting layer on a base material such as a metal tape via an intermediate layer has been studied.
The oxide superconducting wire has a structure in which a thin silver stabilizing layer is formed on the oxide superconducting layer, and a thick stabilizing layer made of a highly conductive metal material such as copper is provided on the oxide superconducting layer. Has been. The copper stabilization layer is provided for the purpose of functioning as a bypass for commutating the current of the oxide superconducting layer when the oxide superconducting layer attempts to transition from the superconducting state to the normal conducting state.

2層構造の安定化層を形成する技術の一例として、酸化物超電導層の上にスパッタリングにより薄い銀の安定化層を設けた後、線材全体を硫酸銅水溶液のめっき浴に浸漬し、電気めっきにより銀の安定化層上に銅の安定化層を形成する技術が知られている。
また、酸化物超電導層の上に銀の安定化層を設けた線材と銅製の安定化材テープをはんだ層を介し重ね合わせて加熱・加圧ロールに通すことによって、銀の安定化層上に銅の安定化層を形成する技術も知られている。
As an example of a technique for forming a stabilization layer having a two-layer structure, a thin silver stabilization layer is formed by sputtering on an oxide superconducting layer, and then the entire wire is immersed in a copper sulfate aqueous plating bath to perform electroplating. Thus, a technique for forming a copper stabilization layer on a silver stabilization layer is known.
In addition, a wire rod provided with a silver stabilization layer on an oxide superconducting layer and a copper stabilizer tape are superposed through a solder layer and passed through a heating / pressurizing roll, whereby a silver stabilization layer is placed on the silver stabilization layer. A technique for forming a copper stabilization layer is also known.

更に、酸化物超電導線材の全周を取り囲む構造の一例として、テープ状の酸化物超電導線材の周囲を絶縁被覆層で覆った構造が知られている。この構造において絶縁被覆層としてポリビニルホルマール、ポリブチルビニラートなどの樹脂材料からなる絶縁テープ材を用い、この絶縁テープ材を酸化物超電導線材の周囲にラップ巻きすることにより被覆した構造が採用されている。(特許文献1参照)   Furthermore, as an example of a structure surrounding the entire circumference of the oxide superconducting wire, a structure in which the periphery of the tape-shaped oxide superconducting wire is covered with an insulating coating layer is known. In this structure, an insulating tape material made of a resin material such as polyvinyl formal or polybutyl vinylate is used as the insulating coating layer, and this insulating tape material is covered by wrapping around an oxide superconducting wire. Yes. (See Patent Document 1)

特開2011−198469号公報JP 2011-198469 A

前記酸化物超電導線材を銅のめっき層により全周被覆した構造において、めっき層にはピンホール等の微細欠陥が存在するので、ピンホール等の微細欠陥を通じて外部から水分が侵入し、酸化物超電導層に水分が接触し、超電導特性が劣化するおそれがあった。
例えば、RE−123系の酸化物超電導体の特定組成のものは水分により劣化しやすく、線材を水分の多い環境に保管した場合、線材に水分が付着した状態のまま放置した場合、酸化物超電導層まで水分が到達すると、酸化物超電導層の結晶構造が崩れて超電導特性が低下する要因となる。
また、樹脂材料からなる絶縁テープ材をラップ巻きした構造では、テープ材を一部重ねるようにして緊密にラップ巻きしたとしても、テープ材どうしを重ねた部分の外部からの防水性は不十分であり、水分の侵入を防止するには不足であった。
本発明は、以上のような従来の背景に鑑みなされたもので、酸化物超電導層への水分の侵入を抑えることができる構造の酸化物超電導線材を提供することを目的とする。
In the structure in which the oxide superconducting wire is entirely covered with a copper plating layer, fine defects such as pinholes exist in the plating layer, so that moisture enters from the outside through the fine defects such as pinholes, and the oxide superconductivity. There was a possibility that moisture contacted the layer and the superconducting properties deteriorated.
For example, RE-123 oxide superconductors with a specific composition are easily deteriorated by moisture, and when the wire is stored in an environment with a lot of moisture, when the wire is left in a state where moisture is attached, the oxide superconductor When moisture reaches the layer, the crystal structure of the oxide superconducting layer collapses and becomes a factor of deteriorating superconducting properties.
In addition, in a structure in which insulating tape material made of resin material is wrapped, even if the tape material is partially overlapped and tightly wrapped, the waterproof property from the outside of the overlapped portion of the tape material is insufficient. It was insufficient to prevent moisture from entering.
The present invention has been made in view of the conventional background as described above, and an object thereof is to provide an oxide superconducting wire having a structure capable of suppressing the intrusion of moisture into the oxide superconducting layer.

上記課題を解決するために本発明は、テープ状の基材の一方の面上に中間層と酸化物超電導層と保護層をこの順に積層して酸化物超電導積層体が構成され、該酸化物超電導積層体を金属からなる第1のカバー部材で覆って複合超電導導体が構成され、該複合超電導導体がその周面を1周して端縁同士を合わせ目とした樹脂製の第2のカバー部材で覆われ、前記合わせ目が熱圧着により接合されてなることを特徴とする。   In order to solve the above problems, the present invention provides an oxide superconducting laminate in which an intermediate layer, an oxide superconducting layer, and a protective layer are laminated in this order on one surface of a tape-shaped substrate, and the oxide A superconducting laminate is covered with a first cover member made of metal to form a composite superconducting conductor, and the composite superconducting conductor makes a round around its peripheral surface, and a resin-made second cover with the edges aligned together. It is covered with a member, and the seam is joined by thermocompression bonding.

酸化物超電導積層体を金属製の第1のカバー部材で覆い、更に樹脂製の第2のカバー部材で覆っているので、酸化物超電導積層体を2重に覆った防水構造を提供できる。この構造により、第1のカバー部材の防水性に仮に問題があったとしても第2のカバー部材で防水性を確保できる。
更に、樹脂製の第2のカバー部材の合わせ目の部分を熱圧着し、合わせ目の部分において完全な防水構造を実現できるので、カバー部材内側の酸化物超電導層に外部から水分が侵入するおそれのない構造を提供できる。よって、水分が存在する環境下において長期間使用しても、水分の影響による超電導特性の劣化が生じ難い酸化物超電導線材を提供できる。
Since the oxide superconducting laminate is covered with the first cover member made of metal and further covered with the second cover member made of resin, a waterproof structure in which the oxide superconducting laminate is covered twice can be provided. With this structure, even if there is a problem with the waterproof property of the first cover member, the second cover member can ensure the waterproof property.
Furthermore, since the seam portion of the resin-made second cover member can be thermocompression-bonded and a complete waterproof structure can be realized at the seam portion, there is a risk that moisture may enter the oxide superconducting layer inside the cover member from the outside. Can provide a structure without any. Therefore, it is possible to provide an oxide superconducting wire that hardly deteriorates in superconducting characteristics due to the influence of moisture even when used for a long time in an environment where moisture exists.

