JP5847009B2 - Oxide superconducting wire - Google Patents

Oxide superconducting wire Download PDF

Info

Publication number
JP5847009B2
JP5847009B2 JP2012102718A JP2012102718A JP5847009B2 JP 5847009 B2 JP5847009 B2 JP 5847009B2 JP 2012102718 A JP2012102718 A JP 2012102718A JP 2012102718 A JP2012102718 A JP 2012102718A JP 5847009 B2 JP5847009 B2 JP 5847009B2
Authority
JP
Japan
Prior art keywords
oxide superconducting
layer
superconducting wire
stabilizing material
lower plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012102718A
Other languages
Japanese (ja)
Other versions
JP2013232297A (en
Inventor
真司 藤田
真司 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2012102718A priority Critical patent/JP5847009B2/en
Publication of JP2013232297A publication Critical patent/JP2013232297A/en
Application granted granted Critical
Publication of JP5847009B2 publication Critical patent/JP5847009B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Description

本発明は、安定化層を備えた構造の酸化物超電導線材に関する。   The present invention relates to an oxide superconducting wire having a structure having a stabilization layer.

近年、一般式BiSrCaCu8+δ(Bi2122)またはBiSrCaCu10+δ(Bi2223)で表記されるBi系超電導線材、あるいは、一般式REBaCu7−X(RE123、RE:希土類元素)で表記されるY系超電導線材などの希土類系超電導線材の開発が進められている。
この希土類系酸化物超電導線材の一例構造として、金属テープなどの基材上に中間層を介し酸化物超電導層を成膜した後、酸化物超電導層を保護するAgの保護層を形成し、更に、酸化物超電導層が何らかの原因で超電導状態から常電導状態に転移した際の電流パスとして機能するCuの安定化層を形成した構造が知られている。
In recent years, a Bi-based superconducting wire represented by a general formula Bi 2 Sr 2 CaCu 2 O 8 + δ (Bi2122) or Bi 2 Sr 2 Ca 2 Cu 3 O 10 + δ (Bi2223), or a general formula REBa 2 Cu 3 O 7-X Development of rare earth-based superconducting wires such as Y-based superconducting wires represented by (RE123, RE: rare earth element) is underway.
As an example of the structure of the rare earth oxide superconducting wire, an oxide superconducting layer is formed on a base material such as a metal tape via an intermediate layer, and then an Ag protective layer for protecting the oxide superconducting layer is formed. A structure is known in which an oxide superconducting layer is formed with a Cu stabilizing layer that functions as a current path when the superconducting state transitions from a superconducting state to a normal conducting state for some reason.

希土類系超電導線材はNi合金などのように強度の高い材料からなるテープ状の基材上に酸化物超電導層を形成することで、長手方向に高い引張強度を有するが、一般にテープ面に垂直な方向の応力に対する強度は、長手方向の強度に比べて弱いとされている。
また、希土類系超電導線材をコイル状に巻回し、エポキシ樹脂を含浸させて固定した超電導コイルを作製すると、希土類系超電導線材とエポキシ樹脂の冷却時の熱収縮差により、また、通電時のフープ応力(超電導コイルを外側に拡張する方向に作用する応力)等により、テープ面に垂直な方向の剥離応力が作用して酸化物超電導線材が劣化する可能性がある。
A rare earth-based superconducting wire has a high tensile strength in the longitudinal direction by forming an oxide superconducting layer on a tape-like substrate made of a high-strength material such as a Ni alloy, but is generally perpendicular to the tape surface. The strength against the stress in the direction is said to be weaker than the strength in the longitudinal direction.
In addition, when a superconducting coil in which a rare earth-based superconducting wire is wound in a coil shape and impregnated with an epoxy resin is manufactured, a difference in thermal shrinkage between the rare earth-based superconducting wire and the epoxy resin during cooling, and a hoop stress during energization There is a possibility that the oxide superconducting wire is deteriorated due to peeling stress in the direction perpendicular to the tape surface due to (stress acting in the direction of extending the superconducting coil outward) or the like.

上述の剥離応力に対する強度を向上させ得る技術として、以下に示す特許文献に記載の技術が知られている。
特許文献1に記載の技術は、高温超電導線材に作用する剥離力を低減する技術として、テープ状の金属基材と、この金属基材上に順次形成した中間層と、酸化物超電導層と、保護金属層を備え、保護金属層の表面の少なくとも一部に剥離材層を形成し、更にコイル加工した超電導コイルが知られている。剥離材層の構成材料として特許文献1には、フッ素系樹脂、パラフィン、グリース及びシリコンオイルが開示されている。
As a technique that can improve the strength against the above-described peeling stress, techniques described in the following patent documents are known.
The technology described in Patent Document 1 is a tape-shaped metal substrate, an intermediate layer sequentially formed on the metal substrate, an oxide superconducting layer, as a technique for reducing the peeling force acting on the high-temperature superconducting wire. A superconducting coil that includes a protective metal layer, forms a release material layer on at least a part of the surface of the protective metal layer, and is further coiled is known. Patent Document 1 discloses fluororesin, paraffin, grease, and silicon oil as constituent materials of the release material layer.

特開2010−267550号公報JP 2010-267550 A

酸化物超電導コイルは、液体窒素などの冷媒を用いるか、冷凍機などの冷却装置を用いて臨界温度以下に冷却して使用するので、多層巻きコイルなどのコイル形状に加工したとしても、酸化物超電導層を効率良く冷却する必要がある。ところが、上述の剥離材層を設けた構造では、含浸させたエポキシ樹脂と超電導コイルとの間に剥離材層が介在するので、熱的接触が悪くなり、酸化物超電導層の冷却効率が低下する問題がある。   Oxide superconducting coils are used by using a refrigerant such as liquid nitrogen or by cooling to a critical temperature or lower using a cooling device such as a refrigerator. It is necessary to cool the superconducting layer efficiently. However, in the structure provided with the above-described release material layer, since the release material layer is interposed between the impregnated epoxy resin and the superconducting coil, the thermal contact is deteriorated and the cooling efficiency of the oxide superconducting layer is reduced. There's a problem.

本発明は、以上のような従来の背景に鑑みなされたもので、超電導コイルとして加工して含浸樹脂により固めた構造として超電導線材に応力が作用したとしても、該応力を緩和できる構造を導入した酸化物超電導線材を提供することを目的とする。   The present invention has been made in view of the conventional background as described above, and even if stress is applied to the superconducting wire as a structure that is processed as a superconducting coil and hardened by an impregnating resin, a structure that can relieve the stress is introduced. An object is to provide an oxide superconducting wire.

上記課題を解決するために本発明の超電導線材は、テープ状の基材の一方の面上に中間層と酸化物超電導層と保護層をこの順に積層して酸化物超電導積層体が構成され、該酸化物超電導積層体の前記保護層上に導電材料からなる安定化材が配置された酸化物超電導線材であって、前記安定化材が上板と下板を備え、該上板と下板が長手方向に渡って幅方向両端部で電気的かつ機械的に接続され、前記上板と下板との間に中空部が形成されるか、前記上板と下板とが重ね合わされたことを特徴とする。
安定化材が上板と下板とからなる2重構造であると、超電導線材をコイル化して含浸樹脂で固定した、冷却時の熱膨張差に起因する応力が作用した場合、上板と下板とが離間する方向に変形することで、これらの応力を吸収できる。このため、酸化物超電導積層体の酸化物超電導層の部分あるいはその周囲の層に作用する剥離応力を低減することが可能となり、応力負荷に起因して超電導特性が劣化する現象を抑制できる。
In order to solve the above problems, the superconducting wire of the present invention comprises an oxide superconducting laminate in which an intermediate layer, an oxide superconducting layer, and a protective layer are laminated in this order on one surface of a tape-shaped substrate, An oxide superconducting wire in which a stabilizer made of a conductive material is disposed on the protective layer of the oxide superconducting laminate, wherein the stabilizer comprises an upper plate and a lower plate, and the upper plate and the lower plate Are electrically and mechanically connected at both ends in the width direction over the longitudinal direction, and a hollow portion is formed between the upper plate and the lower plate, or the upper plate and the lower plate are overlapped. It is characterized by.
If the stabilizing material has a double structure consisting of an upper plate and a lower plate, the superconducting wire is coiled and fixed with an impregnating resin, and stress due to the difference in thermal expansion during cooling is applied. These stresses can be absorbed by the deformation in the direction away from the plate. For this reason, it becomes possible to reduce the peeling stress which acts on the oxide superconducting layer portion of the oxide superconducting laminate or the surrounding layers, and the phenomenon that the superconducting characteristics deteriorate due to the stress load can be suppressed.

本発明において、前記安定化材を偏平型の中空パイプとすることができる。
偏平型の中空パイプからなる安定化材であるならば、中空パイプを構成する上板と下板とが対向配置された安定化材であるので、酸化物超電導線材を構成する酸化物超電導積層体の面方向に垂直な剥離応力が作用しても、中空パイプの上板と下板が離間する方向に変形することで応力を吸収できる。また、中空パイプの安定化材は、酸化物超電導層が超電導状態から常電導状態に転移しようとした場合の電流のバイパスとなり、上板と下板を有し、導体としての断面積も大きくできるので、酸化物超電導線材を安定化する場合に有利な特徴を有する。
In the present invention, the stabilizing material can be a flat hollow pipe.
If it is a stabilizing material comprising a flat hollow pipe, the oxide superconducting laminate constituting the oxide superconducting wire, since the upper plate and the lower plate constituting the hollow pipe are opposed to each other. Even if a peeling stress perpendicular to the surface direction of the plate acts, the stress can be absorbed by deformation in a direction in which the upper plate and the lower plate of the hollow pipe are separated. Moreover, the stabilizer for the hollow pipe serves as a current bypass when the oxide superconducting layer attempts to transition from the superconducting state to the normal conducting state, has an upper plate and a lower plate, and can increase the cross-sectional area as a conductor. Therefore, it has an advantageous feature in stabilizing the oxide superconducting wire.

本発明において、前記安定化材が、上板と下板を重ね合わせ、それらの幅方向両端部を導電性の接合材で一体化した構成にできる。
この構造において酸化物超電導線材を構成する酸化物超電導積層体の面方向に垂直な剥離応力が作用しても、導電性の接合材で一体化した上板と下板が離間する方向に変形することで応力を吸収できる。
本発明において、前記安定化材が1枚の金属板を2つ折りして重ね合わせ、前記金属板の重ね合わせ先端縁側を接合材で一体化した構成でも良い。
この構造において酸化物超電導線材を構成する酸化物超電導積層体の面方向に垂直な剥離応力が作用しても、2つ折りして金属板を重ね合わせ構造とした上板と下板が離間する方向に変形することで応力を吸収できる。
In the present invention, the stabilizing material can be configured such that the upper plate and the lower plate are overlapped and the both ends in the width direction are integrated with a conductive bonding material.
In this structure, even if peeling stress perpendicular to the surface direction of the oxide superconducting laminate constituting the oxide superconducting wire acts, the upper and lower plates integrated with the conductive bonding material are deformed in a direction away from each other. Stress can be absorbed.
In the present invention, the stabilizing material may be configured such that one metal plate is folded and overlapped, and the overlapping leading edge side of the metal plate is integrated with a bonding material.
In this structure, even if peeling stress perpendicular to the surface direction of the oxide superconducting laminate constituting the oxide superconducting wire acts, the metal plate is folded in two and the upper and lower plates are separated from each other The stress can be absorbed by deformation.

本発明において、前記保護層上に配置された安定化材が、前記酸化物超電導積層体の外周を取り囲むように形成されていても良い。
安定化材により酸化物超電導積層体の外周を取り囲む構成にしていると、酸化物超電導積層体の外部に水分が存在していても、内部の酸化物超電導層側にまで水分が浸入しないので、水分により酸化物超電導層に劣化を生じない構造を得ることができる。
In the present invention, the stabilizing material disposed on the protective layer may be formed so as to surround the outer periphery of the oxide superconducting laminate.
Since the stabilizer surrounds the outer periphery of the oxide superconducting laminate, even if moisture is present outside the oxide superconducting laminate, moisture does not enter the oxide superconducting layer side, A structure in which the oxide superconducting layer is not deteriorated by moisture can be obtained.