本発明において、前記第2のカバー部材の厚さを5μm以上、25μm以下とすることができる。
樹脂製の5〜25μm厚のカバー部材とするならば、熱圧着時に破れ難く、熱圧着による防水構造を確実になし得、コイル化した場合の巻き数減少を生じない、臨界電流密度の低下しない酸化物超電導線材を提供できる。
本発明において、第1のカバー部材を金属めっきあるいは金属テープから構成できる。
In the present invention, the thickness of the second cover member can be 5 μm or more and 25 μm or less.
If it is made of a resin cover member having a thickness of 5 to 25 μm, it is difficult to tear during thermocompression bonding, and a waterproof structure can be reliably formed by thermocompression bonding, and the number of turns when coiled does not occur, and the critical current density does not decrease. An oxide superconducting wire can be provided.
In the present invention, the first cover member can be composed of metal plating or metal tape.

本発明の製造方法は、テープ状の基材の一方の面上に中間層と酸化物超電導層と保護層をこの順に積層して酸化物超電導積層体が構成され、該酸化物超電導積層体を金属からなる第1のカバー部材で覆って構成された複合超電導導体を用い、樹脂テープを前記複合超電導導体に被せてその周面を覆い、前記複合超電導導体を覆った樹脂テープの端縁同士を該複合超電導導体の一側で重ねて合わせ目として熱圧着し、第2のカバー部材を形成することを特徴とする。
熱圧着により樹脂製の第2のカバー部材の合わせ目の部分を防水構造とすることができる。酸化物超電導積層体を第1のカバー部材により覆い、更に第2のカバー部材で覆うことで防水性に優れた酸化物超電導線材を得ることができる。
In the production method of the present invention, an oxide superconducting laminate is constructed by laminating an intermediate layer, an oxide superconducting layer, and a protective layer in this order on one surface of a tape-shaped substrate. Using a composite superconducting conductor covered with a first cover member made of metal, covering the peripheral surface of the composite superconducting conductor by covering the composite superconducting conductor, the edges of the resin tape covering the composite superconducting conductor It is characterized in that a second cover member is formed by superimposing on one side of the composite superconducting conductor and thermocompression bonding as a seam.
The joint portion of the second cover member made of resin can be made waterproof by thermocompression bonding. An oxide superconducting wire excellent in waterproofness can be obtained by covering the oxide superconducting laminate with the first cover member and further covering with the second cover member.

前記第2のカバー部材の厚さを5μm以上、25μm以下とすることを特徴とする請求項5に記載の酸化物超電導線材の製造方法。
樹脂製の5〜25μm厚のカバー部材とするならば、熱圧着時に破れ難く、熱圧着による防水構造を確実になし得、コイル化した場合の巻き数減少を生じない、臨界電流密度の低下しない酸化物超電導線材を提供できる。
6. The method for manufacturing an oxide superconducting wire according to claim 5, wherein the thickness of the second cover member is 5 μm or more and 25 μm or less.
If it is made of a resin cover member having a thickness of 5 to 25 μm, it is difficult to tear during thermocompression bonding, and a waterproof structure can be reliably formed by thermocompression bonding, and the number of turns when coiled does not occur, and the critical current density does not decrease. An oxide superconducting wire can be provided.

本発明によれば、金属製の第1のカバー部材で覆った上に、樹脂製の第2のカバー部材で覆い、その合わせ目の部分を熱圧着して構成し、合わせ目の部分において防水構造を確実に実現でき、内部の酸化物超電導層側に水分を侵入させるおそれのない構造を提供できる。よって、水分が周囲に存在する環境下において長期間使用しても、水分の影響による超電導特性の劣化が生じ難い酸化物超電導線材を提供できる。   According to the present invention, the cover is covered with the first cover member made of metal and then covered with the second cover member made of resin, and the joint portion is formed by thermocompression bonding. A structure can be reliably realized, and a structure that does not allow moisture to enter the internal oxide superconducting layer side can be provided. Therefore, it is possible to provide an oxide superconducting wire in which deterioration of superconducting characteristics due to the influence of moisture hardly occurs even when used for a long time in an environment where moisture exists in the surroundings.

本発明に係る第1実施形態の酸化物超電導線材の横断面図である。It is a cross-sectional view of the oxide superconducting wire according to the first embodiment of the present invention. 図1に示す酸化物超電導線材に組み込まれている超電導積層体の一例構造を示す断面斜視図である。It is a cross-sectional perspective view which shows an example structure of the superconducting laminated body integrated in the oxide superconducting wire shown in FIG. 図1に示す酸化物超電導線材を製造する方法の一例を説明するための工程図であり、図3(a)は複合超電導導体の裏面側に第2のカバー部材を沿わせた状態を示す断面図、図3(b)は複合超電導導体に沿わせてカバー部材を折り曲げた状態を示す断面図、図3(c)は同カバー部材の端縁を重ね合わせて熱圧着した状態を示す断面図である。It is process drawing for demonstrating an example of the method of manufacturing the oxide superconducting wire shown in FIG. 1, Fig.3 (a) is a cross section which shows the state which put the 2nd cover member along the back surface side of the composite superconductor. FIG. 3B is a cross-sectional view showing a state where the cover member is bent along the composite superconducting conductor, and FIG. 3C is a cross-sectional view showing a state where the edges of the cover member are overlapped and thermocompression bonded. It is. 本発明に係る第2実施形態の酸化物超電導線材の横断面図である。It is a cross-sectional view of the oxide superconducting wire according to the second embodiment of the present invention.

以下、本発明に係る酸化物超電導線材の実施形態について図面に基づいて説明する。
図1は本発明に係る酸化物超電導線材の第1実施形態を模式的に示す横断面図であり、図2は図1に示す酸化物超電導線材に組み込まれている超電導積層体の一例構造を示す断面斜視図である。
本実施形態の酸化物超電導線材1は、内部に設けられている酸化物超電導積層体2の周囲を第1のカバー部材3で覆って複合超電導導体4を構成し、更にその周囲を第2のカバー部材9で覆った構造とされている。
本実施形態の酸化物超電導積層体2は、詳細には、図2に示すようにテープ状の基材5の一面上に、中間層6と酸化物超電導層7と保護層8とをこの順に積層してなる。
前記基材5は、可撓性を有する線材とするためにテープ状であることが好ましく、耐熱性の金属からなるものが好ましい。各種耐熱性金属の中でも、ニッケル合金からなることが好ましい。なかでも、市販品であれば、ハステロイ(米国ヘインズ社製商品名)が好適である。基材5の厚さは、通常は、10〜500μmである。また、基材5として、ニッケル合金に集合組織を導入した配向Ni−W合金テープ基材等を適用することもできる。
Hereinafter, embodiments of an oxide superconducting wire according to the present invention will be described with reference to the drawings.
FIG. 1 is a cross-sectional view schematically showing a first embodiment of an oxide superconducting wire according to the present invention, and FIG. 2 shows an example structure of a superconducting laminate incorporated in the oxide superconducting wire shown in FIG. It is a cross-sectional perspective view shown.
The oxide superconducting wire 1 of the present embodiment is configured by covering the periphery of an oxide superconducting laminate 2 provided inside with a first cover member 3 to form a composite superconducting conductor 4, and further surrounding the periphery with a second superconducting conductor 4. The cover member 9 covers the structure.
In detail, the oxide superconducting laminate 2 of the present embodiment includes an intermediate layer 6, an oxide superconducting layer 7, and a protective layer 8 in this order on one surface of a tape-like substrate 5 as shown in FIG. Laminated.
The substrate 5 is preferably in the form of a tape in order to obtain a flexible wire, and is preferably made of a heat-resistant metal. Among various refractory metals, a nickel alloy is preferable. Especially, if it is a commercial item, Hastelloy (US Haynes Corporation brand name) is suitable. The thickness of the base material 5 is usually 10 to 500 μm. Moreover, as the base material 5, an oriented Ni—W alloy tape base material in which a texture is introduced into a nickel alloy can be applied.