本発明において、前記保護層上に配置された安定化材が、前記酸化物超電導積層体の外周を取り囲むように延出形成され、前記保護層上に配置された安定化材の一部が下板とされ、該下板上に導電材料からなる上板が配置された構成でも良い。
この構造においても、酸化物超電導積層体を囲んだ安定化材の一部を下板として、更に上板を有しているので、酸化物超電導線材を構成する酸化物超電導積層体の面に垂直な方向へ剥離応力が作用しても、上板と下板が離間する方向に変形することで応力を吸収できる。更に、安定化材により酸化物超電導積層体の外周を取り囲む構成にしていると、酸化物超電導積層体の外部に水分が存在していても、酸化物超電導積層体に形成されている酸化物超電導層に水分が浸入しないので、水分により酸化物超電導層に劣化を生じない構造を得ることができる。
In the present invention, the stabilizing material disposed on the protective layer is formed to extend so as to surround the outer periphery of the oxide superconducting laminate, and a part of the stabilizing material disposed on the protective layer is below. It may be a plate, and a configuration in which an upper plate made of a conductive material is disposed on the lower plate may be used.
Also in this structure, a part of the stabilizing material surrounding the oxide superconducting laminate is used as a lower plate and an upper plate is provided, so that it is perpendicular to the surface of the oxide superconducting laminate constituting the oxide superconducting wire. Even if peeling stress acts in any direction, the stress can be absorbed by deformation in a direction in which the upper plate and the lower plate are separated from each other. Furthermore, if the stabilizer surrounds the outer periphery of the oxide superconducting laminate, the oxide superconductivity formed in the oxide superconducting laminate can be obtained even if moisture is present outside the oxide superconducting laminate. Since moisture does not enter the layer, a structure in which the oxide superconducting layer is not deteriorated by moisture can be obtained.

本発明において、前記保護層上に配置された安定化材が、前記酸化物超電導積層体の外周を取り囲むように形成され、前記保護層上の安定化材の外方まで延出形成されて前記保護層上の安定化材に重ねられ、前記保護層上の安定化材が下板とされ、該下板上に延出された安定化材の延出部が上板とされた構成でも良い。
この構造においても、酸化物超電導積層体を囲んだ安定化材の一部を下板として更に上板を有しているので、酸化物超電導線材を構成する酸化物超電導積層体の面に垂直な方向に剥離応力が作用しても、上板と下板が離間する方向に変形することで応力を吸収できる。更に、酸化物超電導積層体の外部に水分が存在していても、酸化物超電導層側に水分が浸入しない構造になっているので、水分により酸化物超電導層に劣化を生じない構造を得ることができる。
本発明において、前記保護層の両側部に酸化物超電導積層体の両側部から基材裏面側まで延出する接合層が形成され、該接合層を介し基材裏面側に第2の安定化材が配置された構成でも良い。
基材裏面側にも第2の安定化材を設けることで保護層上に設けた安定化材と相俟って安定化材の断面積を大きくできるので、酸化物超電導線材を安定化する場合に有利な特徴を有する。
In the present invention, the stabilizing material disposed on the protective layer is formed so as to surround the outer periphery of the oxide superconducting laminate, and is formed to extend to the outside of the stabilizing material on the protective layer. A structure may be employed in which the stabilizer on the protective layer is overlaid, the stabilizer on the protective layer is a lower plate, and the extending portion of the stabilizer extended on the lower plate is an upper plate. .
Even in this structure, since a part of the stabilizing material surrounding the oxide superconducting laminate is further provided as the lower plate, the upper plate is further provided. Therefore, the structure is perpendicular to the surface of the oxide superconducting laminate constituting the oxide superconducting wire. Even if peeling stress acts in the direction, the stress can be absorbed by deformation in a direction in which the upper plate and the lower plate are separated from each other. Furthermore, even if moisture is present outside the oxide superconducting laminate, it has a structure in which moisture does not enter the oxide superconducting layer side, so that a structure in which the oxide superconducting layer does not deteriorate due to moisture is obtained. Can do.
In the present invention, a bonding layer extending from both sides of the oxide superconducting laminate to the back side of the substrate is formed on both sides of the protective layer, and the second stabilizing material is formed on the back side of the substrate via the bonding layer. May be arranged.
When stabilizing the oxide superconducting wire because the cross-sectional area of the stabilizing material can be increased in combination with the stabilizing material provided on the protective layer by providing the second stabilizing material on the back side of the base material. Has advantageous features.

本発明によれば、安定化材が上板と下板とからなる2重構造であるので、超電導線材をコイル化して含浸樹脂で固定した場合などにおいて、冷却時の熱膨張差に起因する応力が酸化物超電導積層体の厚さ方向に剥離応力として作用しても、上板と下板とが離間する方向に変形することで、応力を吸収できる。このため、酸化物超電導積層体の酸化物超電導層の部分とその周囲の層に作用する剥離応力を低減することが可能となり、応力負荷に起因して超電導特性が劣化する現象を抑制できる。   According to the present invention, since the stabilizing material has a double structure consisting of an upper plate and a lower plate, when the superconducting wire is coiled and fixed with an impregnating resin, the stress caused by the difference in thermal expansion during cooling Even when acting as a peeling stress in the thickness direction of the oxide superconducting laminate, the stress can be absorbed by deformation in the direction in which the upper plate and the lower plate are separated from each other. For this reason, it becomes possible to reduce the peeling stress which acts on the oxide superconducting layer portion of the oxide superconducting laminate and the surrounding layers, and the phenomenon that the superconducting characteristics deteriorate due to the stress load can be suppressed.

本発明に係る第1実施形態の酸化物超電導線材の横断面図である。It is a cross-sectional view of the oxide superconducting wire according to the first embodiment of the present invention. 本発明に係る第2実施形態の酸化物超電導線材の横断面図である。It is a cross-sectional view of the oxide superconducting wire according to the second embodiment of the present invention. 本発明に係る第3実施形態の酸化物超電導線材の横断面図である。It is a cross-sectional view of the oxide superconducting wire according to the third embodiment of the present invention. 本発明に係る第4実施形態の酸化物超電導線材の横断面図である。It is a cross-sectional view of the oxide superconducting wire according to the fourth embodiment of the present invention. 本発明に係る第5実施形態の酸化物超電導線材の横断面図である。It is a cross-sectional view of the oxide superconducting wire according to the fifth embodiment of the present invention. 本発明に係る第6実施形態の酸化物超電導線材の横断面図である。It is a cross-sectional view of the oxide superconducting wire according to the sixth embodiment of the present invention. 本発明に係る第7実施形態の酸化物超電導線材の横断面図である。It is a cross-sectional view of the oxide superconducting wire according to the seventh embodiment of the present invention. 本発明に係る第8実施形態の酸化物超電導線材の横断面図である。It is a cross-sectional view of the oxide superconducting wire according to the eighth embodiment of the present invention. 本発明に係る第9実施形態の酸化物超電導線材の横断面図である。It is a cross-sectional view of the oxide superconducting wire according to the ninth embodiment of the present invention.

<第1実施形態>
以下、本発明に係る酸化物超電導線材の実施形態について図面に基づいて説明する。
図1は本発明に係る酸化物超電導線材の第1実施形態を模式的に示す横断面図である。
本実施形態の酸化物超電導線材1は、酸化物超電導積層体2の上面側に偏平の矩形パイプ状の安定化材3を半田などの低融点金属からなる接合層4により一体化してなる。
本実施形態の酸化物超電導積層体2は、詳細には、テープ状の基材5の一面上に(図1では上面上に)、中間層6と酸化物超電導層7と保護層8とをこの順に積層してなる。
前記基材5は、可撓性を有する線材とするためにテープ状であることが好ましく、耐熱性の金属からなるものが好ましい。各種耐熱性金属の中でも、ニッケル合金からなることが好ましい。なかでも、市販品であれば、ハステロイ(米国ヘインズ社製商品名)が好適である。基材5の厚さは、通常は、10〜500μmである。また、基材5として、ニッケル合金に集合組織を導入した配向Ni−W合金テープ基材等を適用することもできる。
<First Embodiment>
Hereinafter, embodiments of an oxide superconducting wire according to the present invention will be described with reference to the drawings.
FIG. 1 is a cross-sectional view schematically showing a first embodiment of an oxide superconducting wire according to the present invention.
The oxide superconducting wire 1 of this embodiment is formed by integrating a flat rectangular pipe-shaped stabilizing material 3 on the upper surface side of an oxide superconducting laminate 2 with a bonding layer 4 made of a low melting point metal such as solder.
Specifically, the oxide superconducting laminate 2 of the present embodiment includes an intermediate layer 6, an oxide superconducting layer 7, and a protective layer 8 on one surface of a tape-like substrate 5 (on the upper surface in FIG. 1). Laminated in this order.
The substrate 5 is preferably in the form of a tape in order to obtain a flexible wire, and is preferably made of a heat-resistant metal. Among various refractory metals, a nickel alloy is preferable. Especially, if it is a commercial item, Hastelloy (US Haynes Corporation brand name) is suitable. The thickness of the base material 5 is usually 10 to 500 μm. Moreover, as the base material 5, an oriented Ni—W alloy tape base material in which a texture is introduced into a nickel alloy can be applied.

中間層6は、以下に説明する下地層と配向層とキャップ層からなる構造を一例として適用できる。
下地層を設ける場合は、以下に説明する拡散防止層とベッド層の複層構造あるいは、これらのうちどちらか1層からなる構造とすることができるが、下地層は必須ではなく、略しても差し支えない。
下地層として拡散防止層を設ける場合、窒化ケイ素(Si)、酸化アルミニウム(Al、「アルミナ」とも呼ぶ)、あるいは、GZO(GdZr)等から構成される単層構造あるいは複層構造の層が望ましく、厚さは例えば10〜400nmである。
下地層としてベッド層を設ける場合、ベッド層は、例えば、イットリア(Y)などの希土類酸化物であり、より具体的には、Er、CeO、Dy3、Er、Eu、Ho、La等を例示することができ、これらの材料からなる単層構造あるいは複層構造を採用できる。ベッド層の厚さは例えば10〜100nmである。
The intermediate layer 6 can be applied as an example of a structure composed of an underlayer, an alignment layer, and a cap layer described below.
When the underlayer is provided, it can be a multi-layer structure of a diffusion prevention layer and a bed layer, which will be described below, or a structure consisting of any one of these layers, but the underlayer is not essential and may be omitted. There is no problem.
In the case of providing a diffusion prevention layer as an underlayer, it is composed of silicon nitride (Si 3 N 4 ), aluminum oxide (Al 2 O 3 , also referred to as “alumina”), GZO (Gd 2 Zr 2 O 7 ), or the like. A single layer structure or a multilayer structure is desirable, and the thickness is, for example, 10 to 400 nm.
When providing a bed layer as an underlayer, the bed layer is a rare earth oxide such as yttria (Y 2 O 3 ), and more specifically, Er 2 O 3 , CeO 2 , Dy 2 O 3, Er. 2 O 3 , Eu 2 O 3 , Ho 2 O 3 , La 2 O 3 and the like can be exemplified, and a single layer structure or a multilayer structure made of these materials can be adopted. The thickness of the bed layer is, for example, 10 to 100 nm.

配向層は、その上方に形成する酸化物超電導層7と格子整合性の良い金属酸化物からなることが好ましい。配向層の好ましい材質として具体的には、GdZr、MgO、ZrO−Y(YSZ)、SrTiO、CeO、Y、Al、Gd、Zr、Ho、Nd等の金属酸化物を例示できる。配向層は、単層でも良いし、複層構造でも良い。
キャップ層は、好ましいものとして具体的には、CeO、Y、Al、Gd、Zr、Ho、Nd等が例示できる。キャップ層の材質がCeOである場合、キャップ層は、Ceの一部が他の金属原子又は金属イオンで置換されたCe−M−O系酸化物を含んでいても良い。CeOのキャップ層の膜厚は、50nm以上であればよいが、十分な配向性を得るには100nm以上が好ましい。但し、厚すぎると結晶配向性が悪くなるので、50〜5000nmの範囲とすることができる。
The alignment layer is preferably made of a metal oxide having good lattice matching with the oxide superconducting layer 7 formed thereon. Specifically, preferred materials for the alignment layer include Gd 2 Zr 2 O 7 , MgO, ZrO 2 —Y 2 O 3 (YSZ), SrTiO 3 , CeO 2 , Y 2 O 3 , Al 2 O 3 , Gd 2 O. 3 , metal oxides such as Zr 2 O 3 , Ho 2 O 3 and Nd 2 O 3 can be exemplified. The alignment layer may be a single layer or a multilayer structure.
Specific examples of the cap layer include CeO 2 , Y 2 O 3 , Al 2 O 3 , Gd 2 O 3 , Zr 2 O 3 , Ho 2 O 3 , and Nd 2 O 3 . When the material of the cap layer is CeO 2 , the cap layer may contain a Ce—M—O-based oxide in which part of Ce is substituted with another metal atom or metal ion. The thickness of the CeO 2 cap layer may be 50 nm or more, but is preferably 100 nm or more in order to obtain sufficient orientation. However, if it is too thick, the crystal orientation deteriorates, so the thickness can be in the range of 50 to 5000 nm.