中間層6は、以下に説明する下地層と配向層とキャップ層からなる構造を一例として適用できる。
下地層を設ける場合は、以下に説明する拡散防止層とベッド層の複層構造あるいは、これらのうちどちらか1層からなる構造とすることができるが、下地層は必須ではなく、略しても差し支えない。
下地層として拡散防止層を設ける場合、窒化ケイ素(Si)、酸化アルミニウム(Al、「アルミナ」とも呼ぶ)、あるいは、GZO(GdZr)等から構成される単層構造あるいは複層構造の層が望ましく、厚さは例えば10〜400nmである。
下地層としてベッド層を設ける場合、ベッド層は、例えば、イットリア(Y)などの希土類酸化物であり、より具体的には、Er、CeO、Dy3、Er、Eu、Ho、La等を例示することができ、これらの材料からなる単層構造あるいは複層構造を採用できる。ベッド層の厚さは例えば10〜100nmである。
The intermediate layer 6 can be applied as an example of a structure composed of an underlayer, an alignment layer, and a cap layer described below.
When the underlayer is provided, it can be a multi-layer structure of a diffusion prevention layer and a bed layer, which will be described below, or a structure consisting of any one of these layers, but the underlayer is not essential and may be omitted. There is no problem.
In the case of providing a diffusion prevention layer as an underlayer, it is composed of silicon nitride (Si 3 N 4 ), aluminum oxide (Al 2 O 3 , also referred to as “alumina”), GZO (Gd 2 Zr 2 O 7 ), or the like. A single layer structure or a multilayer structure is desirable, and the thickness is, for example, 10 to 400 nm.
When providing a bed layer as an underlayer, the bed layer is a rare earth oxide such as yttria (Y 2 O 3 ), and more specifically, Er 2 O 3 , CeO 2 , Dy 2 O 3, Er. 2 O 3 , Eu 2 O 3 , Ho 2 O 3 , La 2 O 3 and the like can be exemplified, and a single layer structure or a multilayer structure made of these materials can be adopted. The thickness of the bed layer is, for example, 10 to 100 nm.

配向層は、その上方に形成する酸化物超電導層7と格子整合性の良い金属酸化物からなることが好ましい。配向層の好ましい材質として具体的には、GdZr、MgO、ZrO−Y(YSZ)、SrTiO、CeO、Y、Al、Gd、Zr、Ho、Nd等の金属酸化物を例示できる。配向層は、単層でも良いし、複層構造でも良い。
キャップ層は、好ましいものとして具体的には、CeO、Y、Al、Gd、Zr、Ho、Nd等が例示できる。キャップ層の材質がCeOである場合、キャップ層は、Ceの一部が他の金属原子又は金属イオンで置換されたCe−M−O系酸化物を含んでいても良い。CeOのキャップ層の膜厚は、50nm以上であればよいが、十分な配向性を得るには100nm以上が好ましい。但し、厚すぎると結晶配向性が悪くなるので、50〜5000nmの範囲とすることができる。
The alignment layer is preferably made of a metal oxide having good lattice matching with the oxide superconducting layer 7 formed thereon. Specifically, preferred materials for the alignment layer include Gd 2 Zr 2 O 7 , MgO, ZrO 2 —Y 2 O 3 (YSZ), SrTiO 3 , CeO 2 , Y 2 O 3 , Al 2 O 3 , Gd 2 O. 3 , metal oxides such as Zr 2 O 3 , Ho 2 O 3 and Nd 2 O 3 can be exemplified. The alignment layer may be a single layer or a multilayer structure.
Specific examples of the cap layer include CeO 2 , Y 2 O 3 , Al 2 O 3 , Gd 2 O 3 , Zr 2 O 3 , Ho 2 O 3 , and Nd 2 O 3 . When the material of the cap layer is CeO 2 , the cap layer may contain a Ce—M—O-based oxide in which part of Ce is substituted with another metal atom or metal ion. The thickness of the CeO 2 cap layer may be 50 nm or more, but is preferably 100 nm or more in order to obtain sufficient orientation. However, if it is too thick, the crystal orientation deteriorates, so the thickness can be in the range of 50 to 5000 nm.

酸化物超電導層7は通常知られている組成の希土類系高温酸化物超電導体からなる薄膜を広く適用することができ、REBaCu7−X(REはY、La、Nd、Sm、Er、Gd等の希土類元素を表す)なる材質のもの、具体的には、Y123(YBaCu7−X)又はGd123(GdBaCu7−X)を例示できる。酸化物超電導層15の厚みは0.5〜5μm程度であって、均一な厚みであることが好ましい。
酸化物超電導層7の上面を覆うように形成されている保護層8は、AgまたはAg合金からなり、その厚さは1〜30μm程度とされている。
The oxide superconducting layer 7 can be widely applied to a thin film made of a rare earth-based high-temperature oxide superconductor having a generally known composition, and REBa 2 Cu 3 O 7-X (RE is Y, La, Nd, Sm, For example, Y123 (YBa 2 Cu 3 O 7-X ) or Gd123 (GdBa 2 Cu 3 O 7-X ) can be exemplified. The oxide superconducting layer 15 has a thickness of about 0.5 to 5 μm and preferably a uniform thickness.
The protective layer 8 formed so as to cover the upper surface of the oxide superconducting layer 7 is made of Ag or an Ag alloy and has a thickness of about 1 to 30 μm.

第1のカバー部材3は、CuやCu合金などの良導電材料のめっき層を酸化物超電導積層体2の周囲に被覆することにより形成されるか、CuやCu合金などの良電導性の金属テープをフォーミングなどの加工により折り曲げて酸化物超電導積層体2を取り囲むことにより形成されている。図1の構造では、銅の電解浴に酸化物超電導積層体2を浸漬して銅めっき層を構成した例として記載されている。なお、図1の構造に代わり、金属テープをフォーミング加工により酸化物超電導積層体2の表面側に折り曲げて第1のカバー部材3として設けた構造を採用しても良い。   The first cover member 3 is formed by covering the periphery of the oxide superconducting laminate 2 with a plating layer of a highly conductive material such as Cu or Cu alloy, or a highly conductive metal such as Cu or Cu alloy. The tape is bent by a process such as forming to surround the oxide superconducting laminate 2. The structure shown in FIG. 1 is described as an example in which the oxide superconducting laminate 2 is immersed in a copper electrolytic bath to form a copper plating layer. Instead of the structure of FIG. 1, a structure in which a metal tape is bent to the surface side of the oxide superconducting laminate 2 by forming may be used as the first cover member 3.