酸化物超電導層7は通常知られている組成の希土類系高温酸化物超電導体からなる薄膜を広く適用することができ、REBaCu7−X(REはY、La、Nd、Sm、Er、Gd等の希土類元素を表す)なる材質のもの、具体的には、Y123(YBaCu7−X)又はGd123(GdBaCu7−X)を例示できる。酸化物超電導層7の厚みは0.5〜5μm程度であって、均一な厚みであることが好ましい。
酸化物超電導層7の上面を覆うように形成されている保護層8は、AgまたはAg合金からなり、その厚さは1〜30μm程度とされている。
The oxide superconducting layer 7 can be widely applied to a thin film made of a rare earth-based high-temperature oxide superconductor having a generally known composition, and REBa 2 Cu 3 O 7-X (RE is Y, La, Nd, Sm, For example, Y123 (YBa 2 Cu 3 O 7-X ) or Gd123 (GdBa 2 Cu 3 O 7-X ) can be exemplified. The oxide superconducting layer 7 has a thickness of about 0.5 to 5 μm and preferably a uniform thickness.
The protective layer 8 formed so as to cover the upper surface of the oxide superconducting layer 7 is made of Ag or an Ag alloy and has a thickness of about 1 to 30 μm.

安定化材3は、CuやCu合金あるいはAgやAg合金などの良導電性の金属材料からなる上板3Aおよび下板3Bと側板3C、3Cとからなる偏平の矩形パイプ形状とされ、その横幅は酸化物超電導積層体2と同程度に形成され、半田などの低融点合金の接合層4を介し保護層8の上面に接合されている。
安定化材3の肉厚は特に限定されず、適宜調整可能であるが、良導電性のCuやCu合金から構成される場合、上板3Aおよび下板3Bと側板3C、3Cの個々の厚さを10〜300μmとすることができ、酸化物超電導線材1としてのコイル加工時の取り扱い性を考慮すると、肉厚は20〜100μmの範囲が好ましい。なお、酸化物超電導線材1を超電導限流器に使用する場合は、安定化材3をCu−Ni等の高抵抗金属材料から構成することが好ましい。
安定化材3をCuやCu合金などの良導電性材料から構成した場合、酸化物超電導層7が超電導状態から常電導状態に遷移しようとしたとき、安定化材3が保護層8とともに、酸化物超電導層7の電流を転流させるバイパスとして機能する。
The stabilizing material 3 is formed into a flat rectangular pipe shape composed of an upper plate 3A and a lower plate 3B and side plates 3C, 3C made of a highly conductive metal material such as Cu, Cu alloy, Ag, or Ag alloy. Is formed to the same extent as the oxide superconducting laminate 2 and is bonded to the upper surface of the protective layer 8 via a bonding layer 4 of a low melting point alloy such as solder.
The thickness of the stabilizer 3 is not particularly limited and can be adjusted as appropriate. However, when the stabilizer 3 is made of highly conductive Cu or Cu alloy, the individual thicknesses of the upper plate 3A, the lower plate 3B, and the side plates 3C, 3C. The thickness can be set to 10 to 300 μm, and the thickness is preferably in the range of 20 to 100 μm in consideration of handling at the time of coil processing as the oxide superconducting wire 1. In addition, when using the oxide superconducting wire 1 for a superconducting fault current limiter, it is preferable that the stabilizing material 3 is made of a high resistance metal material such as Cu-Ni.
When the stabilizing material 3 is made of a highly conductive material such as Cu or Cu alloy, when the oxide superconducting layer 7 attempts to transition from the superconducting state to the normal conducting state, the stabilizing material 3 is oxidized together with the protective layer 8. It functions as a bypass that commutates the current of the superconducting layer 7.

低融点金属からなる接合層4を介して安定化材3と保護層8を電気的および機械的に接続することにより、保護層8と安定化材3との接合が強固となり、接続抵抗が低下するため、酸化物超電導層7を安定化する効果を向上できる。接合層4として半田層を設ける場合にその厚さは、特に限定されず、適宜調整可能であるが、例えば、2〜20μm程度とすることができる。   By electrically and mechanically connecting the stabilizing material 3 and the protective layer 8 through the bonding layer 4 made of a low melting point metal, the bonding between the protective layer 8 and the stabilizing material 3 becomes strong, and the connection resistance decreases. Therefore, the effect of stabilizing the oxide superconducting layer 7 can be improved. When a solder layer is provided as the bonding layer 4, the thickness is not particularly limited and can be adjusted as appropriate. For example, the thickness can be about 2 to 20 μm.

接合層4として半田層を用いる場合は従来公知の半田より構成することができ、例えば、Sn−Ag系合金、Sn−Bi系合金、Sn−Cu系合金、Sn−Zn系合金などの鉛フリー半田、Pb−Sn系合金半田、共晶半田、低温半田などが挙げられ、これらの半田を1種または2種以上組み合わせて使用することができる。これらの中でも、融点が300℃以下の半田を用いることが好ましい。これにより、300℃以下の温度で安定化材3と酸化物超電導積層体2を半田付けすることが可能となるので、半田付けの熱によって酸化物超電導層7の特性劣化を抑止できる。   When a solder layer is used as the bonding layer 4, it can be composed of a conventionally known solder, for example, lead-free such as Sn—Ag alloy, Sn—Bi alloy, Sn—Cu alloy, Sn—Zn alloy. Examples thereof include solder, Pb—Sn alloy solder, eutectic solder, low temperature solder and the like, and these solders can be used alone or in combination. Among these, it is preferable to use solder having a melting point of 300 ° C. or less. This makes it possible to solder the stabilizing material 3 and the oxide superconducting laminate 2 at a temperature of 300 ° C. or lower, so that the deterioration of the characteristics of the oxide superconducting layer 7 can be suppressed by the heat of soldering.

矩形パイプ状の安定化材3は上板3Aと下板3Bとの間に中空部3Dが形成されているが、安定化材3の内部に形成されている中空部3Dの厚みは特に問わない。中空部3Dの厚みは、例えば、上板3Aと同程度、基材5と同程度でも良く、後述する実施形態のように上板と下板を接触させて中空部3Dを限りなく薄く形成しても良い。例えば、上板3Aと下板3Bが接触した状態で上下に配置されていても良い。また、矩形パイプ状の安定化材3の横断面において外周のコーナー部分は所定曲率のアール部3aが形成されている。
安定化材3が上板3Aと下板3Bと側板3C、3Cからなる構造である場合、図1に示す断面構造のテープ状の酸化物超電導線材1の外周を絶縁テープなどの絶縁層で覆った上に巻き枠等に巻き付け、超電導コイルを構成する場合、酸化物超電導線材1を固定するためにエポキシ樹脂等を含浸させて酸化物超電導線材1を含浸樹脂層により固定する。
安定化材3の外周に形成されているアール部3aは、上述したように絶縁テープなどの巻き付けにより絶縁層を形成する場合に絶縁テープに張力をかけて巻き付けても絶縁テープを切ってしまうことがない。
The rectangular pipe-shaped stabilizing material 3 has a hollow portion 3D formed between the upper plate 3A and the lower plate 3B, but the thickness of the hollow portion 3D formed inside the stabilizing material 3 is not particularly limited. . The thickness of the hollow portion 3D may be, for example, about the same as that of the upper plate 3A and about the same as that of the base material 5, and the upper portion and the lower plate are contacted to form the hollow portion 3D as thin as possible as in the embodiment described later. May be. For example, the upper plate 3 </ b> A and the lower plate 3 </ b> B may be arranged up and down in contact with each other. Further, a rounded portion 3a having a predetermined curvature is formed at the outer peripheral corner portion in the cross section of the rectangular pipe-shaped stabilizing material 3.
When the stabilizing material 3 has a structure composed of an upper plate 3A, a lower plate 3B, and side plates 3C, 3C, the outer periphery of the tape-shaped oxide superconducting wire 1 having a cross-sectional structure shown in FIG. 1 is covered with an insulating layer such as an insulating tape. In addition, when a superconducting coil is formed by winding it around a winding frame or the like, the oxide superconducting wire 1 is impregnated with an impregnated resin layer by impregnating with an epoxy resin or the like in order to fix the oxide superconducting wire 1.
The rounded portion 3a formed on the outer periphery of the stabilizing material 3 cuts the insulating tape even if the insulating tape is wound with tension when the insulating layer is formed by winding the insulating tape as described above. There is no.

テープ状の酸化物超電導線材1を用いて超電導コイルを作製するには、基材5を巻き枠の外周面に沿って基材5を巻き枠の外周面に向くようにして必要層数巻き付けるか、反対に巻き枠の外周面に安定化材3を巻き枠の外周面に向くようにして必要層数巻き付けることで超電導コイルを作製できる。酸化物超電導線材1を巻き枠の外周に必要な巻き数で巻回した後、巻き付けた酸化物超電導線材1を覆うようにエポキシ樹脂等の樹脂を含浸させて酸化物超電導線材1を固定する。このように酸化物超電導コイルは、含浸樹脂により周囲を覆われた状態で冷媒や冷却装置により冷却されるので、常温から低温に冷却される段階で熱膨張係数の大きい含浸樹脂により超電導線材1に応力が作用する。   In order to produce a superconducting coil using the tape-shaped oxide superconducting wire 1, is the number of necessary layers wound around the base material 5 along the outer peripheral surface of the winding frame so that the base material 5 faces the outer peripheral surface of the winding frame? On the other hand, a superconducting coil can be produced by winding the stabilizing material 3 on the outer peripheral surface of the winding frame so as to face the outer peripheral surface of the winding frame in the required number of layers. The oxide superconducting wire 1 is wound around the outer periphery of the winding frame with a necessary number of turns, and then the oxide superconducting wire 1 is fixed by impregnating a resin such as an epoxy resin so as to cover the wound oxide superconducting wire 1. As described above, the oxide superconducting coil is cooled by the refrigerant or the cooling device in a state where the coil is covered with the impregnating resin. Stress acts.

含浸樹脂による応力が作用すると、酸化物超電導積層体2に層間剥離を生じさせる方向に応力が作用するが、この応力に対し、安定化材3の内部に中空部3Dが形成され、上板3Aと下板3Bを離間させる方向に上板3Aが変形できるので、上板3Aが下板3Bと離間するように変形することで上述の応力を吸収できる。このため、酸化物超電導線材1に設けられている酸化物超電導層7に作用する応力は抑制されるか解消されるので、酸化物超電導層7の超電導特性が劣化することがない。   When the stress due to the impregnating resin acts, the stress acts in the direction that causes delamination in the oxide superconducting laminate 2, but against this stress, a hollow portion 3D is formed inside the stabilizing material 3, and the upper plate 3A. Since the upper plate 3A can be deformed in the direction in which the lower plate 3B is separated from the lower plate 3B, the above-described stress can be absorbed by the upper plate 3A being deformed so as to be separated from the lower plate 3B. For this reason, since the stress which acts on the oxide superconducting layer 7 provided in the oxide superconducting wire 1 is suppressed or eliminated, the superconducting characteristics of the oxide superconducting layer 7 do not deteriorate.

図1に示す断面構造の酸化物超電導線材1にあっては、安定化材3が基材5と同等の幅であり、偏平であって、上板3Aの表面は基材5と平行に配置されているので、酸化物超電導線材1の全体として矩形断面形状を維持することができ、巻き枠などに多層巻きしてコイル化する場合に巻き乱れを生じ難い断面形状になっている。   In the oxide superconducting wire 1 having the cross-sectional structure shown in FIG. 1, the stabilizing material 3 has the same width as the base material 5 and is flat, and the surface of the upper plate 3 </ b> A is arranged in parallel with the base material 5. As a result, the oxide superconducting wire 1 can maintain a rectangular cross-sectional shape as a whole, and has a cross-sectional shape that is less likely to cause turbulence when being coiled by being wound in multiple layers on a winding frame or the like.