第1のカバー部材3の厚さは特に限定されず、適宜調整可能であるが、良導電性の金属テープから構成される場合、その厚さを10〜300μmとすることができ、金属テープの折り曲げ時の取り扱い性を考慮すると、20〜100μmの範囲が好ましい。第1のカバー部材3がCuのめっき層からなる場合も同等の厚さであることが好ましい。なお、酸化物超電導線材1を超電導限流器に使用する場合は、第1のカバー部材3をCu−Ni等の高抵抗金属材料から構成することが好ましい。
第1のカバー部材3を良導電性の金属めっき層から構成した場合、酸化物超電導層7が超電導状態から常電導状態に遷移しようとしたとき、第1のカバー部材3が保護層8とともに、酸化物超電導層7の電流を転流させるバイパスとして機能する。また、第1のカバー部材3が良導電性の金属テープからなる場合においても同様に、電流を転流させるバイパスとして機能させることで酸化物超電導線材1を安定化することができる。
The thickness of the first cover member 3 is not particularly limited and can be appropriately adjusted. However, when the first cover member 3 is made of a highly conductive metal tape, the thickness can be set to 10 to 300 μm. In consideration of handling at the time of bending, the range of 20 to 100 μm is preferable. When the first cover member 3 is made of a Cu plating layer, it is preferable that the first cover member 3 has an equivalent thickness. When the oxide superconducting wire 1 is used for a superconducting fault current limiter, the first cover member 3 is preferably made of a high resistance metal material such as Cu-Ni.
When the first cover member 3 is composed of a highly conductive metal plating layer, when the oxide superconducting layer 7 attempts to transition from the superconducting state to the normal conducting state, the first cover member 3 together with the protective layer 8 It functions as a bypass for commutating the current of the oxide superconducting layer 7. Similarly, when the first cover member 3 is made of a highly conductive metal tape, the oxide superconducting wire 1 can be stabilized by functioning as a bypass for commutating current.

第1のカバー部材3を金属めっき層から構成する場合は特に必要ではないが、第1のカバー部材3を金属テープから構成した場合、第1のカバー部材3は酸化物超電導積層体2の周面に半田層を介し接合されていることが好ましい。第1のカバー部材3とAgの保護層8が電気的および機械的に接続されることにより、保護層8と第1のカバー部材3との接合が強固となり、接続抵抗が低下するため、酸化物超電導層7を安定化する効果を向上できる。半田層を設ける場合にその厚さは、特に限定されず、適宜調整可能であるが、例えば、2〜20μm程度とすることができる。   When the first cover member 3 is composed of a metal plating layer, it is not particularly necessary. However, when the first cover member 3 is composed of a metal tape, the first cover member 3 is formed around the oxide superconducting laminate 2. It is preferable to be joined to the surface via a solder layer. Since the first cover member 3 and the Ag protective layer 8 are electrically and mechanically connected, the connection between the protective layer 8 and the first cover member 3 becomes strong and the connection resistance is reduced. The effect of stabilizing the object superconducting layer 7 can be improved. When the solder layer is provided, the thickness thereof is not particularly limited and can be adjusted as appropriate. For example, the thickness can be about 2 to 20 μm.

半田層を用いる場合は従来公知の半田より構成することができ、例えば、Sn−Ag系合金、Sn−Bi系合金、Sn−Cu系合金、Sn−Zn系合金などの鉛フリー半田、Pb−Sn系合金半田、共晶半田、低温半田などが挙げられ、これらの半田を1種または2種以上組み合わせて使用することができる。これらの中でも、融点が300℃以下の半田を用いることが好ましい。これにより、300℃以下の温度で第1のカバー部材3と酸化物超電導積層体2を半田付けすることが可能となるので、半田付けの熱によって酸化物超電導層7の特性劣化を抑止できる。   When the solder layer is used, it can be composed of a conventionally known solder. For example, lead-free solder such as Sn—Ag alloy, Sn—Bi alloy, Sn—Cu alloy, Sn—Zn alloy, Pb— Examples thereof include Sn-based alloy solder, eutectic solder, and low-temperature solder, and these solders can be used alone or in combination. Among these, it is preferable to use solder having a melting point of 300 ° C. or less. Thereby, since it becomes possible to solder the 1st cover member 3 and the oxide superconducting laminated body 2 at the temperature of 300 degrees C or less, the characteristic deterioration of the oxide superconducting layer 7 can be suppressed with the heat of soldering.

第1のカバー部材3で酸化物超電導積層体2を覆って複合超電導導体4が構成されているが、更にその外方に、以下に説明する樹脂材料からなる第2のカバー部材9が設けられている。
第2のカバー部材9は、ポリイミド、ポリアミド、ポリアミドイミド、ポリウレタン、ポリエステル、ポリビニルブチラール、ポリビニルホルマールなどの樹脂製の絶縁材料からなる。この第2のカバー部材9は、酸化物超電導積層体2をその周方向に1周取り囲み、更に取り囲んで合わせ目としたカバー部材3の端縁同士を所定の幅に亘り重ねることができる程度の幅であって、酸化物超電導積層体2と同等程度の長さの樹脂のテープ材により形成されている。
A composite superconducting conductor 4 is formed by covering the oxide superconducting laminate 2 with the first cover member 3, and a second cover member 9 made of a resin material described below is further provided outside thereof. ing.
The second cover member 9 is made of a resin insulating material such as polyimide, polyamide, polyamideimide, polyurethane, polyester, polyvinyl butyral, or polyvinyl formal. The second cover member 9 surrounds the oxide superconducting laminate 2 in the circumferential direction one round, and further surrounds the edges of the cover member 3 that is used as a joint to overlap each other over a predetermined width. The tape is made of a resin having a width and a length equivalent to that of the oxide superconducting laminate 2.

第2のカバー部材9の合わせ目9aの部分は熱圧着により一体化されている。合わせ目9aの部分の幅は、酸化物超電導積層体2の幅の数分の一程度以上、例えば、2mm以上線径の幅以下が望ましい。この合わせ目3aの部分の幅が狭すぎると、熱圧着で防水構造とするための密着幅が小さくなり、長尺の酸化物超電導積層体2の全長にわたり防水構造とする場合に欠陥部分を生じ易くなる。   The portion of the joint 9a of the second cover member 9 is integrated by thermocompression bonding. The width of the portion of the seam 9a is preferably about a fraction of the width of the oxide superconducting laminate 2, for example, 2 mm or more and the width of the wire diameter or less. If the width of the joint 3a is too narrow, the adhesion width for making the waterproof structure by thermocompression bonding becomes small, and a defective part is generated when the waterproof structure is formed over the entire length of the long oxide superconducting laminate 2. It becomes easy.