<第2実施形態>
図2は本発明に係る酸化物超電導線材の第2実施形態の断面構造を示すもので、本実施形態の酸化物超電導線材1Aは、酸化物超電導積層体2の外周をめっき層からなる安定化層9で覆い、その上面側に偏平の矩形パイプ状の安定化材3を半田などの低融点金属からなる接合層4により一体化してなる。
第2実施形態の構造において先の第1実施形態の構造と同等の構成要素には同一の符号を付してそれら要素の説明は省略する。
第2実施形態の構造において酸化物超電導積層体2の外周にはCuあるいはCu合金などの良導電性の金属材料のめっきからなる安定化層9が被覆されている。めっきからなる安定化層9は、一例として酸化物超電導積層体2において銀からなる保護層8をスパッタ法などの成膜法により形成する場合、酸化物超電導層7の表面に加えて基材5の側面や裏面側にもスパッタ粒子を飛ばしてAgの薄い下地層を形成しておき、このAgの下地層を元にめっき処理することで基材5が難めっき材の場合であっても支障なくめっき層を形成できる。
例えば、酸化物超電導積層体2の全体を硫酸銅水溶液などのめっき浴に浸漬し、電気めっきによりAgの保護層上と基材1の側面側と裏面側に銅の安定化層を形成できる。このめっき処理により安定化層9を形成できる。ここで形成するめっき層からなる安定化層9は先の第1実施形態の安定化材3の上板3A、下板3Bと同等程度の厚さに形成できるが、例えば、10〜300μmの範囲、線材としての取り扱い性と可撓性などを考慮すると、より好ましくは20〜100μmの範囲を選択できる。なお、めっき層を厚く形成しすぎると線材の撓曲性が損なわれる可能性があることを考慮すると、安定化層9は安定化材3の肉厚よりも薄い層として構成することが好ましい。
Second Embodiment
FIG. 2 shows a cross-sectional structure of the second embodiment of the oxide superconducting wire according to the present invention. The oxide superconducting wire 1A of the present embodiment is a stabilized outer periphery of the oxide superconducting laminate 2 made of a plating layer. It is covered with a layer 9, and a flat rectangular pipe-shaped stabilizing material 3 is integrated on the upper surface side by a bonding layer 4 made of a low melting point metal such as solder.
In the structure of the second embodiment, the same components as those in the structure of the first embodiment are denoted by the same reference numerals, and description of these elements is omitted.
In the structure of the second embodiment, the outer periphery of the oxide superconducting laminate 2 is coated with a stabilizing layer 9 made of a plating of a highly conductive metal material such as Cu or Cu alloy. For example, when the protective layer 8 made of silver is formed in the oxide superconducting laminate 2 by a film forming method such as sputtering, the stabilizing layer 9 made of plating is added to the surface of the oxide superconducting layer 7 and the base material 5. Even if the base material 5 is a difficult-to-plate material, it is possible to form a thin undercoat layer of Ag by spattering sputtered particles on the side surface and back surface of the substrate, and to perform the plating process based on the undercoat layer of Ag. And a plating layer can be formed.
For example, the entire oxide superconducting laminate 2 can be immersed in a plating bath such as an aqueous copper sulfate solution, and a copper stabilization layer can be formed on the protective layer of Ag and on the side and back sides of the substrate 1 by electroplating. The stabilization layer 9 can be formed by this plating process. The stabilizing layer 9 made of the plating layer formed here can be formed to a thickness equivalent to the upper plate 3A and the lower plate 3B of the stabilizing material 3 of the first embodiment, for example, in the range of 10 to 300 μm. In consideration of handleability and flexibility as a wire, a range of 20 to 100 μm can be selected more preferably. In consideration of the possibility that the flexibility of the wire may be impaired if the plating layer is formed too thick, the stabilization layer 9 is preferably configured as a layer thinner than the thickness of the stabilization material 3.

第2実施形態の酸化物超電導線材1Aは、上述のめっき層からなる安定化層9に加えて第1実施形態の安定化材3と同等の安定化材3を備えているので、超電導コイルを構成した場合の応力緩和効果については第1実施形態の酸化物超電導線材1と同等の作用効果を得ることができる。また、安定化材3に加えて良導電材料製の安定化層9を備えているので、酸化物超電導層7が超電導状態から常電導状態に遷移しようとしたとき、安定化材3と安定化層9が保護層8とともに、酸化物超電導層7の電流を転流させるバイパスとして機能する。第2実施形態の場合、安定化材3に加えて安定化層9を設けているので、電流を分流するバイパスとしての導体断面積を大きくできるので、超電導線材1の安定化の面においては第1実施形態の構造よりも有利な構造となる。   Since the oxide superconducting wire 1A of the second embodiment includes the stabilizing material 3 equivalent to the stabilizing material 3 of the first embodiment in addition to the stabilizing layer 9 made of the plating layer, the superconducting coil is provided. With respect to the stress relaxation effect in the case of the configuration, an operational effect equivalent to that of the oxide superconducting wire 1 of the first embodiment can be obtained. Further, since the stabilizing layer 9 made of a highly conductive material is provided in addition to the stabilizing material 3, when the oxide superconducting layer 7 attempts to transition from the superconducting state to the normal conducting state, the stabilizing material 3 and the stabilizing layer 9 are stabilized. The layer 9 together with the protective layer 8 functions as a bypass that commutates the current of the oxide superconducting layer 7. In the case of the second embodiment, since the stabilizing layer 9 is provided in addition to the stabilizing material 3, the conductor cross-sectional area as a bypass for diverting the current can be increased. The structure is more advantageous than the structure of one embodiment.

一方、第2実施形態の如く酸化物超電導積層体2の外周をめっき層からなる安定化層9で覆った構造とするならば、酸化物超電導積層体2の周囲に水分が存在していてもその水分が酸化物超電導線材1の内部の酸化物超電導層7側にまで到達することがない。
酸化物超電導層7を構成する希土類系の酸化物超電導体の中には水分の存在により劣化するものがあるので、酸化物超電導積層体2の外周を安定化層9で覆った構造の酸化物超電導線材1Aでは水分の浸入を抑制して水分の存在による超電導特性の劣化を生じることがない利点を有する。
On the other hand, if the oxide superconducting laminate 2 has a structure in which the outer periphery of the oxide superconducting laminate 2 is covered with a stabilizing layer 9 made of a plating layer as in the second embodiment, even if moisture exists around the oxide superconducting laminate 2. The moisture does not reach the oxide superconducting layer 7 inside the oxide superconducting wire 1.
Since some rare earth oxide superconductors constituting the oxide superconducting layer 7 are deteriorated by the presence of moisture, the oxide having a structure in which the outer periphery of the oxide superconducting laminate 2 is covered with the stabilizing layer 9. The superconducting wire 1A has an advantage that the infiltration of moisture is suppressed and the superconducting characteristics are not deteriorated due to the presence of moisture.

<第3実施形態>
図3は本発明に係る酸化物超電導線材の第3実施形態の断面構造を示すもので、本実施形態の酸化物超電導線材1Bは、酸化物超電導積層体2の上面側に、偏平の矩形パイプを潰した形状の安定化材13を半田などの低融点金属からなる接合層4により一体化してなる。
安定化材13は、第1実施形態で用いた安定化材13と同等の材料と構成からなり、異なる点は、上板13Aと下板13Bが上下に接触するように重ねられ、それらの幅方向両端が側壁13Cで接続一体化されている点である。即ち、第1実施形態の構造において設けられていた中空部3Dが限りなく薄くなって上板13Aと下板13Bが接触された偏平型の安定化材13とした点に特徴を有する。その他の形状や大きさ、各部の厚さ等は第1実施形態の安定化材3と同等構造とされている。本実施形態の安定化材13を保護層8に一体化する接合層4についても第1実施形態と同等の接合層4を用いることができる。
<Third Embodiment>
FIG. 3 shows a cross-sectional structure of the oxide superconducting wire according to the third embodiment of the present invention. The oxide superconducting wire 1B of this embodiment is a flat rectangular pipe on the upper surface side of the oxide superconducting laminate 2. The stabilizing material 13 in the shape of crushed is integrated by a bonding layer 4 made of a low melting point metal such as solder.
The stabilizing material 13 is composed of the same material and configuration as the stabilizing material 13 used in the first embodiment, and the difference is that the upper plate 13A and the lower plate 13B are stacked so as to contact each other in the vertical direction, and their widths Both ends in the direction are connected and integrated by the side wall 13C. In other words, the hollow portion 3D provided in the structure of the first embodiment is infinitely thin so that the flat stabilizer 13 is brought into contact with the upper plate 13A and the lower plate 13B. Other shapes and sizes, thicknesses of the respective parts, and the like are the same as those of the stabilizing material 3 of the first embodiment. The bonding layer 4 equivalent to that of the first embodiment can also be used for the bonding layer 4 that integrates the stabilizing material 13 of the present embodiment with the protective layer 8.

第3実施形態の安定化材13は、上板13Aと下板13Bとが重ねられてはいるが、これらが接着されているわけではなく、単に上下に重ねられている。このため、酸化物超電導線材1Bに対しその厚さ方向に応力が作用して上板13Aと下板13Bを引き剥がす方向に剥離応力が作用した場合、上板13Aが下板13Bと離間する方向に撓むことによって上板13Aが下板13Bから離間できるように構成されている。
この第3実施形態の酸化物超電導線材1Bを用いて超電導コイルを形成し、含浸樹脂により固めた場合、冷却に応じて酸化物超電導線材1Bの厚さ方向に応力が作用した場合、上板13Aと下板13Bとが離間し、相互に多少のずれを許容するので、前述の剥離応力を吸収し、酸化物超電導層7に剥離応力が直に作用することを抑制できる。
このため、酸化物超電導線材1Bは、超電導コイルを構成した後、冷却した場合において、酸化物超電導層7に直接作用する剥離応力を少なくすることで超電導特性の劣化を防止できる。
In the stabilizing member 13 of the third embodiment, the upper plate 13A and the lower plate 13B are overlapped, but they are not bonded, but are simply stacked one above the other. For this reason, when the stress acts on the oxide superconducting wire 1B in the thickness direction and the peeling stress acts in the direction of peeling off the upper plate 13A and the lower plate 13B, the direction in which the upper plate 13A is separated from the lower plate 13B. The upper plate 13A is configured so as to be separated from the lower plate 13B by being bent to the right.
When a superconducting coil is formed using the oxide superconducting wire 1B of the third embodiment and hardened with an impregnating resin, when the stress acts in the thickness direction of the oxide superconducting wire 1B according to cooling, the upper plate 13A And the lower plate 13B are separated from each other and allow some deviation from each other. Therefore, the above-described peeling stress is absorbed, and the direct action of the peeling stress on the oxide superconducting layer 7 can be suppressed.
For this reason, the oxide superconducting wire 1B can prevent deterioration of the superconducting characteristics by reducing the peeling stress that directly acts on the oxide superconducting layer 7 when the oxide superconducting wire 1B is cooled after the superconducting coil is formed.

<第4実施形態>
図4は本発明に係る酸化物超電導線材の第4実施形態の断面構造を示すもので、本実施形態の酸化物超電導線材1Cは、安定化層9で外周を覆った酸化物超電導積層体2の上面側に、偏平の矩形パイプを潰した形状の安定化材13を半田などの低融点金属からなる接合層4により一体化してなる。
安定化材13は、上述の第3実施形態で用いた安定化材13と同等のものであり、酸化物超電導積層体2の外周を覆っている安定化層9は先の第2実施形態で用いた安定化層9と同等のものである。
この第4実施形態の酸化物超電導線材1Cを用いて超電導コイルを形成し、含浸樹脂により固めた場合、冷却に応じて酸化物超電導線材1Cの厚さ方向に剥離応力が作用した場合、先の第3実施形態と同等の作用効果を得ることができる。また、安定化層9を備えているので、酸化物超電導層7が常電導状態へ転移しようとした時に電流のバイパスとなる作用効果に加え、酸化物超電導線材1Bが水分による劣化を生じることがない特徴において先の第3実施形態の構造と同等の作用効果を得ることができる。
<Fourth embodiment>
FIG. 4 shows a cross-sectional structure of the oxide superconducting wire according to the fourth embodiment of the present invention. The oxide superconducting wire 1C of the present embodiment is an oxide superconducting laminate 2 whose outer periphery is covered with a stabilization layer 9. On the upper surface side, a stabilizing material 13 having a shape obtained by crushing a flat rectangular pipe is integrated by a bonding layer 4 made of a low melting point metal such as solder.
The stabilizing material 13 is equivalent to the stabilizing material 13 used in the above-described third embodiment, and the stabilizing layer 9 covering the outer periphery of the oxide superconducting laminate 2 is the same as that in the previous second embodiment. It is equivalent to the stabilization layer 9 used.
When a superconducting coil is formed using the oxide superconducting wire 1C of the fourth embodiment and hardened with an impregnating resin, when a peeling stress acts in the thickness direction of the oxide superconducting wire 1C according to cooling, The same effect as the third embodiment can be obtained. In addition, since the stabilization layer 9 is provided, the oxide superconducting wire 1B may be deteriorated by moisture in addition to the effect of bypassing current when the oxide superconducting layer 7 attempts to transition to the normal conducting state. In the features that are not present, the same effects as the structure of the third embodiment can be obtained.

<第5実施形態>
図5は本発明に係る酸化物超電導線材の第5実施形態の断面構造を示すもので、本実施形態の酸化物超電導線材1Dは、酸化物超電導積層体2の上面側に、良電導材料製のテープ状の上板23Aと下板23Bとからなり、上板23Aと下板23Bの幅方向両端縁部分を半田などの接合材22で一体化した偏平の矩形パイプ状の安定化材23を半田などの低融点金属からなる接合層4により一体化してなる。上板23Aと下板23Bの間には中空部23Dが形成されている。また、この実施形態では上板23Aと下板23Bとを接合する接合材22の部分が安定化材23の側壁を兼ねる構成とされている。
第5実施形態の構造において先の第1実施形態の構造と同等の構成要素には同一の符号を付してそれら要素の説明は省略する。
<Fifth Embodiment>
FIG. 5 shows a cross-sectional structure of a fifth embodiment of the oxide superconducting wire according to the present invention. The oxide superconducting wire 1D of this embodiment is made of a highly conductive material on the upper surface side of the oxide superconducting laminate 2. A flat rectangular pipe-shaped stabilizing material 23 comprising a tape-shaped upper plate 23A and a lower plate 23B, in which both edge portions in the width direction of the upper plate 23A and the lower plate 23B are integrated with a bonding material 22 such as solder. They are integrated by a bonding layer 4 made of a low melting point metal such as solder. A hollow portion 23D is formed between the upper plate 23A and the lower plate 23B. In this embodiment, the portion of the bonding material 22 that joins the upper plate 23A and the lower plate 23B also serves as a side wall of the stabilizing material 23.
In the structure of the fifth embodiment, the same components as those in the structure of the first embodiment are denoted by the same reference numerals, and description of these elements is omitted.

偏平な矩形パイプ状の安定化材23は上板23Aと下板23Bとの間に中空部23Dが形成されているが、安定化材23の内部に形成されている中空部23Dの厚みは特に問わない。中空部23Dの厚みは、例えば、上板23Aと同程度、基材5と同程度でも良く、上板と下板を接触させて中空部23Dを限りなく薄くしても良い。例えば、上板23Aと下板23Bが接触した状態で接合材22により接合されていても良い。
安定化材23が上板23Aと下板23Bからなる構造である場合、図5に示す構造のテープ状の酸化物超電導線材1Dを絶縁層で覆った上に巻き枠等に巻き付け、超電導コイルを構成する場合、酸化物超電導線材1Dを固定するためにエポキシ樹脂等を含浸させて酸化物超電導線材1Dを固定する。
The flat rectangular pipe-shaped stabilizing material 23 has a hollow portion 23D formed between the upper plate 23A and the lower plate 23B. The thickness of the hollow portion 23D formed inside the stabilizing material 23 is particularly large. It doesn't matter. The thickness of the hollow portion 23D may be, for example, about the same as that of the upper plate 23A and about the same as that of the base material 5, and the upper portion and the lower plate may be brought into contact with each other to make the hollow portion 23D as thin as possible. For example, the upper plate 23 </ b> A and the lower plate 23 </ b> B may be joined by the joining material 22 in a state where they are in contact with each other.
When the stabilizing material 23 has a structure composed of the upper plate 23A and the lower plate 23B, the tape-shaped oxide superconducting wire 1D having the structure shown in FIG. 5 is covered with an insulating layer and wound around a winding frame or the like. When configured, the oxide superconducting wire 1D is fixed by impregnating with an epoxy resin or the like in order to fix the oxide superconducting wire 1D.

テープ状の酸化物超電導線材1Dを用いて超電導コイルを作製するには、先の実施形態の場合と同様に、酸化物超電導線材1Dを必要層数巻き付けることで超電導コイルを作製できる。酸化物超電導線材1Dを巻き枠の外周に必要な巻き数で巻回した後、巻き付けた酸化物超電導線材1Dを覆うようにエポキシ樹脂等の樹脂を含浸させて酸化物超電導線材1Dを固定する。このように酸化物超電導コイルは、含浸樹脂により周囲を覆われた状態で冷媒や冷却装置により冷却されるので、常温から低温に冷却される段階で熱膨張係数の大きい含浸樹脂により超電導線材1Dに応力が作用する。
含浸樹脂による応力が作用すると、酸化物超電導線材1Dの厚さ方向に剥離応力が作用するが、この剥離応力に対し、安定化材23の内部に中空部23Dが形成され、上板23Aと下板23Bを離間させる方向に上板23Aが変形できるので、上板23Aが下板23B側に離間するように変形することで上述の剥離応力を吸収できる。このため、酸化物超電導線材1Dに設けられている酸化物超電導層7に作用する応力は抑制されるか解消されるので、酸化物超電導層7の超電導特性が劣化することがない。また、樹脂を含浸させる場合に真空含浸を行うことが通常であり、含浸樹脂は酸化物超電導線材1Dを覆う絶縁層の隙間から染み込むおそれがあるが、上板23Aと下板23Bの幅方向両端側は接合材22により閉じられ、機械的にも充分な強度で接合されているので、中空部23D内に樹脂が浸入するおそれはない。
その他の作用効果についても第1実施形態の酸化物超電導線材1と同等の作用効果を得ることができる。
In order to produce a superconducting coil using the tape-shaped oxide superconducting wire 1D, the superconducting coil can be produced by winding the oxide superconducting wire 1D around the required number of layers, as in the previous embodiment. The oxide superconducting wire 1D is wound around the outer periphery of the winding frame with a necessary number of turns and then impregnated with a resin such as an epoxy resin so as to cover the wound oxide superconducting wire 1D, thereby fixing the oxide superconducting wire 1D. As described above, the oxide superconducting coil is cooled by the refrigerant or the cooling device in the state where the periphery is covered with the impregnating resin. Therefore, the superconducting wire 1D is impregnated with the impregnating resin having a large thermal expansion coefficient at the stage of cooling from room temperature to low temperature. Stress acts.
When stress due to the impregnating resin acts, peeling stress acts in the thickness direction of the oxide superconducting wire 1D, but against this peeling stress, a hollow portion 23D is formed inside the stabilizing material 23, and the upper plate 23A and lower Since the upper plate 23A can be deformed in the direction in which the plate 23B is separated, the above-described peeling stress can be absorbed by the upper plate 23A being deformed so as to be separated toward the lower plate 23B. For this reason, since the stress which acts on the oxide superconducting layer 7 provided in the oxide superconducting wire 1D is suppressed or eliminated, the superconducting characteristics of the oxide superconducting layer 7 do not deteriorate. Further, when impregnating the resin, vacuum impregnation is usually performed, and the impregnating resin may permeate through the gap between the insulating layers covering the oxide superconducting wire 1D, but both ends of the upper plate 23A and the lower plate 23B in the width direction. Since the side is closed by the bonding material 22 and mechanically bonded with sufficient strength, there is no possibility that the resin enters the hollow portion 23D.
With respect to other functions and effects, functions and effects equivalent to those of the oxide superconducting wire 1 of the first embodiment can be obtained.

<第6実施形態>
図6は本発明に係る酸化物超電導線材の第6実施形態の断面構造を示すもので、本実施形態の酸化物超電導線材1Eは、酸化物超電導積層体2の上面側に、良電導材料製のテープを2つ折りに折り曲げて形成した上板33Aと下板33Bとからなり、上板33Aと下板33Bの重ね合わせ先端側の端縁部分を半田などの接合材32で一体化した偏平の矩形パイプ状の安定化材33を半田などの低融点金属からなる接合層4により一体化してなる。上板33Aと下板33Bの間には中空部33Dが形成されている。また、この実施形態ではテープを2つ折りに折り曲げた部分と、上板33Aおよび下板33Bとを接合する接合材32の部分が安定化材33の側壁を兼ねる構成とされている。
第6実施形態の構造において先の第1実施形態の構造と同等の構成要素には同一の符号を付してそれら要素の説明は省略する。
<Sixth Embodiment>
FIG. 6 shows a cross-sectional structure of a sixth embodiment of the oxide superconducting wire according to the present invention. The oxide superconducting wire 1E of the present embodiment is made of a highly conductive material on the upper surface side of the oxide superconducting laminate 2. The flat plate is composed of an upper plate 33A and a lower plate 33B formed by folding the tape in half, and the edge portion on the leading end side of the upper plate 33A and the lower plate 33B is integrated with a bonding material 32 such as solder. A rectangular pipe-shaped stabilizing material 33 is integrated by a bonding layer 4 made of a low melting point metal such as solder. A hollow portion 33D is formed between the upper plate 33A and the lower plate 33B. Further, in this embodiment, the portion where the tape is folded in two and the portion of the joining material 32 that joins the upper plate 33A and the lower plate 33B also serve as the side wall of the stabilizing material 33.
In the structure of the sixth embodiment, components that are the same as those of the structure of the first embodiment are given the same reference numerals, and descriptions thereof are omitted.

偏平な矩形パイプ状の安定化材33は上板33Aと下板33Bとの間に中空部33Dが形成されているが、安定化材33の内部に形成されている中空部33Dの厚みは特に問わない。中空部33Dの厚みは、例えば、上板33Aと同程度、基材5と同程度でも良く、上板と下板を接触させて中空部33Dを限りなく薄くしても良い。例えば、上板33Aと下板33Bが接触した状態で接合材32により接合されていても良い。
安定化材33が上板33Aと下板33Bからなる構造である場合、図6に示す構造のテープ状の酸化物超電導線材1Eを絶縁層で覆った上に巻き枠等に巻き付け、超電導コイルを構成する場合、酸化物超電導線材1Eを固定するためにエポキシ樹脂等を含浸させて酸化物超電導線材1Eを固定する。
The flat rectangular pipe-shaped stabilizer 33 has a hollow portion 33D formed between the upper plate 33A and the lower plate 33B. The thickness of the hollow portion 33D formed inside the stabilizer 33 is particularly large. It doesn't matter. The thickness of the hollow portion 33D may be, for example, about the same as that of the upper plate 33A and about the same as that of the base material 5, and the upper portion and the lower plate may be brought into contact with each other to make the hollow portion 33D as thin as possible. For example, the upper plate 33A and the lower plate 33B may be joined by the joining material 32 in a state where the upper plate 33A and the lower plate 33B are in contact with each other.
When the stabilizing member 33 has a structure composed of the upper plate 33A and the lower plate 33B, the tape-shaped oxide superconducting wire 1E having the structure shown in FIG. 6 is covered with an insulating layer and wound around a winding frame or the like. When configured, the oxide superconducting wire 1E is fixed by impregnating with an epoxy resin or the like in order to fix the oxide superconducting wire 1E.

テープ状の酸化物超電導線材1Eを用いて超電導コイルを作製するには、先の実施形態の場合と同様に、酸化物超電導線材1Eを必要層数巻き付けることで超電導コイルを作製できる。酸化物超電導線材1Eを巻き枠の外周に必要な巻き数で巻回した後、巻き付けた酸化物超電導線材1Eを覆うようにエポキシ樹脂等の樹脂を含浸させて酸化物超電導線材1Eを固定する。このように酸化物超電導コイルは、含浸樹脂により周囲を覆われた状態で冷媒や冷却装置により冷却されるので、常温から低温に冷却される段階で熱膨張係数の大きい含浸樹脂により超電導線材1Eに圧縮応力が作用する。
含浸樹脂による応力が作用すると、酸化物超電導線材1Eの厚さ方向に剥離応力が作用するが、この剥離応力に対し、安定化材33の内部に中空部33Dが形成され、上板33Aと下板33Bを離間させる方向に上板33Aが変形できるので、上板33Aが下板33Bから離間するように変形することで上述の応力を吸収できる。このため、酸化物超電導線材1Eに設けられている酸化物超電導層7に作用する応力は抑制されるか解消されるので、酸化物超電導層7の超電導特性が劣化することがない。また、樹脂を含浸させる場合に真空含浸を行うことが通常であり、含浸樹脂は酸化物超電導線材1Eを覆う絶縁層の隙間から染み込むおそれがあるが、上板33Aと下板33Bの幅方向一端側は接合材32により閉じられ、機械的にも充分な強度で接合されているので、中空部33D内に樹脂が浸入するおそれはない。
その他の作用効果についても第1実施形態の酸化物超電導線材1と同等の作用効果を得ることができる。
In order to produce a superconducting coil using the tape-shaped oxide superconducting wire 1E, a superconducting coil can be produced by winding the oxide superconducting wire 1E around the required number of layers, as in the previous embodiment. After the oxide superconducting wire 1E is wound around the outer periphery of the winding frame with a necessary number of turns, the oxide superconducting wire 1E is fixed by impregnating a resin such as an epoxy resin so as to cover the wound oxide superconducting wire 1E. As described above, the oxide superconducting coil is cooled by the refrigerant or the cooling device in the state where the periphery is covered with the impregnating resin, so that the superconducting wire 1E is impregnated with the impregnating resin having a large thermal expansion coefficient at the stage of cooling from room temperature to low temperature. Compressive stress acts.
When stress due to the impregnating resin acts, peeling stress acts in the thickness direction of the oxide superconducting wire 1E, but against this peeling stress, a hollow portion 33D is formed inside the stabilizing material 33, and the upper plate 33A and the lower Since the upper plate 33A can be deformed in the direction of separating the plate 33B, the above-described stress can be absorbed by deforming the upper plate 33A so as to be separated from the lower plate 33B. For this reason, since the stress which acts on the oxide superconducting layer 7 provided in the oxide superconducting wire 1E is suppressed or eliminated, the superconducting characteristics of the oxide superconducting layer 7 do not deteriorate. Further, in the case of impregnating the resin, vacuum impregnation is usually performed, and the impregnated resin may permeate through a gap between the insulating layers covering the oxide superconducting wire 1E, but one end in the width direction of the upper plate 33A and the lower plate 33B. Since the side is closed by the bonding material 32 and bonded with sufficient strength mechanically, there is no possibility that the resin enters the hollow portion 33D.
With respect to other functions and effects, functions and effects equivalent to those of the oxide superconducting wire 1 of the first embodiment can be obtained.