第2のカバー部材9の厚さは5μm以上、25μm以下が望ましい。第2のカバー部材9の厚さが5μm未満では、熱圧着時に破れやすくなり、コイル加工するための巻線時などのハンドリング時に破れ易くなる。第2のカバー部材9の厚さが25μmより厚くなると、熱圧着することが難しくなる。また、第2のカバー部材9の厚さが25μmより厚くなると、酸化物超電導線材1における第2のカバー部材9の占有面積が大きくなり過ぎ、コイル加工するために巻線した場合に密に巻き付けたとしても酸化物超電導積層体2の部分の体積が減少し、オーバーオール臨界電流密度(Je)を高くすることができなくなるおそれがある。
第2のカバー部材9をポリイミドから形成した場合、熱圧着条件の一例として、圧着温度:300〜380℃、圧着時の圧力:2〜20kg/cm、熱圧着時間:数秒〜数分の1秒の条件に設定することができる。
The thickness of the second cover member 9 is desirably 5 μm or more and 25 μm or less. When the thickness of the second cover member 9 is less than 5 μm, the second cover member 9 is easily broken during thermocompression bonding and is easily broken during handling such as winding for coil processing. When the thickness of the second cover member 9 is greater than 25 μm, it is difficult to perform thermocompression bonding. Further, when the thickness of the second cover member 9 is greater than 25 μm, the area occupied by the second cover member 9 in the oxide superconducting wire 1 becomes too large, and when the second cover member 9 is wound for coil processing, it is tightly wound. Even so, there is a possibility that the volume of the oxide superconducting laminate 2 is reduced, and the overall critical current density (Je) cannot be increased.
When the second cover member 9 is formed of polyimide, as an example of the thermocompression bonding conditions, the pressure bonding temperature: 300 to 380 ° C., the pressure during pressure bonding: 2 to 20 kg / cm, the thermocompression bonding time: several seconds to a fraction of a second. Can be set to the conditions.

以上説明のように、本実施形態の酸化物超電導線材1は、酸化物超電導積層体2を金属製の第1のカバー部材3と樹脂製の第2のカバー部材9で覆った構成であるため、外部から酸化物超電導層7まで水分が侵入し難く、酸化物超電導層7の水分による劣化を抑制できる。
なお、第1のカバー部材3を金属めっきから構成した場合、酸化物超電導積層体2の全周を囲むように第1のカバー部材3を形成したとしても、第1のカバー部材3にピンホールを生じていることがあり、第1のカバー部材3の防水構造は完全ではない。また、第1のカバー部材3を金属テープから構成して半田付けした場合であっても、金属テープの半田付け部分に隙間や半田が埋まっていない部分があると、その部分を介して水分が侵入するおそれがある。このため、樹脂製の第2のカバー部材9を形成してその合わせ目部分を熱圧着して防水構造とすることにより、より完全な防水構造にすることができる。なお、樹脂製の例えばポリイミドテープからなる第2のカバー部材9であれば、市販品のポリイミドテープで上述の厚さのテープであれば、ピンホールの問題は生じないので、合わせ目の部分を完全に熱圧着できるならば、完全な防水構造を実現できる。
As described above, the oxide superconducting wire 1 of the present embodiment has a configuration in which the oxide superconducting laminate 2 is covered with the first cover member 3 made of metal and the second cover member 9 made of resin. In addition, it is difficult for moisture to enter the oxide superconducting layer 7 from the outside, and deterioration of the oxide superconducting layer 7 due to moisture can be suppressed.
When the first cover member 3 is made of metal plating, a pinhole is formed in the first cover member 3 even if the first cover member 3 is formed so as to surround the entire circumference of the oxide superconducting laminate 2. The waterproof structure of the first cover member 3 is not perfect. Further, even when the first cover member 3 is made of a metal tape and soldered, if there is a gap or a portion where the solder is not buried in the soldered portion of the metal tape, moisture will be passed through that portion. There is a risk of intrusion. For this reason, a more complete waterproof structure can be obtained by forming the resin-made second cover member 9 and thermocompressing the joint portion to form a waterproof structure. In addition, if it is the 2nd cover member 9 which consists of a resin-made polyimide tape etc., if it is the tape of the above-mentioned thickness with a commercially available polyimide tape, the problem of a pinhole will not arise, Therefore If complete thermocompression bonding is possible, a complete waterproof structure can be realized.

また、本実施形態の酸化物超電導線材1を巻胴に巻回してコイル加工し、超電導マグネットを構成する場合、酸化物超電導線材1が電磁力で動かないように含浸樹脂により固める場合がある。この場合において、酸化物超電導線材1を巻胴に巻き付けたとしても、第2のカバー部材9の熱圧着した部分は簡単には剥離しないので、防水性を確保した状態でコイル加工することができる。   Moreover, when the oxide superconducting wire 1 of this embodiment is wound around a winding drum and coiled to form a superconducting magnet, the oxide superconducting wire 1 may be hardened with an impregnating resin so as not to move by electromagnetic force. In this case, even if the oxide superconducting wire 1 is wound around the winding drum, the thermocompression-bonded portion of the second cover member 9 is not easily peeled off, so that the coil can be processed while ensuring waterproofness. .

次に、本発明に係る酸化物超電導線材の製造方法の一実施形態について図面に基づいて説明する。
図3は本発明に係る酸化物超電導線材1の製造方法の一実施形態の工程を説明するための工程説明図である。
本実施形態の酸化物超電導線材1の製造方法においては、まず、テープ状の基材5の一方の面上に中間層6と酸化物超電導層7と保護層8とをこの順に積層して酸化物超電導積層体2を作製し、更にこれを第1のカバー部材3で覆った構造の複合超電導導体4を作製する。中間層6、酸化物超電導層7、保護層8の成膜には、スパッタ法、パルスレーザー蒸着法(PLD法)、IBAD法(Ion Beam Assisted Deposition)、有機金属塗布熱分解法(TFA-MOD法)などの常法を用いて各層を基材上に順次成膜すればよい。また、これらの各層を基材上に積層して得た酸化物超電導積層体2を銅の電解浴に浸漬することでCuからなる第1のカバー部材3を形成し、複合超電導導体4を作製できる。
Next, an embodiment of a method for producing an oxide superconducting wire according to the present invention will be described with reference to the drawings.
FIG. 3 is a process explanatory diagram for explaining a process of an embodiment of the method for manufacturing the oxide superconducting wire 1 according to the present invention.
In the manufacturing method of the oxide superconducting wire 1 of the present embodiment, first, the intermediate layer 6, the oxide superconducting layer 7, and the protective layer 8 are laminated in this order on one surface of the tape-like base material 5 and oxidized. An object superconducting laminate 2 is produced, and further a composite superconducting conductor 4 having a structure in which it is covered with a first cover member 3 is produced. The intermediate layer 6, the oxide superconducting layer 7, and the protective layer 8 are formed by sputtering, pulsed laser deposition (PLD), IBAD (Ion Beam Assisted Deposition), organometallic thermal decomposition (TFA-MOD). Each layer may be sequentially formed on the substrate using a conventional method such as (method). Also, a first cover member 3 made of Cu is formed by immersing an oxide superconducting laminate 2 obtained by laminating these layers on a base material in a copper electrolytic bath, and a composite superconducting conductor 4 is produced. it can.