<第7実施形態>
図7は本発明に係る酸化物超電導線材の第7実施形態の断面構造を示すもので、本実施形態の酸化物超電導線材1Fは、酸化物超電導積層体2の外周をめっき層からなる安定化層9で覆い、その上面側に平板状の上板40Aの両端縁を半田などの低融点金属からなる接合材42により一体化してなる。
第7実施形態の構造において先の第2実施形態の構造と同等の構成要素には同一の符号を付してそれら要素の説明は省略する。
第7実施形態の構造において酸化物超電導積層体2の外周には安定化層9が被覆されている。安定化層9については先の第2実施形態の安定化層9と同等のものである。
第7実施形態の構造において、保護層8の上方に積層された安定化層9の上部側が下板40Bとされ、上板40Aと下板40Bとが上下に配置されることで安定化材40が構成されている。この実施形態の構造では安定化層9の上部側が下板40Bとされて安定化材40の一部を兼ねた構造とされている。
<Seventh embodiment>
FIG. 7 shows a cross-sectional structure of a seventh embodiment of the oxide superconducting wire according to the present invention. The oxide superconducting wire 1F of this embodiment is a stabilized outer periphery of the oxide superconducting laminate 2 made of a plating layer. It is covered with the layer 9, and both end edges of the flat upper plate 40A are integrated on the upper surface side thereof by a bonding material 42 made of a low melting point metal such as solder.
In the structure of the seventh embodiment, components that are the same as those of the structure of the second embodiment are given the same reference numerals, and descriptions thereof are omitted.
In the structure of the seventh embodiment, the outer periphery of the oxide superconducting laminate 2 is covered with a stabilization layer 9. The stabilizing layer 9 is the same as the stabilizing layer 9 of the second embodiment.
In the structure of the seventh embodiment, the upper side of the stabilizing layer 9 stacked above the protective layer 8 is the lower plate 40B, and the upper plate 40A and the lower plate 40B are arranged vertically so that the stabilizing material 40 is disposed. Is configured. In the structure of this embodiment, the upper side of the stabilization layer 9 is a lower plate 40B and serves as a part of the stabilizing material 40.

テープ状の酸化物超電導線材1Fを用いて超電導コイルを作製するには、先の実施形態の場合と同様に、酸化物超電導線材1Fを必要層数巻き付けることで超電導コイルを作製できる。酸化物超電導線材1Fを巻き枠の外周に必要な巻き数で巻回した後、巻き付けた酸化物超電導線材1Fを覆うようにエポキシ樹脂等の樹脂を含浸させて酸化物超電導線材1Fを固定する。このように酸化物超電導コイルは、含浸樹脂により周囲を覆われた状態で冷媒や冷却装置により冷却されるので、常温から低温に冷却される段階で熱膨張係数の大きい含浸樹脂により超電導線材1Fに応力が作用する。
含浸樹脂による応力が作用すると、酸化物超電導線材1Fの厚さ方向に剥離応力が作用するが、この剥離応力に対し、安定化材40の内部に中空部40Dが形成されていて、上板40Aと下板40Bを離間する方向に上板40Aが変形できるので、上述の応力を吸収できる。このため、酸化物超電導線材1Fに設けられている酸化物超電導層7に作用する応力は抑制されるか解消されるので、酸化物超電導層7の超電導特性が劣化することがない。また、上板40Aと下板40Bの幅方向両端部を側壁を兼ねる接合材42で閉じているので、中空部40への含浸樹脂の浸入を防止できる効果についても先の実施形態と同様である。
その他の作用効果についても先の実施形態の酸化物超電導線材と同等の作用効果を得ることができる。
In order to produce a superconducting coil using the tape-shaped oxide superconducting wire 1F, the superconducting coil can be produced by winding the oxide superconducting wire 1F around the required number of layers, as in the previous embodiment. After the oxide superconducting wire 1F is wound around the outer periphery of the winding frame with a necessary number of turns, the oxide superconducting wire 1F is fixed by impregnating a resin such as an epoxy resin so as to cover the wound oxide superconducting wire 1F. As described above, the oxide superconducting coil is cooled by the refrigerant or the cooling device in the state where the periphery is covered with the impregnating resin, so that the superconducting wire 1F is impregnated with the impregnating resin having a large thermal expansion coefficient at the stage of cooling from room temperature to low temperature. Stress acts.
When stress due to the impregnating resin acts, peeling stress acts in the thickness direction of the oxide superconducting wire 1F, but against this peeling stress, the hollow portion 40D is formed inside the stabilizing material 40, and the upper plate 40A. Since the upper plate 40A can be deformed in the direction separating the lower plate 40B and the lower plate 40B, the above-described stress can be absorbed. For this reason, since the stress which acts on the oxide superconducting layer 7 provided in the oxide superconducting wire 1F is suppressed or eliminated, the superconducting characteristics of the oxide superconducting layer 7 do not deteriorate. In addition, since both end portions in the width direction of the upper plate 40A and the lower plate 40B are closed by the bonding material 42 that also serves as a side wall, the effect of preventing the infiltration of the impregnating resin into the hollow portion 40 is the same as in the previous embodiment. .
With respect to other functions and effects, functions and effects equivalent to those of the oxide superconducting wire of the previous embodiment can be obtained.

<第8実施形態>
図8は本発明に係る酸化物超電導線材の第8実施形態の断面構造を示すもので、本実施形態の酸化物超電導線材1Gは、酸化物超電導積層体2の外周を1周、Cu、Cu合金などの良導電性金属材料からなる安定化材45で覆い、安定化材45の一部を延出させて折返し部からなる上板46として安定化材45の更に外側に1層延在させてなる。安定化材45は、酸化物超電導積層体2の外周を1周覆った折返し金属テープからなり、酸化物超電導積層体2の保護層8上に延在された安定化材45の表面部45Aは半田等の低融点金属の接合層47により保護層8上に接合されている。上板46は安定化材45の表面部45Aを覆うように安定化材45の端縁側から延在され、上板46の先端縁46aは半田などの低融点金属の導電材料からなる接合材48により安定化材45の端縁部45aに接合されている。
安定化材45は、一例として、酸化物超電導積層体2の上面側に一体化された表面部45Aと、酸化物超電導積層体2の一側面を覆う側面部45Bと、酸化物超電導積層体2の裏面側を覆う裏面部45Cと、酸化物超電導積層体2の他側面を覆う側面部45Dと、側面部45Dの上部から延出されて表面部45Aを覆う折返し部からなる上板46の全てを1枚の金属テープの折返し構造から得ることができる。この例の安定化材45において上板46と表面部45Aとが上下に中空部45Eをあけて配置されているので、安定化材45の一部である表面部45Aが下板とされている。
<Eighth Embodiment>
FIG. 8 shows a cross-sectional structure of an oxide superconducting wire according to an eighth embodiment of the present invention. The oxide superconducting wire 1G according to this embodiment has one outer periphery of the oxide superconducting laminate 2 and Cu, Cu. It is covered with a stabilizing material 45 made of a highly conductive metal material such as an alloy, and a part of the stabilizing material 45 is extended to extend one layer further outside the stabilizing material 45 as an upper plate 46 made of a folded portion. It becomes. The stabilizing material 45 is made of a folded metal tape that covers the outer periphery of the oxide superconducting laminate 2 once, and the surface portion 45A of the stabilizing material 45 extending on the protective layer 8 of the oxide superconducting laminate 2 is The protective layer 8 is joined by a joining layer 47 of a low melting point metal such as solder. The upper plate 46 extends from the end edge side of the stabilizing material 45 so as to cover the surface portion 45A of the stabilizing material 45, and the front end edge 46a of the upper plate 46 is a bonding material 48 made of a low melting point metal conductive material such as solder. Therefore, it is joined to the end edge 45a of the stabilizing member 45.
For example, the stabilizer 45 includes a surface portion 45A integrated on the upper surface side of the oxide superconducting laminate 2, a side portion 45B covering one side surface of the oxide superconducting laminate 2, and the oxide superconducting laminate 2. All of the upper plate 46 consisting of a back surface portion 45C covering the back surface side, a side surface portion 45D covering the other side surface of the oxide superconducting laminate 2, and a folded portion extending from the upper portion of the side surface portion 45D and covering the surface portion 45A. Can be obtained from a folded structure of a single metal tape. In the stabilizing material 45 of this example, the upper plate 46 and the surface portion 45A are arranged with the hollow portion 45E opened up and down, so the surface portion 45A that is a part of the stabilizing material 45 is the lower plate. .

第8実施形態の構造において先の実施形態の構造と同等の構成要素には同一の符号を付してそれら要素の説明は省略する。
第8実施形態の構造において酸化物超電導積層体2の外周に安定化材45が被覆されているが、安定化材45については先の第6実施形態の安定化材33と同等の材料から構成することができる。
In the structure of the eighth embodiment, the same reference numerals are given to the same components as those of the structure of the previous embodiment, and description of those elements is omitted.
In the structure of the eighth embodiment, the outer periphery of the oxide superconducting laminate 2 is covered with a stabilizing material 45. The stabilizing material 45 is composed of the same material as the stabilizing material 33 of the previous sixth embodiment. can do.

テープ状の酸化物超電導線材1Gを用いて超電導コイルを作製するには、先の実施形態の場合と同様に、酸化物超電導線材1Gを必要層数巻き付けることで超電導コイルを作製できる。酸化物超電導線材1Gを巻き枠の外周に必要な巻き数で巻回した後、巻き付けた酸化物超電導線材1Gを覆うようにエポキシ樹脂等の樹脂を含浸させて酸化物超電導線材1Gを固定する。このように酸化物超電導コイルは、含浸樹脂により周囲を覆われた状態で冷媒や冷却装置により冷却されるので、常温から低温に冷却される段階で熱膨張係数の大きい含浸樹脂により超電導線材1Gに応力が作用する。
含浸樹脂による応力が作用すると、酸化物超電導線材1Gの厚さ方向に剥離応力が作用するが、この剥離応力に対し、安定化材45の上板46と表面部(下板)45Aが離間する方向に変形できるので、酸化物超電導コイルに作用しようとする上述の剥離応力を吸収できる。このため、酸化物超電導線材1Gに設けられている酸化物超電導層7に作用する応力は抑制されるか解消されるので、酸化物超電導層7の超電導特性が劣化することがない。また、上板46と下板45Aの幅方向一端部を接合材48で閉じているので、中空部45Eへの含浸樹脂の浸入を防止できる効果についても先の実施形態と同様である。
その他の作用効果についても先の実施形態の酸化物超電導線材と同等の作用効果を得ることができる。
In order to produce a superconducting coil using the tape-shaped oxide superconducting wire 1G, the superconducting coil can be produced by winding the oxide superconducting wire 1G by the required number of layers as in the case of the previous embodiment. The oxide superconducting wire 1G is wound around the outer periphery of the winding frame with the necessary number of turns, and then impregnated with a resin such as an epoxy resin so as to cover the wound oxide superconducting wire 1G, thereby fixing the oxide superconducting wire 1G. As described above, the oxide superconducting coil is cooled by the refrigerant or the cooling device in the state where the periphery is covered with the impregnating resin. Therefore, the superconducting wire 1G is impregnated with the impregnating resin having a large thermal expansion coefficient at the stage of cooling from room temperature to low temperature. Stress acts.
When stress due to the impregnating resin acts, peeling stress acts in the thickness direction of the oxide superconducting wire 1G, but the upper plate 46 and the surface portion (lower plate) 45A of the stabilizing material 45 are separated from the peeling stress. Since it can be deformed in the direction, it is possible to absorb the above-described peeling stress that acts on the oxide superconducting coil. For this reason, since the stress which acts on the oxide superconducting layer 7 provided in the oxide superconducting wire 1G is suppressed or eliminated, the superconducting characteristics of the oxide superconducting layer 7 do not deteriorate. Further, since one end in the width direction of the upper plate 46 and the lower plate 45A is closed by the bonding material 48, the effect of preventing the impregnation resin from entering the hollow portion 45E is the same as that of the previous embodiment.
With respect to other functions and effects, functions and effects equivalent to those of the oxide superconducting wire of the previous embodiment can be obtained.

<第9実施形態>
図9は本発明に係る酸化物超電導線材の第9実施形態の断面構造を示すもので、本実施形態の酸化物超電導線材1Hは、酸化物超電導積層体2の上面側に、良電導材料製のテープ状の上板53Aと下板53Bとからなり、上板53Aと下板53Bの幅方向両端縁部分を半田などの低融点金属からなる接合材52で一体化した偏平の矩形パイプ状の安定化材53を半田などの低融点金属からなる接合層54により一体化してなる。上板53Aと下板53Bの間には中空部53Dが形成されている。また、本実施形態では上板53Aと下板53Bとを接合する接合材52の部分が安定化材53の側壁を兼ねる構成とされている。
第9実施形態の構造において先の第1実施形態の構造と同等の構成要素には同一の符号を付してそれら要素の説明は省略する。
本実施形態において特徴的な点は、酸化物超電導積層体2の両側面側に低融点金属からなる導電層57が形成され、上板53Aと下板53Bが酸化物超電導積層体2よりも若干幅広に形成され、下板53Bの幅方向両端下面側において接合層54と導電層57が接続され、酸化物超電導積層体2の裏面側に半田等の低融点金属からなる接合層58を介して導電材料からなる板状の第2安定化材59が接合された点である。
<Ninth Embodiment>
FIG. 9 shows a cross-sectional structure of the ninth embodiment of the oxide superconducting wire according to the present invention. The oxide superconducting wire 1H of the present embodiment is made of a highly conductive material on the upper surface side of the oxide superconducting laminate 2. A flat rectangular pipe-like shape in which both end portions in the width direction of the upper plate 53A and the lower plate 53B are integrated with a bonding material 52 made of a low melting point metal such as solder. The stabilizing material 53 is integrated by a bonding layer 54 made of a low melting point metal such as solder. A hollow portion 53D is formed between the upper plate 53A and the lower plate 53B. In the present embodiment, the portion of the bonding material 52 that bonds the upper plate 53A and the lower plate 53B also serves as a side wall of the stabilizing material 53.
In the structure of the ninth embodiment, the same components as those of the structure of the first embodiment are denoted by the same reference numerals, and description of these elements is omitted.
A characteristic point in this embodiment is that a conductive layer 57 made of a low melting point metal is formed on both side surfaces of the oxide superconducting laminate 2, and the upper plate 53A and the lower plate 53B are slightly more than the oxide superconducting laminate 2. The bonding layer 54 and the conductive layer 57 are connected to each other on the lower surface side at both ends in the width direction of the lower plate 53B, and the oxide superconducting laminate 2 is connected to the back side of the oxide superconducting laminate 2 via a bonding layer 58 made of a low melting point metal such as solder. This is that a plate-like second stabilizing material 59 made of a conductive material is joined.

偏平な矩形パイプ状の安定化材53は上板53Aと下板53Bとの間に中空部53Dが形成されているが、安定化材53の内部に形成されている中空部53Dの厚みは特に問わない。中空部53Dの厚みは、例えば、上板53Aと同程度、基材5と同程度でも良く、上板と下板を接触させて中空部53Dを限りなく小さくしても良い。例えば、上板53Aと下板53Bを接触させた状態で接合材52により上板53Aと下板53Bが接合されていても良い。
安定化材53が上板53Aと下板53Bからなる構造である場合、図9に示す構造のテープ状の酸化物超電導線材1Hを絶縁層で覆った上に巻き枠等に巻き付け、超電導コイルを構成する場合、酸化物超電導線材1Hを固定するためにエポキシ樹脂等を含浸させて酸化物超電導線材1Hを固定する。
The flat rectangular pipe-shaped stabilizing material 53 has a hollow portion 53D formed between the upper plate 53A and the lower plate 53B, and the thickness of the hollow portion 53D formed inside the stabilizing material 53 is particularly large. It doesn't matter. The thickness of the hollow portion 53D may be, for example, about the same as that of the upper plate 53A and about the same as the base material 5, and the upper portion and the lower plate may be brought into contact with each other to make the hollow portion 53D as small as possible. For example, the upper plate 53A and the lower plate 53B may be joined by the joining material 52 in a state where the upper plate 53A and the lower plate 53B are in contact with each other.
When the stabilizing member 53 has a structure composed of the upper plate 53A and the lower plate 53B, the tape-shaped oxide superconducting wire 1H having the structure shown in FIG. 9 is covered with an insulating layer and wound around a winding frame or the like. When configured, the oxide superconducting wire 1H is fixed by impregnating with an epoxy resin or the like in order to fix the oxide superconducting wire 1H.

酸化物超電導線材1Hを巻き枠の外周に必要な巻き数で巻回した後、巻き付けた酸化物超電導線材1Hを覆うようにエポキシ樹脂等の樹脂を含浸させて酸化物超電導線材1Hを固定する。このように酸化物超電導コイルは、含浸樹脂により周囲を覆われた状態で冷媒や冷却装置により冷却されるので、常温から低温に冷却される段階で熱膨張係数の大きい含浸樹脂により超電導線材1Hに応力が作用する。
含浸樹脂による応力が作用すると、酸化物超電導線材1Hの厚さ方向に剥離応力が作用するが、これらの応力に対し、安定化材53の内部に中空部53Dが形成され、上板53Aと下板53Bを離間させる方向に上板53Aが変形できるので、上述の剥離応力を吸収できる。このため、酸化物超電導線材1Hに設けられている酸化物超電導層7に作用する応力は抑制されるか解消されるので、酸化物超電導層7の超電導特性が劣化することがない。また、上板53Aと下板53Bの幅方向両端部を接合材52で閉じているので、中空部53Dへの含浸樹脂の浸入を防止できる効果についても先の実施形態と同様である。
その他の作用効果についても先の実施形態の酸化物超電導線材と同等の作用効果を得ることができる。
The oxide superconducting wire 1H is wound around the outer periphery of the winding frame with a necessary number of turns, and then impregnated with a resin such as an epoxy resin so as to cover the wound oxide superconducting wire 1H, thereby fixing the oxide superconducting wire 1H. As described above, the oxide superconducting coil is cooled by the refrigerant or the cooling device in the state where the periphery is covered with the impregnating resin, so that the superconducting wire 1H is impregnated with the impregnating resin having a large thermal expansion coefficient at the stage of cooling from room temperature to low temperature. Stress acts.
When stress due to the impregnating resin acts, peeling stress acts in the thickness direction of the oxide superconducting wire 1H. Against these stresses, a hollow portion 53D is formed inside the stabilizing material 53, and the upper plate 53A and the lower Since the upper plate 53A can be deformed in the direction in which the plate 53B is separated, the above-described peeling stress can be absorbed. For this reason, since the stress which acts on the oxide superconducting layer 7 provided in the oxide superconducting wire 1H is suppressed or eliminated, the superconducting characteristics of the oxide superconducting layer 7 do not deteriorate. In addition, since both end portions in the width direction of the upper plate 53A and the lower plate 53B are closed by the bonding material 52, the effect of preventing the impregnation resin from entering the hollow portion 53D is the same as in the previous embodiment.
With respect to other functions and effects, functions and effects equivalent to those of the oxide superconducting wire of the previous embodiment can be obtained.

本実施形態の構造では、保護層8に対し下板53Bと上板53Aを電気的に接続した上に、接合層54と導電層57と接合層58を介し第2安定化材59も電気的に接続しているので、酸化物超電導層7が超電導状態から常電導状態に転移しようとした場合の電流のバイパスとなる導体の断面積を大きくし、酸化物超電導層7を安定化する上で有利としている。   In the structure of this embodiment, the lower plate 53B and the upper plate 53A are electrically connected to the protective layer 8, and the second stabilizer 59 is also electrically connected via the bonding layer 54, the conductive layer 57, and the bonding layer 58. In order to stabilize the oxide superconducting layer 7 by increasing the cross-sectional area of the conductor that bypasses the current when the oxide superconducting layer 7 attempts to transition from the superconducting state to the normal conducting state. It is advantageous.

ハステロイC−276(米国ヘインズ社商品名)からなる幅10mm、厚さ0.1mm、長さ10mのテープ状の基材上に、Alの拡散防止層(a−Alの厚さ80nm)と、Yのベッド層(a−Yの厚さ30nm)と、MgOの中間層(IBAD−MgOの厚さ10nm)と、CeOのキャップ層(厚さ300nm)とYBaCu7−xなる組成の酸化物超電導層とAgの保護層(厚さ10μm)を積層した酸化物超電導積層体を用意した。
この酸化物超電導積層体に対し、幅10mm、肉厚100μm、上板と下板の間の中空部の厚み50μmの偏平管型のCuパイプを保護層上方に位置するように厚さ5μmの半田層を介し半田付けして図2に示す断面形状の酸化物超電導線材を得た。
An Al 2 O 3 diffusion-preventing layer (a-Al 2 O 3) is formed on a tape-shaped substrate having a width of 10 mm, a thickness of 0.1 mm, and a length of 10 m made of Hastelloy C-276 (trade name of Haynes, USA). 80 nm thick), Y 2 O 3 bed layer (a-Y 2 O 3 thickness 30 nm), MgO intermediate layer (IBAD-MgO thickness 10 nm), and CeO 2 cap layer (thickness). 300 nm) and an oxide superconducting laminate in which an oxide superconducting layer having a composition of YBa 2 Cu 3 O 7-x and an Ag protective layer (thickness 10 μm) were laminated.
A 5 μm thick solder layer is placed on the oxide superconducting laminate so that a flat tube type Cu pipe having a width of 10 mm, a thickness of 100 μm, and a hollow part between the upper and lower plates of 50 μm is positioned above the protective layer. The oxide superconducting wire having the cross-sectional shape shown in FIG. 2 was obtained.

この酸化物超電導線材を外径100mmの巻胴に巻回してコイルを構成した後、液体窒素に浸漬して室温から液体窒素温度(77K)まで冷却し、コイルの臨界電流、n値を測定した。
更に、エポキシ樹脂を含浸させて樹脂含浸型の超電導コイルを作製した。この超電導コイルを液体窒素に浸漬して室温から液体窒素温度(77K)まで冷却し、超電導コイルの臨界電流、n値を測定し、この超電導コイルを液体窒素から取り出して室温に戻す処理を10サイクル行う、熱サイクル試験を行った後、再度液体窒素に浸漬して冷却し、超電導コイルの臨界電流、n値を測定した。
The oxide superconducting wire was wound around a winding drum having an outer diameter of 100 mm to constitute a coil, and then immersed in liquid nitrogen and cooled from room temperature to liquid nitrogen temperature (77 K), and the critical current and n value of the coil were measured. .
Furthermore, a resin-impregnated superconducting coil was produced by impregnating with an epoxy resin. This superconducting coil is immersed in liquid nitrogen, cooled from room temperature to liquid nitrogen temperature (77K), the critical current and n value of the superconducting coil are measured, and this superconducting coil is taken out of liquid nitrogen and returned to room temperature for 10 cycles. After conducting a thermal cycle test, the sample was again immersed in liquid nitrogen and cooled, and the critical current and n value of the superconducting coil were measured.