次に、このテープ状の複合超電導導体4に対し、その幅の2倍より少し大きい幅広の樹脂製のテープ状のカバー部材10を図3(a)に示すように沿わせる。この場合、図3(a)に示すように、基材5の裏面側にカバー部材10を沿わせるが、図3(a)に示す複合超電導導体4を上下逆にしてカバー部材10を沿わせても良いのは勿論である。
この後、図3(b)に示すようにカバー部材10を酸化物超電導積層体2の両側面に沿って上方に折り曲げ、更に図3(c)に示すようにカバー部材10の幅方向両端縁10P、10Qを酸化物超電導積層体2の上面側に一部重なるように被せて合わせ目部分を構成し、重なった部分を熱圧着することで合わせ目9aの部分を熱溶着したカバー部材9で複合超電導導体4の全周を覆った構成の図3(c)に示す酸化物超電導線材1を得ることができる。
以上説明の方法により、図3(c)に示すように酸化物超電導積層体2を第1のカバー部材3と第2のカバー部材9とで2重に覆った構造の酸化物超電導線材1を得ることができる。この構造の酸化物超電導線材1であるならば、先に説明した種々の特徴を有する酸化物超電導線材1を得ることができる。
Next, a wide resin tape-shaped cover member 10 slightly larger than twice the width of the tape-shaped composite superconducting conductor 4 is placed as shown in FIG. In this case, as shown in FIG. 3 (a), the cover member 10 is placed along the back side of the substrate 5, but the cover member 10 is placed along the composite superconducting conductor 4 shown in FIG. 3 (a) upside down. Of course, it may be.
Thereafter, the cover member 10 is bent upward along both side surfaces of the oxide superconducting laminate 2 as shown in FIG. 3 (b), and both end edges in the width direction of the cover member 10 are further shown in FIG. 3 (c). 10P and 10Q are covered so as to partially overlap the upper surface side of the oxide superconducting laminate 2 to form a joint portion, and the overlap portion is thermocompression bonded to cover the joint portion 9a. The oxide superconducting wire 1 shown in FIG. 3C having a configuration covering the entire circumference of the composite superconducting conductor 4 can be obtained.
By the method described above, the oxide superconducting wire 1 having a structure in which the oxide superconducting laminate 2 is covered twice with the first cover member 3 and the second cover member 9 as shown in FIG. Can be obtained. If it is the oxide superconducting wire 1 of this structure, the oxide superconducting wire 1 which has the various characteristics demonstrated previously can be obtained.

図4は、本発明に係る第2実施形態の酸化物超電導線材を示すもので、この第2実施形態の酸化物超電導線材30において、先の第1実施形態の構造と同じ構成要素には同一の符号を付してそれら同一要素の説明を簡略化する。
第2実施形態の構造において、テープ状の基材5の一方の面上に中間層6と酸化物超電導層7と保護層8をこの順に積層して酸化物超電導積層体2が構成され、これを第1のカバー部材3で覆って複合超電導導体4が構成されている点は、第1実施形態の構造と同等である。
FIG. 4 shows the oxide superconducting wire according to the second embodiment of the present invention. In the oxide superconducting wire 30 according to the second embodiment, the same components as those of the first embodiment are the same. The description of the same elements is simplified by attaching the reference numerals.
In the structure of the second embodiment, the oxide superconducting laminate 2 is configured by laminating the intermediate layer 6, the oxide superconducting layer 7 and the protective layer 8 in this order on one surface of the tape-shaped substrate 5. Is covered with the first cover member 3 to form the composite superconducting conductor 4, which is equivalent to the structure of the first embodiment.

第2実施形態の酸化物超電導線材30において異なっているのは、複合超電導導体4を覆っている樹脂製の第2のカバー部材31の合わせ目31aの部分が酸化物超電導積層体2の側面側中央部に形成されている点である。即ち、第2のカバー部材31は酸化物超電導積層体2の幅の2倍より若干幅広のテープ状に形成され、第2のカバー部材31を2つ折りとしてテープ状の酸化物超電導積層体2を挟み込んだ上、酸化物超電導積層体2の一方の端面中央側に突出させた端縁31b、31b同士を重ねて熱圧着により一体化することで、合わせ目31aが形成されている点が異なる。この実施形態において酸化物超電導積層体2の一方の端面中央部に合わせ目31aを形成する場合、合わせ目31aの幅は0.5mm以下であることが好ましい。
図4に示す構成では、熱圧着の際に第2のカバー部材31の両端縁31b同士を挟んで熱圧着できるので、熱圧着を酸化物超電導線材1の全長に亘り確実に形成することが容易にでき、酸化物超電導積層体2の長さ方向全長に亘り隙間無く熱圧着した構造のカバー部材31を提供できる。
The difference in the oxide superconducting wire 30 of the second embodiment is that the portion of the joint 31a of the resin-made second cover member 31 covering the composite superconducting conductor 4 is the side surface side of the oxide superconducting laminate 2. It is the point formed in the center part. That is, the second cover member 31 is formed in a tape shape slightly wider than twice the width of the oxide superconducting laminate 2, and the tape-like oxide superconducting laminate 2 is formed by folding the second cover member 31 in half. The difference is that the seam 31a is formed by sandwiching the edges 31b and 31b protruding toward the center side of one end surface of the oxide superconducting laminate 2 and integrating them by thermocompression bonding. In this embodiment, when the joint 31a is formed at the center of one end face of the oxide superconducting laminate 2, the width of the joint 31a is preferably 0.5 mm or less.
In the configuration shown in FIG. 4, since thermocompression can be performed by sandwiching both end edges 31 b of the second cover member 31 during thermocompression bonding, it is easy to reliably form thermocompression bonding over the entire length of the oxide superconducting wire 1. Thus, the cover member 31 having a structure in which the oxide superconducting laminate 2 is thermocompression bonded with no gap over the entire length in the length direction can be provided.

以上構成の第2実施形態の酸化物超電導線材30において、酸化物超電導積層体2を第1のカバー部材3で覆う構造については、第1実施形態の構造と同等であるので、第1実施形態の構造において第1のカバー部材3の存在により得られる作用効果は第2実施形態において同様に得ることができる。即ち、第1のカバー部材3が酸化物超電導積層7の電流を転流できるバイパスとなり、超電導特性の安定化を図るとともに、第1のカバー部材31で覆うことによりある程度の防水構造を実現できる。
更に、第1のカバー部材3の外方に樹脂製の第2のカバー部材31を設けている点も同様であるので、外部から酸化物超電導層7まで水分が侵入し難く、酸化物超電導層7の水分による劣化を抑制できる酸化物超電導線材30を提供できる。
また、本実施形態の如く第2のカバー部材31の合わせ目31aを複合超電導導体4の側面側に配置したことにより、酸化物超電導線材30を巻胴に多層巻回してコイル化した構造において、酸化物超電導積層体2の表面側と裏面側に凹凸が生じないので、巻胴上において巻き乱れを生じることなくコイル化できる酸化物超電導線材30を提供できる。
In the oxide superconducting wire 30 of the second embodiment configured as described above, the structure of covering the oxide superconducting laminate 2 with the first cover member 3 is the same as the structure of the first embodiment, so the first embodiment. The effects obtained by the presence of the first cover member 3 in the structure can be obtained similarly in the second embodiment. That is, the first cover member 3 serves as a bypass capable of commutating the current of the oxide superconducting laminate 7, so that the superconducting characteristics can be stabilized and a certain degree of waterproof structure can be realized by covering with the first cover member 31.
Further, since the second cover member 31 made of resin is provided outside the first cover member 3, the moisture does not easily enter the oxide superconducting layer 7 from the outside, and the oxide superconducting layer 7 can provide the oxide superconducting wire 30 that can suppress deterioration due to moisture.
Further, in the structure in which the joint 31a of the second cover member 31 is arranged on the side surface side of the composite superconducting conductor 4 as in the present embodiment, the oxide superconducting wire 30 is wound around the winding drum in a multi-layered structure, Since unevenness does not occur on the front surface side and the back surface side of the oxide superconducting laminate 2, an oxide superconducting wire 30 that can be coiled without causing turbulence on the winding drum can be provided.

ハステロイC−276(米国ヘインズ社商品名)からなる幅10mm、厚さ0.1mm、長さ10mのテープ状の基材上に、Alの拡散防止層(a−Alの厚さ80nm)と、Yのベッド層(a−Yの厚さ30nm)と、MgOの中間層(IBAD−MgOの厚さ10nm)と、CeOのキャップ層(厚さ300nm)とYBaCu7−xなる組成の酸化物超電導層を積層した酸化物超電導積層体を用意した。この酸化物超電導積層体をCuの電解浴に浸漬して厚さ20μmのCu層を形成し、第1のカバー部材を被覆した複合超電導導体を形成した。
このテープ状の複合超電導導体に対し、ポリイミドテープ(厚さ20μm、幅25mm、長さ10m)を2つ折りとして複合超電導導体に縦添えして被せ、複合超電導導体の一側面側にはみ出したポリイミドテープの端縁同士を合わせ目として幅約2.5mm、複合超電導導体の全長に亘り熱圧着して第2のカバー部材で被覆した酸化物超電導線材を得た。加熱条件は、温度300℃、加圧力10kg/m、圧着時間30秒とした。
An Al 2 O 3 diffusion-preventing layer (a-Al 2 O 3) is formed on a tape-shaped substrate having a width of 10 mm, a thickness of 0.1 mm and a length of 10 m made of Hastelloy C-276 (trade name of Haynes, USA). 80 nm thick), Y 2 O 3 bed layer (a-Y 2 O 3 thickness 30 nm), MgO intermediate layer (IBAD-MgO thickness 10 nm), and CeO 2 cap layer (thickness). 300 nm) and an oxide superconducting laminate in which oxide superconducting layers having a composition of YBa 2 Cu 3 O 7-x were laminated. This oxide superconducting laminate was immersed in an electrolytic bath of Cu to form a Cu layer having a thickness of 20 μm, thereby forming a composite superconducting conductor covering the first cover member.
This tape-shaped composite superconductor is covered with a polyimide tape (thickness 20 μm, width 25 mm, length 10 m) which is folded in two and vertically attached to the composite superconductor, and protrudes from one side of the composite superconductor. An oxide superconducting wire coated with a second cover member was obtained by thermocompression over the entire length of the composite superconducting conductor with a width of about 2.5 mm using the edges of the two as a joint. The heating conditions were a temperature of 300 ° C., a pressure of 10 kg / m 2 , and a pressure bonding time of 30 seconds.

この酸化物超電導線材を外径100mmの巻胴に巻回し、エポキシ樹脂を含浸させて固化し、樹脂含浸型の超電導コイルを作製した。この超電導コイルを液体窒素に浸漬して室温から液体窒素温度(77K)まで冷却し、この超電導コイルを液体窒素から取り出して室温に戻す処理を10サイクル行う、熱サイクル試験を行った。
その結果、10サイクル分の熱サイクル試験後もポリイミドテープからなる第2のカバー部材に剥離部などの欠陥は認められなかった。
前記構造の複合超電導導体に対し被覆するポリイミドテープとして、厚さ5μmのポリイミドテープを用い、その他の構造は同等として酸化物超電導線材を作製し、同様な熱サイクル試験に供した。また、前記構造の複合超電導導体に対し被覆するポリイミドテープとして、厚さ25μmのポリイミドテープを用い、その他の構造は同等として酸化物超電導線材を作製し、同様な熱サイクル試験に供した。
厚さ5μmのポリイミドテープを用いた酸化物超電導線材と厚さ25μmのポリイミドテープを用いた酸化物超電導線材のいずれにおいても熱サイクル試験後にポリイミドテープからなる第2のカバー部材に剥離部などの欠陥は認められなかった。
This oxide superconducting wire was wound around a winding drum having an outer diameter of 100 mm, impregnated with an epoxy resin and solidified to produce a resin-impregnated superconducting coil. This superconducting coil was immersed in liquid nitrogen and cooled from room temperature to liquid nitrogen temperature (77K), and a thermal cycle test was performed in which the superconducting coil was removed from liquid nitrogen and returned to room temperature for 10 cycles.
As a result, no defect such as a peeled portion was observed in the second cover member made of polyimide tape even after the thermal cycle test for 10 cycles.
As a polyimide tape covering the composite superconducting conductor having the above structure, a polyimide tape having a thickness of 5 μm was used, and oxide superconducting wires were prepared with the other structures being equivalent, and subjected to the same thermal cycle test. In addition, as a polyimide tape for covering the composite superconducting conductor having the above structure, a polyimide tape having a thickness of 25 μm was used, and oxide superconducting wires were prepared with the other structures being the same, and subjected to the same thermal cycle test.
In both the oxide superconducting wire using a polyimide tape having a thickness of 5 μm and the oxide superconducting wire using a polyimide tape having a thickness of 25 μm, the second cover member made of polyimide tape has defects such as a peeling portion after the thermal cycle test. Was not recognized.

「比較例」
次に、先の酸化物超電導積層体に対し、厚さ4μmのポリイミドテープ、厚さ27μmのポリイミドテープをそれぞれ個別に用いて同様に縦添えし、複合超電導導体の側面側にはみ出した部分を熱圧着して比較例の酸化物超電導線材を作製した。厚さ4μmのポリイミドテープを用いて熱圧着した場合、熱圧着時の加圧力によりポリイミドテープの合わせ目の部分の複数箇所に亀裂を生じた。
厚さ27μmのポリイミドテープを用いた比較例の酸化物超電導線材について先と同様の10サイクルの熱サイクル試験を行ったところ、試験後の酸化物超電導線材において、いずれもカバー部材の合わせ目の複数箇所に剥離部を生じた。この剥離部分を観察したところ、ポリイミドテープの合わせ目の部分で熱圧着したはずの部分が未圧着部分となって剥離しており、ポリイミドテープが厚すぎたために、未圧着の部分が生じていたことが判明した。
以上の試験結果から、熱圧着の不良を生じさせないためにポリイミドテープの厚さは5μm〜25μmの範囲であることが好ましいと思われる。
"Comparative example"
Next, 4 μm-thick polyimide tape and 27 μm-thick polyimide tape are individually used for the oxide superconducting laminate and vertically attached in the same manner, and the portion protruding from the side surface of the composite superconducting conductor is heated. The oxide superconducting wire of the comparative example was produced by pressure bonding. When thermocompression bonding was performed using a polyimide tape having a thickness of 4 μm, cracks were generated at a plurality of portions of the joint portion of the polyimide tape due to pressure applied during thermocompression bonding.
The oxide superconducting wire of the comparative example using the polyimide tape having a thickness of 27 μm was subjected to the same 10-cycle thermal cycle test as described above. A peeled portion was generated at the location. When this peeled portion was observed, the portion that should have been thermocompression bonded at the joint portion of the polyimide tape was peeled off as a non-crimped portion, and the polyimide tape was too thick, resulting in an uncrimped portion. It has been found.
From the above test results, it is considered that the thickness of the polyimide tape is preferably in the range of 5 μm to 25 μm in order not to cause a defective thermocompression bonding.

1…酸化物超電導線材、2…酸化物超電導積層体、3…第1のカバー部材、4…複合超電導導体、5…基材、6…中間層、7…酸化物超電導層、8…保護層、9…第2のカバー部材、9a…合わせ目、30…酸化物超電導線材、31…第2のカバー部材、31a…合わせ目、31b…端縁。   DESCRIPTION OF SYMBOLS 1 ... Oxide superconducting wire, 2 ... Oxide superconducting laminated body, 3 ... 1st cover member, 4 ... Composite superconducting conductor, 5 ... Base material, 6 ... Intermediate | middle layer, 7 ... Oxide superconducting layer, 8 ... Protective layer , 9 ... second cover member, 9a ... joint, 30 ... oxide superconducting wire, 31 ... second cover member, 31a ... joint, 31b ... edge.

Claims (5)

テープ状の基材の一方の面上に中間層と酸化物超電導層と保護層をこの順に積層して酸化物超電導積層体が構成され、該酸化物超電導積層体を金属からなる第1のカバー部材で覆って複合超電導導体が構成され、該複合超電導導体がその周面を1周して端縁同士を合わせ目とした樹脂製の第2のカバー部材で覆われ、前記合わせ目が熱圧着により接合されてなることを特徴とする酸化物超電導線材。   An intermediate layer, an oxide superconducting layer, and a protective layer are laminated in this order on one surface of a tape-like base material to form an oxide superconducting laminate, and the oxide superconducting laminate is made of a metal first cover. A composite superconducting conductor is formed by covering with a member, and the composite superconducting conductor is covered with a resin-made second cover member that makes one round of its peripheral surface and has edges joined together, and the joint is formed by thermocompression bonding. An oxide superconducting wire characterized by being bonded by the following. 前記第2のカバー部材の厚さが5μm以上、25μm以下であることを特徴とする請求項1に記載の酸化物超電導線材。   2. The oxide superconducting wire according to claim 1, wherein a thickness of the second cover member is 5 μm or more and 25 μm or less. 前記第1のカバー部材が金属めっきまたは金属テープからなることを特徴とする請求項1または2に記載の酸化物超電導線材。   The oxide superconducting wire according to claim 1 or 2, wherein the first cover member is made of metal plating or metal tape. テープ状の基材の一方の面上に中間層と酸化物超電導層と保護層をこの順に積層して酸化物超電導積層体が構成され、該酸化物超電導積層体を金属からなる第1のカバー部材で覆って構成された複合超電導導体を用い、
樹脂テープを前記複合超電導導体に被せてその周面を覆い、前記複合超電導導体を覆った樹脂テープの端縁同士を該複合超電導導体の一側で重ねて合わせ目として熱圧着し、第2のカバー部材を形成することを特徴とする酸化物超電導線材の製造方法。
An intermediate layer, an oxide superconducting layer, and a protective layer are laminated in this order on one surface of a tape-like base material to form an oxide superconducting laminate, and the oxide superconducting laminate is made of a metal first cover. Using a composite superconducting conductor covered with a member,
A resin tape is placed on the composite superconductor to cover the peripheral surface, and the edges of the resin tape covering the composite superconductor are overlapped on one side of the composite superconductor and thermocompression bonded as a joint, A manufacturing method of an oxide superconducting wire characterized by forming a cover member.
前記第2のカバー部材の厚さを5μm以上、25μm以下とすることを特徴とする請求項4に記載の酸化物超電導線材の製造方法。   5. The method for manufacturing an oxide superconducting wire according to claim 4, wherein the thickness of the second cover member is 5 μm or more and 25 μm or less.
JP2012052606A 2012-03-09 2012-03-09 Oxide superconducting wire and manufacturing method therefor Pending JP2013187103A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012052606A JP2013187103A (en) 2012-03-09 2012-03-09 Oxide superconducting wire and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012052606A JP2013187103A (en) 2012-03-09 2012-03-09 Oxide superconducting wire and manufacturing method therefor

Publications (1)

Publication Number Publication Date
JP2013187103A true JP2013187103A (en) 2013-09-19

Family

ID=49388365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012052606A Pending JP2013187103A (en) 2012-03-09 2012-03-09 Oxide superconducting wire and manufacturing method therefor

Country Status (1)

Country Link
JP (1) JP2013187103A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021054688A (en) * 2019-10-01 2021-04-08 日本製鉄株式会社 Oxide superconductive bulk conductor and electrification element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021054688A (en) * 2019-10-01 2021-04-08 日本製鉄株式会社 Oxide superconductive bulk conductor and electrification element
JP7335501B2 (en) 2019-10-01 2023-08-30 日本製鉄株式会社 Oxide superconducting bulk conductor and current-carrying element

Similar Documents

Publication Publication Date Title
JP5933781B2 (en) Oxide superconducting wire
US20190172612A1 (en) Oxide superconducting wire
JP5568361B2 (en) Superconducting wire electrode joint structure, superconducting wire, and superconducting coil
JP5841862B2 (en) High temperature superconducting wire and high temperature superconducting coil
JP5847009B2 (en) Oxide superconducting wire
JP2021504909A (en) Joined superconducting tape
JP6012658B2 (en) Oxide superconducting wire and manufacturing method thereof
JP2014154320A (en) Connection structure of oxide superconductive wire rod and superconductive apparatus
JP6086852B2 (en) Oxide superconducting wire, connecting structure of oxide superconducting wire, connecting structure of oxide superconducting wire and electrode terminal, superconducting device including the same, and manufacturing method thereof
JP6329736B2 (en) Laminated pancake type superconducting coil and superconducting equipment provided with the same
JP2014130789A (en) Oxide superconductive wire material, connection structure of oxide superconductive wire material, its manufacturing method and superconductive device
JP6101490B2 (en) Oxide superconducting wire connection structure and superconducting equipment
JP5775785B2 (en) Oxide superconducting wire and method for producing the same
JP2013247011A (en) Oxide superconducting wire, and method of manufacturing the same
JP5887085B2 (en) Superconducting coil and manufacturing method thereof
JP2013187103A (en) Oxide superconducting wire and manufacturing method therefor
JP2013186966A (en) Oxide superconducting wire and manufacturing method therefor
JP7292257B2 (en) Superconducting wire connection structure and method for manufacturing superconducting wire connection structure
JP6106789B1 (en) Oxide superconducting wire, manufacturing method thereof, and superconducting coil
JP5775808B2 (en) Oxide superconducting wire and manufacturing method thereof
JPWO2014104333A1 (en) Oxide superconducting wire connection structure, manufacturing method thereof and superconducting device
JP6078522B2 (en) Superconducting wire and superconducting coil using the same
JP2014107149A (en) Oxide superconductive wire rod and connection structure of the oxide superconductive wire
JP6484658B2 (en) Oxide superconducting wire and superconducting coil
JP5775810B2 (en) Manufacturing method of oxide superconducting wire