次に、先の酸化物超電導積層体に対し、Cuパイプの代わりに、厚さ100μmのCuのテープを厚さ5μmの半田層を介し半田付けして保護層に密着したCuテープからなる安定化材付きの酸化物超電導線材を作製し、この酸化物超電導線材を先の例と同様、外径100mmの巻胴に巻回してコイルを構成した後、液体窒素に浸漬して冷却し、コイルの臨界電流、n値を測定した。更に、このコイルにエポキシ樹脂を含浸して先の例と同様の樹脂含浸型超電導コイルを作製し、同等の条件で臨界電流、n値を測定し、熱サイクル試験後の各測定も同等条件で行った。
それらの結果を以下の表1に併記する。
Next, instead of a Cu pipe, a 100 μm thick Cu tape is soldered to a previous oxide superconducting laminate through a 5 μm thick solder layer, and the stabilization is made of a Cu tape adhered to the protective layer. An oxide superconducting wire with a material was prepared, and the oxide superconducting wire was wound around a winding drum having an outer diameter of 100 mm to form a coil, and then cooled by immersion in liquid nitrogen, as in the previous example. The critical current and n value were measured. Furthermore, this resin is impregnated with epoxy resin to produce a resin-impregnated superconducting coil similar to the previous example, the critical current and n value are measured under the same conditions, and each measurement after the thermal cycle test is also performed under the same conditions. went.
The results are also shown in Table 1 below.

Figure 0005847009
Figure 0005847009

表1に示すn値は、超電導体のIc近傍での電流−電圧特性をV∝I^nと近似した場合のnを示す。この例の場合、縦軸をlogV、横軸をlogIとして電流−電圧特性を計測し、Ic付近の領域での電圧の立ち上がり特性から傾きnを算出した。
表1に示す結果のようにIc値がそれほど変化しなくても、n値が下がることは、超電導特性が劣化したことを意味する。また、Cuテープを用いた試料の熱サイクル後はIcが大幅に低下しているので、熱サイクルの影響は極めて大きいが、Cuパイプを用いた試料のIcとn値はほとんど変化が見られなかった。
この結果から、Cuパイプ状の安定化材を用いることが応力緩和に寄与したと思われる。
The n value shown in Table 1 indicates n when the current-voltage characteristic in the vicinity of Ic of the superconductor is approximated to V∝I ^ n. In this example, the current-voltage characteristics were measured with the log V on the vertical axis and log I on the horizontal axis, and the slope n was calculated from the voltage rise characteristics in the region near Ic.
Even if the Ic value does not change so much as in the results shown in Table 1, a decrease in the n value means that the superconducting characteristics have deteriorated. In addition, since the Ic is greatly reduced after the thermal cycle of the sample using the Cu tape, the influence of the thermal cycle is very large, but the Ic and n value of the sample using the Cu pipe hardly change. It was.
From this result, it seems that using a Cu pipe-shaped stabilizer contributed to stress relaxation.

1、1A、1B、1C、1D、1E、1F、1G、1H…酸化物超電導線材、2…酸化物超電導積層体、3、13、23、33、40、45、53…安定化材、3A、13A、23A、33A、40A、46…上板、3B、13B、23B、33B、40B、45A…下板、3C、13C…側板、3D、23D、33D、40D、45E、53D…中空部、4、54、58…接合層、5…基材、6…中間層、7…酸化物超電導層、8…保護層、9…安定化層、22、32、42、48、52…接合材。   1, 1A, 1B, 1C, 1D, 1E, 1F, 1G, 1H ... oxide superconducting wire, 2 ... oxide superconducting laminate, 3, 13, 23, 33, 40, 45, 53 ... stabilizing material, 3A , 13A, 23A, 33A, 40A, 46 ... upper plate, 3B, 13B, 23B, 33B, 40B, 45A ... lower plate, 3C, 13C ... side plate, 3D, 23D, 33D, 40D, 45E, 53D ... hollow portion, 4, 54, 58 ... bonding layer, 5 ... base material, 6 ... intermediate layer, 7 ... oxide superconducting layer, 8 ... protective layer, 9 ... stabilization layer, 22, 32, 42, 48, 52 ... bonding material.

Claims (8)

テープ状の基材の一方の面上に中間層と酸化物超電導層と保護層をこの順に積層して酸化物超電導積層体が構成され、該酸化物超電導積層体の前記保護層上に導電材料からなる安定化材が配置された酸化物超電導線材であって、
前記安定化材が上板と下板を備え、該上板と下板が長手方向に渡って幅方向両端部で電気的かつ機械的に接続され、前記上板と下板との間に中空部が形成されるか、前記上板と下板とが重ね合わされたことを特徴とする酸化物超電導線材。
An intermediate layer, an oxide superconducting layer, and a protective layer are laminated in this order on one surface of a tape-shaped substrate to form an oxide superconducting laminate, and a conductive material is formed on the protective layer of the oxide superconducting laminate. An oxide superconducting wire in which a stabilizing material comprising:
The stabilizing material includes an upper plate and a lower plate, and the upper plate and the lower plate are electrically and mechanically connected at both ends in the width direction in the longitudinal direction, and a hollow is formed between the upper plate and the lower plate. An oxide superconducting wire, wherein a portion is formed or the upper plate and the lower plate are overlapped.
前記安定化材が偏平型の中空パイプからなることを特徴とする請求項1に記載の酸化物超電導線材。   The oxide superconducting wire according to claim 1, wherein the stabilizing material is a flat hollow pipe. 前記安定化材が、上板と下板を重ね合わせ、それらの幅方向両端部を導電性の接合材で一体化してなることを特徴とする請求項1に記載の酸化物超電導線材。   2. The oxide superconducting wire according to claim 1, wherein the stabilizing material is formed by superimposing an upper plate and a lower plate and integrating both ends in the width direction with a conductive bonding material. 前記安定化材が1枚の金属板を2つ折りして重ね合わせ、前記金属板の重ね合わせ先端縁側を接合材で一体化してなることを特徴とする請求項1に記載の酸化物超電導線材。   2. The oxide superconducting wire according to claim 1, wherein the stabilizing material is formed by folding a single metal plate in two and overlapping, and the overlapping leading edge side of the metal plate is integrated with a bonding material. 前記保護層上に配置された安定化材が、前記酸化物超電導積層体の外周を取り囲むように形成されたことを特徴とする請求項1〜4のいずれか一項に記載の酸化物超電導線材。   The oxide superconducting wire according to any one of claims 1 to 4, wherein a stabilizing material disposed on the protective layer is formed so as to surround an outer periphery of the oxide superconducting laminate. . 前記保護層上に配置された安定化材が、前記酸化物超電導積層体の外周を取り囲むように延出形成され、前記保護層上に配置された安定化材の一部が下板とされ、該下板上に導電材料からなる上板が配置されたことを特徴とする請求項1に記載の酸化物超電導線材。   The stabilizing material disposed on the protective layer is formed so as to surround the outer periphery of the oxide superconducting laminate, and a part of the stabilizing material disposed on the protective layer is a lower plate, The oxide superconducting wire according to claim 1, wherein an upper plate made of a conductive material is disposed on the lower plate. 前記保護層上に配置された安定化材が、前記酸化物超電導積層体の外周を取り囲むように形成され、前記保護層上の安定化材の外方まで延出形成されて前記保護層上の安定化材に重ねられ、前記保護層上の安定化材が下板とされ、該下板上に延出された安定化材の延出部が上板とされたことを特徴とする請求項1に記載の酸化物超電導線材。   The stabilizing material disposed on the protective layer is formed so as to surround the outer periphery of the oxide superconducting laminate, and is formed to extend outward of the stabilizing material on the protective layer. The stabilizing material overlaid on the stabilizing material, the stabilizing material on the protective layer is a lower plate, and the extending portion of the stabilizing material extended on the lower plate is an upper plate. 1. The oxide superconducting wire according to 1. 前記酸化物超電導積層体の上面側に前記安定化材が前記酸化物超電導積層体の幅よりも幅広に形成されて接合層を介して配置され、基材裏面側に第2の安定化材が前記酸化物超電導積層体の幅よりも幅広に形成されて接合層を介して配置され、前記酸化物超電導積層
体の両側面に導電層が形成され、前記安定化材と前記第2の安定化材が前記接合層および前記導電層を介して接続されたことを特徴とする請求項1〜4のいずれか一項に記載の酸化物超電導線材。
The stabilizing material is formed wider than the width of the oxide superconducting laminate on the upper surface side of the oxide superconducting laminate and disposed via a bonding layer, and the second stabilizing material is disposed on the back side of the substrate. The oxide superconducting laminate is formed wider than the oxide superconducting laminate and disposed via a bonding layer.
The conductive layer is formed on both side surfaces of the body, and the stabilizing material and the second stabilizing material are connected to each other through the bonding layer and the conductive layer . The oxide superconducting wire according to one item.
JP2012102718A 2012-04-27 2012-04-27 Oxide superconducting wire Expired - Fee Related JP5847009B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012102718A JP5847009B2 (en) 2012-04-27 2012-04-27 Oxide superconducting wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012102718A JP5847009B2 (en) 2012-04-27 2012-04-27 Oxide superconducting wire

Publications (2)

Publication Number Publication Date
JP2013232297A JP2013232297A (en) 2013-11-14
JP5847009B2 true JP5847009B2 (en) 2016-01-20

Family

ID=49678581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012102718A Expired - Fee Related JP5847009B2 (en) 2012-04-27 2012-04-27 Oxide superconducting wire

Country Status (1)

Country Link
JP (1) JP5847009B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6069269B2 (en) * 2014-05-07 2017-02-01 株式会社フジクラ Oxide superconducting wire, superconducting equipment, and oxide superconducting wire manufacturing method
EP3179486B1 (en) 2014-08-05 2019-05-01 Fujikura Ltd. Oxide superconducting wire, superconducting device and method for producing oxide superconducting wire
JP6031494B2 (en) * 2014-12-04 2016-11-24 株式会社フジクラ Superconducting wire and superconducting coil using the same
JP6505565B2 (en) 2015-09-28 2019-04-24 株式会社東芝 Connection structure of high temperature superconducting conductor, high temperature superconducting coil and high temperature superconducting coil
KR101845406B1 (en) 2015-11-04 2018-04-04 한국전기연구원 The join method of the laminated superconducting tape and join laminated superconducting wire unit
JP6751052B2 (en) * 2017-05-31 2020-09-02 株式会社フジクラ High temperature superconducting wire and superconducting coil
JP7438830B2 (en) 2020-04-10 2024-02-27 株式会社東芝 Bundle-wound high-temperature superconducting coil device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0676649A (en) * 1992-08-25 1994-03-18 Showa Electric Wire & Cable Co Ltd Composite superconductor
JP5269694B2 (en) * 2009-05-14 2013-08-21 株式会社東芝 Superconducting coil device
JP5364467B2 (en) * 2009-06-26 2013-12-11 株式会社フジクラ Superconducting wire

Also Published As

Publication number Publication date
JP2013232297A (en) 2013-11-14

Similar Documents

Publication Publication Date Title
JP5847009B2 (en) Oxide superconducting wire
KR101404534B1 (en) Oxide superconducting wire material and superconducting coil
JP5568361B2 (en) Superconducting wire electrode joint structure, superconducting wire, and superconducting coil
EP3499519A1 (en) Oxide superconducting wire
US10128025B2 (en) Oxide superconducting wire, superconducting device, and method for producing oxide superconducting wire
JP6012658B2 (en) Oxide superconducting wire and manufacturing method thereof
JP6329736B2 (en) Laminated pancake type superconducting coil and superconducting equipment provided with the same
JP2021504909A (en) Joined superconducting tape
JP2014154320A (en) Connection structure of oxide superconductive wire rod and superconductive apparatus
JP6101490B2 (en) Oxide superconducting wire connection structure and superconducting equipment
JP6069269B2 (en) Oxide superconducting wire, superconducting equipment, and oxide superconducting wire manufacturing method
JP2013247011A (en) Oxide superconducting wire, and method of manufacturing the same
JP2013247281A (en) Oxide superconducting coil
JP5701247B2 (en) Oxide superconducting wire connection structure and connection method
JP2020113509A (en) Oxide superconducting wire and superconducting coil
JP2013186966A (en) Oxide superconducting wire and manufacturing method therefor
WO2023027149A1 (en) Superconducting wire material and superconducting coil
JP6078522B2 (en) Superconducting wire and superconducting coil using the same
JP6484658B2 (en) Oxide superconducting wire and superconducting coil
JP6031494B2 (en) Superconducting wire and superconducting coil using the same
JP2014107149A (en) Oxide superconductive wire rod and connection structure of the oxide superconductive wire
JP2013187103A (en) Oxide superconducting wire and manufacturing method therefor
JP6724125B2 (en) Oxide superconducting wire and method for producing the same
JP2018195612A (en) Superconducting coil
JP2014167847A (en) Oxide superconducting wire and superconducting coil, and manufacturing method of oxide superconducting wire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150811

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151027

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151124

R151 Written notification of patent or utility model registration

Ref document number: 5847009

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees