JP2014110144A - Connection structure of oxide superconductive conductor and superconductive apparatus provided therewith - Google Patents

Connection structure of oxide superconductive conductor and superconductive apparatus provided therewith Download PDF

Info

Publication number
JP2014110144A
JP2014110144A JP2012263668A JP2012263668A JP2014110144A JP 2014110144 A JP2014110144 A JP 2014110144A JP 2012263668 A JP2012263668 A JP 2012263668A JP 2012263668 A JP2012263668 A JP 2012263668A JP 2014110144 A JP2014110144 A JP 2014110144A
Authority
JP
Japan
Prior art keywords
superconducting
layer
oxide
oxide superconducting
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012263668A
Other languages
Japanese (ja)
Inventor
Teru Hidaka
輝 日高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2012263668A priority Critical patent/JP2014110144A/en
Publication of JP2014110144A publication Critical patent/JP2014110144A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide the connection structure of oxide superconductive conductors in which deterioration in the characteristics of oxide superconductive layers is not caused even if bending stress is applied to connected parts, and a superconductive cable and a superconductive apparatus provided with the structure.SOLUTION: This invention is characterized in that, in a structure where a tape-shaped base material is laminated with an intermediate layer, oxide superconductive layers and metal stabilization layers, the edge parts of the first and second superconductive conductors are mutually adjacent in such a manner that the metal stabilization layers are mutually superimposed, and the superimposed parts of the metal stabilization layers are joined with conductive joining materials having a Young's modulus of less than 41.4×10N/m.

Description

本発明は、酸化物超電導導体の接続構造及びそれを備えた超電導機器に関する。   The present invention relates to an oxide superconducting conductor connection structure and a superconducting device including the same.

RE−123系の酸化物超電導体(REBaCu7−X:REはYを含む希土類元素)を線材に加工して電力供給用の超電導導体あるいは超電導コイルを提供することが要望されている。酸化物超電導導体の一例構造として、金属テープ基材の表面にイオンビームアシスト蒸着法(IBAD法)により結晶配向性の良好な中間層を形成し、該中間層上に成膜法により酸化物超電導層を形成し、その表面にAgの保護層とCuの安定化層を積層した構造の酸化物超電導導体が開発されている。 It is desired to provide a superconducting conductor or a superconducting coil for power supply by processing a RE-123 series oxide superconductor (REBa 2 Cu 3 O 7-X : RE is a rare earth element including Y) into a wire. Yes. As an example of the structure of an oxide superconductor, an intermediate layer with good crystal orientation is formed on the surface of a metal tape substrate by ion beam assisted vapor deposition (IBAD method), and the oxide superconductor is formed on the intermediate layer by film formation. An oxide superconductor having a structure in which a layer is formed and an Ag protective layer and a Cu stabilizing layer are laminated on the surface has been developed.

従来一般的なRE123系の酸化物超電導導体は、酸化物超電導層上に薄いAgの保護層を形成し、その上にCuからなる厚い安定化層を設けた構造が採用されている。前記Agの保護層は、酸化物超電導層を酸素熱処理する際、酸素量の変動を調節する目的のためにも設けられており、Cuの安定化層は、酸化物超電導層が超電導状態から常電導状態に遷移しようとしたとき、該酸化物超電導層の電流を転流させるバイパスとして機能させるために設けられている。   A conventional RE123-based oxide superconducting conductor employs a structure in which a thin Ag protective layer is formed on an oxide superconducting layer and a thick stabilization layer made of Cu is formed thereon. The protective layer of Ag is also provided for the purpose of adjusting fluctuations in the amount of oxygen when the oxide superconducting layer is subjected to oxygen heat treatment, and the Cu stabilizing layer is normally used when the oxide superconducting layer is in a superconducting state. It is provided in order to function as a bypass for commutating the current of the oxide superconducting layer when attempting to transition to the conductive state.

ところで、このような超電導導体を実用機器に応用するために、超電導導体を接続する技術が研究されている。
RE123系の酸化物超電導導体同士を接続する場合、前記のようにテープ基材の片面側に酸化物超電導層を形成しているため、酸化物超電導層同士を向い合せて半田付け等により接続する必要がある。
酸化物超電導導体同士を接続するための方法と接続装置の一例として、平板状の酸化物超電導導体の端部同士を重ね合わせてその間に半田材料を挟み込み、上下から加圧し、加熱することができる一対の加圧加熱板を備えた接続装置が知られている(特許文献1参照)。
この接続装置は、加圧加熱板の両側にクランプ機構を備え、クランプ機構により仮保持した酸化物超電導導体の端部同士を加圧加熱板により挟み込み、半田材料を溶融し凝固させて突き合わせた酸化物超電導導体の端部同士を半田付けすることができる装置として提供されている。
By the way, in order to apply such a superconducting conductor to a practical device, a technique for connecting the superconducting conductor has been studied.
When connecting RE123-based oxide superconducting conductors, since the oxide superconducting layer is formed on one side of the tape base as described above, the oxide superconducting layers face each other and are connected by soldering or the like. There is a need.
As an example of a method and a connection device for connecting oxide superconducting conductors, the ends of flat oxide superconducting conductors can be overlapped with each other, a solder material can be sandwiched therebetween, pressurized from above and below, and heated. A connecting device including a pair of pressure heating plates is known (see Patent Document 1).
This connecting device has a clamping mechanism on both sides of the pressure heating plate, the ends of the oxide superconducting conductor temporarily held by the clamping mechanism are sandwiched by the pressure heating plate, the solder material is melted, solidified, and abutted It is provided as an apparatus capable of soldering the ends of a superconducting material.

特開2011−003382号公報JP 2011-003382 A

酸化物超電導導体の端部同士を重ねて半田付けする構造を採用すると、接続部分で超電導導体の表裏が逆転するため実用上様々な不具合が生じる。そこで、接続するべき酸化物超電導導体の端部同士を同じ向きとして隣接配置し、隣接させた超電導導体の端部同士に向い合わせた接続用の酸化物超電導導体を橋渡しするように配置し、半田付けする構造が知られている。
酸化物超電導導体の接続部分に設ける半田材料は、通常、鉛フリータイプのスズからなることが一般的であり、スズからなる半田材料が溶融し凝固して形成された半田付け接合部を備えている。
しかし、前記半田付けを行った酸化物超電導導体を超電導コイルに適用すると、巻胴に超電導導体を巻回してコイル化するので、半田付け部分に巻回時の曲げ応力が作用することとなる。本発明者が種々試験したところ、曲げ応力を付加した酸化物超電導導体そのものでの特性劣化が生じない場合であっても、半田付け部分を伴う接続部分が存在すると超電導特性の劣化を生じることが判明した。この原因は、半田付け部分に曲げ応力が作用した場合、酸化物超電導導体自体はテープ状であり、可撓性を有するものの、硬い半田付け部分が周囲の酸化物超電導層に局所的に応力を付加することが原因になっていると推定できる。
If a structure in which the ends of the oxide superconducting conductor are overlapped and soldered is employed, the front and back of the superconducting conductor are reversed at the connecting portion, and various problems occur in practice. Therefore, the oxide superconducting conductors to be connected are arranged adjacent to each other in the same direction, and the connecting oxide superconducting conductors facing the ends of the adjacent superconducting conductors are bridged and soldered. The structure to attach is known.
The solder material provided at the connecting portion of the oxide superconducting conductor is generally made of lead-free type tin, and includes a soldered joint formed by melting and solidifying the solder material made of tin. Yes.
However, when the oxide superconducting conductor subjected to soldering is applied to a superconducting coil, the superconducting conductor is wound around a winding drum to form a coil, so that bending stress at the time of winding acts on the soldered portion. As a result of various tests conducted by the present inventor, even when there is no deterioration in the characteristics of the oxide superconducting conductor itself to which bending stress is applied, there is a possibility that the superconducting characteristics may be deteriorated if there is a connection portion with a soldered portion. found. The reason for this is that when bending stress is applied to the soldered part, the oxide superconducting conductor itself is tape-like and flexible, but the hard soldered part locally applies stress to the surrounding oxide superconducting layer. It can be presumed that this is caused by the addition.

本発明は、このような従来の実情に鑑みなされたものであり、半田などの導電性接合材による接合部分のヤング率をある程度低くすることにより、接続部分に曲げ応力が作用しても酸化物超電導層の特性劣化を生じないようにした酸化物超電導導体の接続構造の提供を目的とする。
また、本発明は、上述の接続構造を適用した超電導ケーブル、あるいは、超電導コイル、超電導限流器などの超電導機器の提供を目的とする。
The present invention has been made in view of such a conventional situation, and by reducing the Young's modulus of the joint portion by a conductive joint material such as solder to some extent, even if bending stress acts on the joint portion, the oxide An object of the present invention is to provide a connection structure for oxide superconducting conductors that does not cause deterioration of characteristics of the superconducting layer.
Another object of the present invention is to provide a superconducting cable to which the above connection structure is applied, or a superconducting device such as a superconducting coil or a superconducting fault current limiter.

前記課題を解決するため、本発明は、テープ状の基材に中間層と酸化物超電導層と金属安定化層を積層した構造の第1及び第2の超電導導体の端部同士が互いの金属安定化層同士を重ね合わせて隣接され、前記金属安定化層の重ね合わせ部分がヤング率41.4×10N/m未満の導電性接合材により接合されたことを特徴とする。
ヤング率41.4×10N/m未満の導電性接合材で金属安定化層どうしを接続したので、接続部分に曲げ応力が作用しても接続部分周りの酸化物超電導層に対する応力集中を低減でき、超電導特性の劣化の少ない接続構造を提供できる。
In order to solve the above-mentioned problems, the present invention provides a structure in which the end portions of the first and second superconducting conductors having a structure in which an intermediate layer, an oxide superconducting layer, and a metal stabilizing layer are laminated on a tape-like base material are mutually metallic. The stabilization layers are adjacent to each other by being overlapped, and the overlapped portion of the metal stabilization layer is bonded by a conductive bonding material having a Young's modulus of less than 41.4 × 10 9 N / m 2 .
Since the metal stabilizing layers are connected to each other with a conductive bonding material having a Young's modulus of less than 41.4 × 10 9 N / m 2 , the stress concentration on the oxide superconducting layer around the connection portion even if bending stress acts on the connection portion It is possible to provide a connection structure with less deterioration of superconducting characteristics.

前記課題を解決するため、本発明は、テープ状の基材に中間層と酸化物超電導層と金属安定化層を積層した構造の第1及び第2の超電導導体の端部同士が互いの金属安定化層同士を基材に対し同じ側に揃えて隣接され、これら隣接された金属安定化層の端部同士をテープ状の基材に中間層と酸化物超電導層と金属安定化層を積層した構造の第3の超電導導体により接続した酸化物超電導導体の接続構造であり、前記隣接された第1及び第2の超電導導体の金属安定化層の端部同士に前記第3の超電導導体の金属安定化層が被着され、前記第1及び第2の超電導導体の金属安定化層と前記第3の超電導導体の金属安定化層とが導電性接合材により接合されるとともに、前記導電性接合材のヤング率が41.4×10N/m未満とされたことを特徴とする。
第1、第2の超電導導体の金属安定化層どうしを第3の超電導導体の金属安定化層にヤング率41.4×10N/m未満の導電性接合材で接続したので、第1、第2の超電導導体をコイル化する構造などに適用して第1、第2の超電導導体に曲げ応力が作用した場合であっても、第1、第2、第3の超電導導体の接続部分周りの酸化物超電導層に作用する応力を低減することができ、超電導特性の劣化の少ない接続構造を提供できる。第1、第2、第3の超電導導体を接合する導電性接合材のヤング率が41.4×10N/m未満であると、曲げ応力が作用した場合に導電性接合材の全体が均等にしなる確率が高く、導電性接合材が部分的に折れ曲がって酸化物超電導層に局所的に応力付加をかけるおそれが少なくなる。
In order to solve the above-mentioned problems, the present invention provides a structure in which the end portions of the first and second superconducting conductors having a structure in which an intermediate layer, an oxide superconducting layer, and a metal stabilizing layer are laminated on a tape-like base material are mutually metallic. The stabilization layers are adjacent to each other on the same side of the substrate, and the ends of these adjacent metal stabilization layers are laminated on the tape-shaped substrate with the intermediate layer, oxide superconducting layer, and metal stabilization layer. A connection structure of oxide superconducting conductors connected by a third superconducting conductor having the structure described above, wherein the ends of the metal stabilizing layers of the adjacent first and second superconducting conductors are connected to each other. A metal stabilizing layer is applied, and the metal stabilizing layer of the first and second superconducting conductors and the metal stabilizing layer of the third superconducting conductor are joined by a conductive bonding material, and the conductive this Young's modulus of the bonding material is less than 41.4 × 10 9 N / m 2 The features.
Since the metal stabilization layers of the first and second superconducting conductors are connected to the metal stabilization layer of the third superconducting conductor with a conductive bonding material having a Young's modulus of less than 41.4 × 10 9 N / m 2 , Even if a bending stress is applied to the first and second superconducting conductors applied to a structure in which the first and second superconducting conductors are coiled, the first, second and third superconducting conductors are connected. The stress acting on the oxide superconducting layer around the portion can be reduced, and a connection structure with little deterioration of superconducting characteristics can be provided. When the Young's modulus of the conductive bonding material for bonding the first, second, and third superconducting conductors is less than 41.4 × 10 9 N / m 2 , the entire conductive bonding material when bending stress acts There is a high probability that the conductive bonding material is partially bent, and the possibility of locally applying stress to the oxide superconducting layer is reduced.

本発明は、先に記載の酸化物超電導導体の接合構造が設けられた超電導機器である。
超電導ケーブル、超電導コイル、超電導限流器などの超電導機器において酸化物超電導導体同士の接続部分に上述の構造を採用することで、曲げなどの応力が作用しても接続部分において超電導特性の劣化を生じ難い超電導機器を提供できる。
The present invention is a superconducting device provided with the oxide superconducting conductor junction structure described above.
In the superconducting equipment such as superconducting cables, superconducting coils, and superconducting fault current limiters, the superconducting characteristics of the superconducting devices are deteriorated even if stress such as bending acts on the connecting part between the oxide superconducting conductors. It is possible to provide a superconducting device that is unlikely to occur.

本発明は、超電導導体の金属安定化層どうしをヤング率41.4×10N/m未満の導電性接合材で接続したので、接続部分に曲げ応力が作用しても接続部分周りの酸化物超電導層に対する応力集中を低減でき、超電導特性の劣化の少ない接続構造を提供できる。
また、本発明は、第1、第2の超電導導体の金属安定化層どうしを第3の超電導導体の金属安定化層にヤング率41.4×10N/m未満の導電性接合材で接続したので、第1、第2の超電導導体をコイル化する構造などに適用して第1、第2、第3の超電導導体に曲げ応力が作用した場合であっても、第1、第2、第3の超電導導体の接続部分周りの酸化物超電導層に応力集中することを低減でき、超電導特性の劣化の少ない接続構造を提供できる。
In the present invention, the metal stabilizing layers of the superconducting conductors are connected to each other by a conductive bonding material having a Young's modulus of less than 41.4 × 10 9 N / m 2 . The stress concentration on the oxide superconducting layer can be reduced, and a connection structure with little deterioration of superconducting characteristics can be provided.
The present invention also provides a conductive bonding material having a Young's modulus of less than 41.4 × 10 9 N / m 2 between the metal stabilizing layers of the first and second superconducting conductors and the metal stabilizing layer of the third superconducting conductor. Even if a bending stress is applied to the first, second, and third superconducting conductors by applying to the structure in which the first and second superconducting conductors are coiled, etc., the first and second superconducting conductors are connected. 2. It is possible to reduce stress concentration on the oxide superconducting layer around the connection portion of the third superconducting conductor, and to provide a connection structure with little deterioration of superconducting characteristics.

本発明に係る接続構造に適用される酸化物超電導導体の一例構造を示す部分断面斜視図である。It is a partial section perspective view showing an example structure of an oxide superconducting conductor applied to a connection structure concerning the present invention. 図1に示す酸化物超電導導体の接続構造の第1実施形態を示す断面図である。It is sectional drawing which shows 1st Embodiment of the connection structure of the oxide superconductor shown in FIG. 図2に示す接続構造が適用される酸化物超電導ケーブルの一例を示す斜視図である。FIG. 3 is a perspective view showing an example of an oxide superconducting cable to which the connection structure shown in FIG. 2 is applied. 図2に示す接続構造が適用される酸化物超電導限流器用モジュールを備えた超電導限流器の一例を示す斜視図である。It is a perspective view which shows an example of the superconducting fault current limiter provided with the module for oxide superconducting fault current limiters to which the connection structure shown in FIG. 2 is applied. 図2に示す接続構造が適用される酸化物超電導コイルの一例を備えた超電導モーターの一例を示すもので、図5(a)は一部断面斜視図、図5(b)は部分断面略図である。FIG. 5A shows an example of a superconducting motor provided with an example of an oxide superconducting coil to which the connection structure shown in FIG. 2 is applied. FIG. 5A is a partially sectional perspective view, and FIG. is there. 図2に示す接続構造が適用された酸化物超電導コイルの他の例を示すもので、図6(a)は積層コイルの斜視図、図6(b)はコイル単体の斜視図である。FIGS. 6A and 6B show another example of an oxide superconducting coil to which the connection structure shown in FIG. 2 is applied. FIG. 6A is a perspective view of a laminated coil, and FIG. 図1に示す酸化物超電導導体の接続構造の第2実施形態を示す断面図である。It is sectional drawing which shows 2nd Embodiment of the connection structure of the oxide superconductor shown in FIG. 実施例における曲げ試験結果を示すグラフである。It is a graph which shows the bending test result in an Example.

以下、酸化物超電導導体の接続構造の第一実施形態を図面に基づいて詳細に説明する。なお、本発明は以下説明の実施形態に限定されるものではない。また、以下の説明で用いる図面は、本発明の特徴をわかりやすくするため、便宜上、要部となる部分を拡大して示している場合があり、各構成要素の寸法比率などが実際と同じであるとは限らない。
図1に示すように、本実施形態の接続構造に用いる酸化物超電導導体1は、テープ状の基材2の一面(表面)上に、中間層5、酸化物超電導層6、第1の金属安定化層7を積層して積層体9が形成され、この積層体9のほぼ全周を第2の金属安定化層8で覆って構成されている。なお、第2の金属安定化層8は図1に示す実施形態では積層体9の全周を覆っている訳ではなく、積層体9のほぼ全周を覆っていて、積層体9の外周部において一部分のみ第2の金属安定化層8が被覆されていない部分が形成され、この部分は別途導電性接合材層11により覆われている。この実施形態において第2の金属安定化層8は基材12の裏面側中央部を除いて積層体9の全周を覆うように設けられていて、導電性接合材層11は基材2の裏面幅方向中央部において第2の金属安定化層8の端縁部間を埋めるようにこれら端縁部間に被着されている。なお、図2では略しているが第2の安定化層8の内周面側のほぼ全面にも半田等の導電性接合材層が形成されている。第2の安定化層8は積層体9のほぼ全周面に対し導電性接合材層を介し密着されていることが好ましい。
Hereinafter, a first embodiment of a connection structure of oxide superconducting conductors will be described in detail with reference to the drawings. The present invention is not limited to the embodiments described below. In addition, the drawings used in the following description may show the main parts in an enlarged manner for convenience in order to make the features of the present invention easier to understand, and the dimensional ratios of the respective components are the same as the actual ones. Not always.
As shown in FIG. 1, the oxide superconducting conductor 1 used in the connection structure of the present embodiment has an intermediate layer 5, an oxide superconducting layer 6, and a first metal on one surface (surface) of a tape-like substrate 2. A laminated body 9 is formed by laminating the stabilizing layer 7, and the second metal stabilizing layer 8 covers almost the entire circumference of the laminated body 9. In the embodiment shown in FIG. 1, the second metal stabilization layer 8 does not cover the entire circumference of the laminate 9, but covers almost the entire circumference of the laminate 9. In FIG. 2, only a part of the second metal stabilizing layer 8 is not covered, and this part is separately covered with the conductive bonding material layer 11. In this embodiment, the second metal stabilizing layer 8 is provided so as to cover the entire circumference of the laminate 9 except for the central portion on the back surface side of the substrate 12, and the conductive bonding material layer 11 is formed of the substrate 2. The second metal stabilizing layer 8 is deposited between the end edges so as to fill in the space between the end edges of the second metal stabilizing layer 8 at the center in the back surface width direction. Although omitted in FIG. 2, a conductive bonding material layer such as solder is formed on almost the entire inner peripheral surface of the second stabilization layer 8. It is preferable that the second stabilization layer 8 is in close contact with the substantially entire circumferential surface of the laminate 9 via a conductive bonding material layer.

本実施形態の酸化物超電導導体の接続構造は、図1に示す構造の酸化物超電導導体1を2本接続する場合に適用される。
図2は接続構造の第1実施形態を示すもので、2本の酸化物超電導導体1が互いの端部間に隙間dをあけて隣接され、第1の金属安定化層7を形成した側を基材2に対し同じ側に揃えて直線状に配置され、酸化物超電導導体1、1の隣接する端部間に橋渡し状に跨るように被着された第3の酸化物超電導導体13が設けられている。本実施形態では便宜的に接続するべき酸化物超電導導体1、1のうち、一方(図2の左側)を第1の酸化物超電導導体1と呼称し、他方(図2の右側)を第2の酸化物超電導体1と呼称する。
第3の酸化物超電導導体13は、先の第1、第2の酸化物超電導導体1と同等構造であるが短尺のテープ状の酸化物超電導導体である。即ち、基材2の上に中間層5、酸化物超電導層6、第1の金属安定化層7を積層して積層体9が形成され、この積層体9のほぼ全周を第2の金属安定化層8Aで覆って構成されているが、短尺、例えば、数cm〜数10cm程度、具体的には接続対象にもよるが1cm〜20cm程度の長さの酸化物超電導導体からなる。
The connection structure of the oxide superconducting conductor of this embodiment is applied when two oxide superconducting conductors 1 having the structure shown in FIG. 1 are connected.
FIG. 2 shows a first embodiment of a connection structure, in which two oxide superconducting conductors 1 are adjacent to each other with a gap d between them and the first metal stabilizing layer 7 is formed. Are arranged in a straight line on the same side with respect to the base material 2, and a third oxide superconductor 13 is attached so as to bridge between adjacent ends of the oxide superconductors 1 and 1. Is provided. In the present embodiment, one (left side in FIG. 2) of the oxide superconductors 1 and 1 to be connected for convenience is referred to as the first oxide superconductor 1 and the other (right side in FIG. 2) is the second. The oxide superconductor 1 is called.
The third oxide superconducting conductor 13 is a short tape-shaped oxide superconducting conductor having the same structure as the first and second oxide superconducting conductors 1 described above. That is, the intermediate layer 5, the oxide superconducting layer 6, and the first metal stabilizing layer 7 are laminated on the base material 2 to form a laminated body 9, and the second metal is formed almost entirely on the laminated body 9. Although it is configured to be covered with the stabilization layer 8A, it is made of an oxide superconductor having a short length, for example, about several centimeters to several tens of centimeters, specifically about 1 cm to 20 centimeters depending on the connection target.

第3の酸化物超電導導体13はその内部側に設けられている第1の金属安定化層7を前記第1、第2の酸化物超電導導体1、1の第1の安定化層7側に向け、第2の金属安定化層8Aを前記第1、第2の酸化物超電導導体1、1の第2の安定化層8に沿わせてそれらの間に介在された半田等の導電性接合材15により第1、第2の酸化物超電導導体1、1に接続されている。   The third oxide superconducting conductor 13 has a first metal stabilizing layer 7 provided on the inner side thereof on the first stabilizing layer 7 side of the first and second oxide superconducting conductors 1, 1. The second metal stabilization layer 8A is placed along the second stabilization layer 8 of the first and second oxide superconducting conductors 1 and 1 and a conductive junction such as solder interposed between them. The material 15 is connected to the first and second oxide superconductors 1 and 1.

前記第1〜第3の酸化物超電導導体1、1、13において、基材2は、通常の酸化物超電導導体用の基板として使用し得るものであれば良く、可撓性を有するテープ状であることが好ましく、耐熱性の金属からなるものが好ましい。耐熱性の金属の中でも、ニッケル(Ni)合金が好ましい。中でも、市販品であればハステロイ(商品名、ヘインズ社製)が好適であり、モリブデン(Mo)、クロム(Cr)、鉄(Fe)、コバルト(Co)等の成分量が異なる、ハステロイB、C、G、N、W等のいずれの種類も使用できる。また、基材2としてニッケル合金などに集合組織を導入した配向金属基板を用い、その上に中間層5および酸化物超電導層6を形成してもよい。
基材2の厚さは、目的に応じて適宜調整すれば良く、通常は、10〜500μmであることが好ましく、20〜200μmであることがより好ましい。
In the first to third oxide superconducting conductors 1, 1, and 13, the base material 2 may be any material that can be used as a substrate for a normal oxide superconducting conductor, and has a flexible tape shape. It is preferable that it is made of a heat-resistant metal. Among heat-resistant metals, nickel (Ni) alloys are preferable. Among them, if it is a commercial product, Hastelloy (trade name, manufactured by Haynes) is suitable, and the amount of components such as molybdenum (Mo), chromium (Cr), iron (Fe), cobalt (Co) is different, Hastelloy B, Any kind of C, G, N, W, etc. can be used. Further, an oriented metal substrate in which a texture is introduced into a nickel alloy or the like may be used as the base material 2, and the intermediate layer 5 and the oxide superconducting layer 6 may be formed thereon.
What is necessary is just to adjust the thickness of the base material 2 suitably according to the objective, Usually, it is preferable that it is 10-500 micrometers, and it is more preferable that it is 20-200 micrometers.

前記中間層5は、その上に形成する酸化物超電導層6との物理的特性(熱膨張率や格子定数等)の差を緩和するバッファー層として機能し、物理的特性が基材2と酸化物超電導層6との中間的な値を示す金属酸化物が好ましい。中間層5として具体的には、GdZr、MgO、ZrO−Y(YSZ)、SrTiO、CeO、Y、Al、Gd、Zr、Ho、Nd等の金属酸化物を例示でき、これらをIBAD法(イオンビームアシスト蒸着法)で形成して結晶配向性を整えたものが好ましい。
中間層5は、単層でも良いし、複数層でも良く、複数層である場合は、最外層(最も酸化物超電導層6に近い層)が少なくとも良好な結晶配向性を有していることが好ましい。このため、IBAD法で結晶配向性の良好な第一の配向層を形成後、スパッタ法などの成膜法によりこの第一の配向層の上にエピタキシャル成長可能な第二の配向層を積層した複層構造とすることもできる。複層構造の場合、第一の配向層と第二の配向層は同じ材料からなる層であっても良いし、異なる材料からなる層であっても良い。
中間層5は、基板2側にベッド層が介在された複数層構造でもよい。ベッド層は、必要に応じて配され、イットリア(Y)、窒化ケイ素(Si)、酸化アルミニウム(Al、「アルミナ」とも呼ぶ)等から構成される。ベッド層の厚さは例えば10〜200nmである。
The intermediate layer 5 functions as a buffer layer that alleviates the difference in physical properties (thermal expansion coefficient, lattice constant, etc.) from the oxide superconducting layer 6 formed thereon, and the physical properties are the same as those of the base material 2 and oxidized. A metal oxide showing an intermediate value with the physical superconducting layer 6 is preferable. Specifically as the intermediate layer 5, Gd 2 Zr 2 O 7 , MgO, ZrO 2 -Y 2 O 3 (YSZ), SrTiO 3, CeO 2, Y 2 O 3, Al 2 O 3, Gd 2 O 3, Examples thereof include metal oxides such as Zr 2 O 3 , Ho 2 O 3 , and Nd 2 O 3 , and those formed by IBAD method (ion beam assisted deposition method) to adjust the crystal orientation are preferable.
The intermediate layer 5 may be a single layer or a plurality of layers. In the case of a plurality of layers, the outermost layer (the layer closest to the oxide superconducting layer 6) has at least good crystal orientation. preferable. For this reason, after forming a first alignment layer with good crystal orientation by the IBAD method, a second alignment layer capable of epitaxial growth is laminated on the first alignment layer by a film forming method such as sputtering. It can also be a layered structure. In the case of a multilayer structure, the first alignment layer and the second alignment layer may be layers made of the same material or layers made of different materials.
The intermediate layer 5 may have a multi-layer structure in which a bed layer is interposed on the substrate 2 side. The bed layer is arranged as necessary, and is made of yttria (Y 2 O 3 ), silicon nitride (Si 3 N 4 ), aluminum oxide (Al 2 O 3 , also referred to as “alumina”), or the like. The thickness of the bed layer is, for example, 10 to 200 nm.

さらに、本発明において、中間層5は、基材2側に拡散防止層とベッド層が積層された複数層構造でもよい。この場合、基材2とベッド層との間に拡散防止層が介在された構造となる。拡散防止層は、窒化ケイ素(Si)、酸化アルミニウム(Al)、あるいは希土類金属酸化物等から、単層あるいは複層構造とされ、その厚さは例えば10〜400nmである。
中間層5は、前記IBAD法による金属酸化物層の上に、さらにキャップ層が積層された複層構造でも良い。キャップ層は、酸化物超電導層6の配向性を制御し、単結晶のように良好な結晶配向性とする機能を有する。キャップ層は、特に限定されないが、好ましいものとして具体的には、CeO、Y、Al、Gd、ZrO、Ho、Nd、LaMnO等を例示できる。キャップ層の材質がCeOである場合、キャップ層は、Ceの一部が他の金属原子又は金属イオンで置換されたCe−M−O系酸化物を含んでいても良い。
Further, in the present invention, the intermediate layer 5 may have a multi-layer structure in which a diffusion prevention layer and a bed layer are laminated on the base material 2 side. In this case, a diffusion preventing layer is interposed between the base material 2 and the bed layer. The diffusion prevention layer has a single-layer or multi-layer structure made of silicon nitride (Si 3 N 4 ), aluminum oxide (Al 2 O 3 ), or rare earth metal oxide, and has a thickness of, for example, 10 to 400 nm. .
The intermediate layer 5 may have a multilayer structure in which a cap layer is further laminated on the metal oxide layer formed by the IBAD method. The cap layer has a function of controlling the orientation of the oxide superconducting layer 6 and achieving a good crystal orientation like a single crystal. Capping layer is not particularly limited, specifically as preferred, CeO 2, Y 2 O 3 , Al 2 O 3, Gd 2 O 3, ZrO 2, Ho 2 O 3, Nd 2 O 3, LaMnO 3 Etc. can be illustrated. When the material of the cap layer is CeO 2 , the cap layer may contain a Ce—M—O-based oxide in which part of Ce is substituted with another metal atom or metal ion.

前記酸化物超電導層6は通常知られている組成の酸化物超電導体からなるものを広く適用することができ、REBaCu(REはY、La、Nd、Sm、Er、Gd等の希土類元素を表す)なる材質のもの、具体的には、Y123(YBaCu)又はGd123(GdBaCu)を例示できる。また、その他の酸化物超電導体、例えば、BiSrCan−1Cu4+2n+δなる組成等に代表される臨界温度の高い他の酸化物超電導体からなるものを用いても良いのは勿論である。酸化物超電導層6の厚みは、0.5〜5μm程度であって、均一な厚みであることが好ましい。 The oxide superconducting layer 6 can be widely applied to an oxide superconductor having a generally known composition, such as REBa 2 Cu 3 O y (RE is Y, La, Nd, Sm, Er, Gd, etc. And a material such as Y123 (YBa 2 Cu 3 O y ) or Gd123 (GdBa 2 Cu 3 O y ). Further, other oxide superconductors, for example, Bi 2 Sr 2 Ca n- 1 Cu n for O 4 + 2n + δ becomes may be used in compositions such as those made of other oxide superconductors having high critical temperatures representative Of course. The oxide superconducting layer 6 has a thickness of about 0.5 to 5 μm and preferably a uniform thickness.

前記第1の金属安定化層7は、AgあるいはAg合金などの良電導性かつ酸化物超電導層6と接触抵抗が低くなじみの良い金属材料からなる。
第1の金属安定化層7をAgから構成する理由としては、酸化物超電導層6に酸素をドープするアニール工程において、ドープした酸素を酸化物超電導層6から逃避し難くする性質を有する点を挙げることができる。Agからなる第1の金属安定化層7を成膜するには、スパッタ法などの成膜法を採用し、その厚さは1〜30μm程度とされる。
The first metal stabilizing layer 7 is made of a metal material that has good conductivity, such as Ag or an Ag alloy, has low contact resistance with the oxide superconducting layer 6, and is compatible.
The reason why the first metal stabilizing layer 7 is made of Ag is that it has a property of making it difficult to escape the doped oxygen from the oxide superconducting layer 6 in the annealing step of doping the oxide superconducting layer 6 with oxygen. Can be mentioned. In order to form the first metal stabilizing layer 7 made of Ag, a film forming method such as a sputtering method is adopted, and the thickness thereof is set to about 1 to 30 μm.

前記第2の金属安定化層8、8Aは、一例として良導電性の金属材料からなり、酸化物超電導層6が超電導状態から常電導状態に遷移しようとした時に、第1の安定化層7とともに、酸化物超電導層6の電流が転流するバイパスとして機能する。
第2の金属安定化層8、8Aを構成する金属材料としては、良導電性を有するものであればよく、特に限定されないが、銅、黄銅(Cu−Zn合金)、Cu−Ni合金等の銅合金、ステンレス等の比較的安価な材質からなるものを用いることが好ましく、中でも高い導電性を有し、安価であることから銅が好ましい。なお、酸化物超電導導体1を超電導限流器に使用する場合、第2の金属安定化層8、8Aは抵抗金属材料より構成され、Ni−Cr等のNi系合金などを使用できる。
The second metal stabilizing layers 8 and 8A are made of, for example, a highly conductive metal material. When the oxide superconducting layer 6 attempts to transition from the superconducting state to the normal conducting state, the first stabilizing layer 7 is formed. At the same time, the oxide superconducting layer 6 functions as a bypass through which current flows.
The metal material constituting the second metal stabilization layer 8 or 8A is not particularly limited as long as it has good electrical conductivity, but copper, brass (Cu—Zn alloy), Cu—Ni alloy, etc. It is preferable to use a material made of a relatively inexpensive material such as a copper alloy or stainless steel. Among them, copper is preferable because it has high conductivity and is inexpensive. When the oxide superconducting conductor 1 is used for a superconducting fault current limiter, the second metal stabilizing layers 8 and 8A are made of a resistance metal material, and a Ni-based alloy such as Ni—Cr can be used.

前記導電性接合材15は、ヤング率として41.4GPa(41.4×10N/m)未満の半田から形成されている。一例として、ヤング率10.8GPa(10.8×10N/m)のインジウム半田が用いられる。
この他に41.4GPa(41.4×10N/m)未満のヤング率の導電性接合材として、Sn−Pb半田(ヤング率:22GPa)、Sn−Ag−Cu半田(ヤング率:31GPa)、Sn−Ag−Cu半田(ヤング率:36GPa)、Sn−Bi−Ag半田(ヤング率:24GPa)、共晶半田(Pb37Sn63:ヤング率19.27GPa)などを用いることができる。
The conductive bonding material 15 is made of solder having a Young's modulus of less than 41.4 GPa (41.4 × 10 9 N / m 2 ). As an example, indium solder having a Young's modulus of 10.8 GPa (10.8 × 10 9 N / m 2 ) is used.
In addition, Sn—Pb solder (Young's modulus: 22 GPa), Sn—Ag—Cu solder (Young's modulus: Young's modulus) as a conductive bonding material having a Young's modulus of less than 41.4 GPa (41.4 × 10 9 N / m 2 ). 31 GPa), Sn-Ag-Cu solder (Young's modulus: 36 GPa), Sn-Bi-Ag solder (Young's modulus: 24 GPa), eutectic solder (Pb37Sn63: Young's modulus 19.27 GPa), or the like can be used.

図1に示す構造の酸化物超電導導体1、13を製造するには、基材2上に前述した種々の成膜法により中間層5と酸化物超電導層6と第1の金属安定化層7を積層したテープ状の積層体9を作製し、この積層体9に沿うように必要幅の金属テープを配置し、加圧加熱ロールを用いたロールフォーミングなどにより金属テープを折り曲げ加工して第2の金属安定化層8あるいは第2の金属安定化層8Aを形成し超電導導体1、13とすることができる。
なお、積層体9に第2の安定化層8、8Aを被覆する場合、金属テープの裏面側にめっきにより半田予備層を形成したものを用いることが好ましい。これらの半田予備層は半田めっきなどにより2μm〜6μm程度の厚さとしたものを用いることができる。
半田予備層を構成する半田材料として、例えば、Sn、Sn−Ag系合金、Sn−Bi系合金、Sn−Cu系合金、Sn−Zn系合金などのSnを主成分とする合金よりなる鉛フリー半田、Pb−Sn系合金半田、共晶半田、低温半田などが挙げられ、これらの半田を1種、又は2種以上組み合わせて使用することもできる。また、半田予備層において、前述の導電性接合材15を形成するために用いた材料を適用しても良い。なお、第2の金属安定化層8、8Aの裏面側に塗布する半田予備層は、上述の導電性接合材15よりも薄く形成するので、これらの半田予備層が酸化物超電導導体1の撓曲時に与える影響は少ないので、通常の半田材料を用いることができるが、ヤング率として41.4GPa(41.4×10N/m)未満の上述の半田を用いても良い。
In order to manufacture the oxide superconducting conductors 1 and 13 having the structure shown in FIG. 1, the intermediate layer 5, the oxide superconducting layer 6, and the first metal stabilizing layer 7 are formed on the base material 2 by the various film forming methods described above. A tape-shaped laminate 9 is prepared, a metal tape having a necessary width is arranged along the laminate 9, and the second tape is bent by roll forming using a pressure heating roll. Thus, the superconducting conductors 1 and 13 can be formed by forming the metal stabilizing layer 8 or the second metal stabilizing layer 8A.
In addition, when covering the laminated body 9 with the 2nd stabilization layer 8 and 8A, it is preferable to use what formed the solder preliminary layer by plating on the back surface side of the metal tape. These solder preliminary layers can be made to have a thickness of about 2 μm to 6 μm by solder plating or the like.
As a solder material constituting the solder preliminary layer, for example, lead-free made of an alloy containing Sn as a main component such as Sn, Sn—Ag alloy, Sn—Bi alloy, Sn—Cu alloy, Sn—Zn alloy, etc. Examples thereof include solder, Pb—Sn alloy solder, eutectic solder, low temperature solder, and the like, and these solders can be used alone or in combination. In the solder preliminary layer, the material used for forming the conductive bonding material 15 may be applied. In addition, since the solder spare layer applied to the back side of the second metal stabilizing layers 8 and 8A is formed thinner than the conductive bonding material 15 described above, these solder spare layers are formed by bending the oxide superconductor 1. Since the influence upon bending is small, a normal solder material can be used, but the above-described solder having a Young's modulus of less than 41.4 GPa (41.4 × 10 9 N / m 2 ) may be used.

以上のように得られた図2に示す接続構造では、第1、第2の超電導導体1の金属安定化層8どうしを第3の超電導導体13の金属安定化層8Aにヤング率41.4×10N/m未満の導電性接合材15で接続したので、第1、第2の超電導導体1、1を巻胴に巻き掛けるなどの構造に適用して第1、第2の超電導導体1に曲げ応力が作用した場合であっても、第1、第2、第3の超電導導体1、1、13の接続部分周りの酸化物超電導層6に作用する応力を低減することができ、超電導特性の劣化の少ない接続構造を提供できる。第1、第2、第3の超電導導体1、1、13を接合する導電性接合材15のヤング率が41.4×10N/m未満であると、曲げ応力が作用した場合に導電性接合材15の全体が均等に撓曲する確率が高く、導電性接合材15が部分的に折れ曲がるなどにより酸化物超電導層6に局所的に応力付加をかけるおそれが少なくなる。これに対し仮に、ヤング率41.4×10N/mを超える導電性接合材であると、接続部分の硬度が高いので、酸化物超電導導体1、1の湾曲に応じて硬い接続部分が上方に折れ曲がり、折れ曲がった接続部分が上方の酸化物超電導層6に部分的に応力付加をかけるので、部分的に曲げ応力を受けた位置の酸化物超電導層6が大きな応力を受ける結果、超電導特性が大幅に劣化するおそれがある。これに対しヤング率が41.4×10N/m未満の導電性接合材15であるならば、適度に柔らかいので曲げ応力の集中を緩和できる結果、超電導特性の劣化を生じ難い。なお、導電性接合材15のヤング率について、11GPa以下であることがより好ましい。 In the connection structure shown in FIG. 2 obtained as described above, the Young's modulus of 41.4 is applied to the metal stabilizing layer 8A of the third superconducting conductor 13 between the metal stabilizing layers 8 of the first and second superconducting conductors 1. Since the conductive bonding material 15 is less than × 10 9 N / m 2 , the first and second superconductivity are applied to a structure in which the first and second superconducting conductors 1 and 1 are wound around a winding drum. Even when bending stress is applied to the conductor 1, the stress acting on the oxide superconducting layer 6 around the connecting portion of the first, second, and third superconducting conductors 1, 1, and 13 can be reduced. It is possible to provide a connection structure with little deterioration of superconducting characteristics. If the Young's modulus of the conductive bonding material 15 for bonding the first, second, and third superconducting conductors 1, 1, and 13 is less than 41.4 × 10 9 N / m 2 , when bending stress acts There is a high probability that the entire conductive bonding material 15 is bent evenly, and there is less possibility that stress is locally applied to the oxide superconducting layer 6 when the conductive bonding material 15 is partially bent. On the other hand, if the conductive bonding material has a Young's modulus exceeding 41.4 × 10 9 N / m 2 , the hardness of the connection portion is high, so that the connection portion that is hard according to the curvature of the oxide superconductors 1 and 1 Is bent upward, and the bent connection portion partially applies stress to the upper oxide superconducting layer 6, and as a result, the oxide superconducting layer 6 at the position where the bending stress is partially received is subjected to a large stress. There is a possibility that the characteristics are greatly deteriorated. On the other hand, if the conductive bonding material 15 has a Young's modulus of less than 41.4 × 10 9 N / m 2 , it can be moderately soft and the concentration of bending stress can be alleviated. As a result, superconducting characteristics are hardly deteriorated. The Young's modulus of the conductive bonding material 15 is more preferably 11 GPa or less.

なお、第1、第2の酸化物超電導導体1、1間には隙間dがあけられているので、巻胴などに巻回する場合に第1、第2の酸化物超電導導体1、1の端部間の干渉を防止できる。また、この隙間dは酸化物超電導導体1を曲げる場合に必要とする曲げ半径に合わせて数mm〜数10cmの範囲で任意の幅に設定できる。
また、導電性接合材15の構成材料として仮にSnを用いるならば、接続の際、加熱温度をSnの融点以上に上げなければならないため、積層体9に第2の金属安定化層8を被覆する場合に用いている半田予備層のSnが融点に達し、その結果、溶融したSnが第1の金属安定化層7を構成するAgの一部を吸収してしまい、第1の金属安定化層7の機能を損なうおそれがある。これに対し、導電性接合材15がインジウム半田からなるならば、接続のための加熱温度をインジウムの融点(約156℃)以上、Snの融点(約232℃)以下にすることができるので、第1の金属安定化層7の表面のAgを融かすことなく接続できる効果がある。
Since a gap d is provided between the first and second oxide superconducting conductors 1, 1, the first and second oxide superconducting conductors 1, 1 are wound when wound around a winding drum or the like. Interference between ends can be prevented. The gap d can be set to an arbitrary width in the range of several mm to several tens of cm according to the bending radius required when the oxide superconducting conductor 1 is bent.
Further, if Sn is used as the constituent material of the conductive bonding material 15, the heating temperature must be raised to the melting point of Sn or more at the time of connection, so the laminated body 9 is covered with the second metal stabilizing layer 8. In this case, the Sn of the solder preliminary layer used in this case reaches the melting point, and as a result, the molten Sn absorbs a part of Ag constituting the first metal stabilizing layer 7 and the first metal stabilization. The function of the layer 7 may be impaired. On the other hand, if the conductive bonding material 15 is made of indium solder, the heating temperature for connection can be made higher than the melting point of indium (about 156 ° C.) and lower than the melting point of Sn (about 232 ° C.). There is an effect that connection can be made without melting Ag on the surface of the first metal stabilizing layer 7.

図2に示す酸化物超電導導体の接続構造は、例えば、図3に例示する高温超電導ケーブル16に適用することができる。図3に示す高温超電導ケーブル16は、中心部に設けたフォーマ17の外周に酸化物超電導導体1を巻線状に複数層配置して超電導層18を形成し、その外周に絶縁層19と超電導シールド層20と保護層21を形成してコアケーブル22を構成し、このコアケーブル22を断熱管23の内部に冷媒流通用の間隙をあけて収容してなる。断熱管23は例えば内管23aと外管23bからなる2重管構造とされ、内管23aと外管23bとの間に真空断熱層23cが形成されている。超電導シールド層20は酸化物超電導導体1を複数層巻線状に配置して構成されている。
このような高温超電導ケーブル16は長尺のケーブルとして作製されるので、超電導層18を形成する酸化物超電導導体1、あるいは、超電導シールド層20を構成する酸化物超電導導体1を他の超電導ケーブルに接続する構成が必要となるので、図2に示す酸化物超電導導体1を他の酸化物超電導導体に接続する構造が適用される。
The oxide superconducting conductor connection structure shown in FIG. 2 can be applied to, for example, the high-temperature superconducting cable 16 illustrated in FIG. The high-temperature superconducting cable 16 shown in FIG. 3 forms a superconducting layer 18 by arranging a plurality of layers of the oxide superconducting conductor 1 in a winding shape on the outer periphery of a former 17 provided at the center, and an insulating layer 19 and a superconducting layer on the outer periphery. A shield layer 20 and a protective layer 21 are formed to constitute a core cable 22, and the core cable 22 is accommodated inside a heat insulating pipe 23 with a gap for refrigerant circulation. The heat insulation pipe 23 has, for example, a double pipe structure including an inner pipe 23a and an outer pipe 23b, and a vacuum heat insulation layer 23c is formed between the inner pipe 23a and the outer pipe 23b. The superconducting shield layer 20 is configured by arranging the oxide superconducting conductor 1 in a multi-layer winding shape.
Since such a high temperature superconducting cable 16 is manufactured as a long cable, the oxide superconducting conductor 1 forming the superconducting layer 18 or the oxide superconducting conductor 1 constituting the superconducting shield layer 20 is used as another superconducting cable. Since a connection configuration is required, a structure in which the oxide superconducting conductor 1 shown in FIG. 2 is connected to another oxide superconducting conductor is applied.

図2に示す酸化物超電導導体の接続構造は、例えば、図4に示す超電導限流器99に適用することができる。
図4に示す超電導限流器99において、図2に示す接続構造を備えた酸化物超電導線材1は、巻胴に複数層に渡って巻回され超電導限流器用モジュール90を構成し、当該超電導限流器用モジュール90として液体窒素98が充填された液体窒素容器95に格納されている。さらに液体窒素容器95は、外部との熱を遮断する真空容器96の内部に格納されている。
液体窒素容器95は、上部に、液体窒素充填部91と冷凍機93を有し、冷凍機93の下方には、熱アンカー92と熱板97が設けられている。
また、超電導限流器99は、超電導限流器用モジュール90に外部電源(図示略)を接続するための電流リード部94を有する。
以上のような、超電導限流器99の超電導限流器用モジュール90として使用する場合において、酸化物超電導線材1は、図1を基に説明したように第2の安定化層14にNi−Cr等の高抵抗金属を用いたものを使用する。
The connection structure of the oxide superconducting conductor shown in FIG. 2 can be applied to, for example, the superconducting fault current limiter 99 shown in FIG.
In the superconducting current limiter 99 shown in FIG. 4, the oxide superconducting wire 1 having the connection structure shown in FIG. 2 is wound around a winding drum in a plurality of layers to form a superconducting current limiter module 90. The current limiting module 90 is stored in a liquid nitrogen container 95 filled with liquid nitrogen 98. Further, the liquid nitrogen container 95 is stored inside a vacuum container 96 that blocks heat from the outside.
The liquid nitrogen container 95 has a liquid nitrogen filling part 91 and a refrigerator 93 in the upper part, and a heat anchor 92 and a hot plate 97 are provided below the refrigerator 93.
The superconducting current limiter 99 has a current lead portion 94 for connecting an external power source (not shown) to the superconducting current limiter module 90.
When used as the superconducting fault current limiter module 90 of the superconducting fault current limiter 99 as described above, the oxide superconducting wire 1 has Ni—Cr as the second stabilizing layer 14 as described with reference to FIG. Use a high-resistance metal such as

図2に示す酸化物超電導導体の接続構造は、例えば、図5に示す構造の超電導モーター(超電導機器)30に適用される。図5に示す超電導モーター30は、円筒状の密閉型の横長の容器31の内部に、回転自在に軸支された軸型の回転子32を備え、ヘリウムガス等の冷却ガスを容器30の内部に供給できるように構成されている。
回転軸33の中央部周囲側に、軸周りに複数の超電導コイル35が取り付けられ、これら複数の超電導コイル35の周囲側に容器31の内壁側に支持された銅コイルからなる複数の常電導コイル36が配置されている。
回転軸33の内部には冷却ガスを流入させるか流出させるための複数の配管が設けられ、外部に別途設けられている図示略の冷媒供給装置から容器31の内部に冷却ガスを導入し、冷却ガスにより超電導コイル35を臨界温度以下に冷却できるように構成されている。なお、超電導コイル35は臨界温度以下に冷却されるが、常電導コイル36は常温部として構成される。この形態の超電導モータ30においては複数の超電導コイル35が設けられ、これらが相互に電気的に接続される必要があるので、各超電導コイル35を構成する複数の酸化物超電導導体1、1を図2に示す接続構造により接続することができる。
図5に示すように回転軸33の周囲に配置された超電導コイル35を積層型に構成し、この超電導コイル35を構成するための超電導導体の接続構造として図2に示す接続構造を採用することができる。
2 is applied to, for example, a superconducting motor (superconducting device) 30 having the structure shown in FIG. A superconducting motor 30 shown in FIG. 5 includes a shaft-shaped rotor 32 rotatably supported in a cylindrical hermetic horizontally long container 31, and a cooling gas such as helium gas is supplied into the container 30. It is comprised so that it can supply to.
A plurality of superconducting coils 35 are attached to the periphery of the central portion of the rotating shaft 33, and a plurality of normal conducting coils are formed of copper coils supported on the inner wall side of the container 31 around the plurality of superconducting coils 35. 36 is arranged.
A plurality of pipes for inflow or outflow of cooling gas are provided inside the rotary shaft 33. Cooling gas is introduced into the container 31 from a refrigerant supply device (not shown) separately provided outside to cool the cooling gas. The superconducting coil 35 is configured to be cooled below the critical temperature by gas. The superconducting coil 35 is cooled below the critical temperature, but the normal conducting coil 36 is configured as a normal temperature part. In the superconducting motor 30 of this embodiment, a plurality of superconducting coils 35 are provided, and these need to be electrically connected to each other. Therefore, the plurality of oxide superconducting conductors 1 and 1 constituting each superconducting coil 35 are illustrated in FIG. The connection structure shown in FIG.
As shown in FIG. 5, the superconducting coil 35 arranged around the rotating shaft 33 is formed in a laminated type, and the connection structure shown in FIG. 2 is adopted as the connection structure of the superconducting conductor for constituting the superconducting coil 35. Can do.

図5に示す超電導モーター30は、容器31の内部に冷却ガスを導入し、この冷却ガスにより超電導コイル35を臨界温度以下に冷却して使用する。常電導コイル36には別途図示略の電源から必要な電流を供給し、超電導コイル35にも別途図示略の電源から必要な電流を供給することで、両者のコイルが生成する磁場に起因した回転力により回転軸33を回転させて超電導モーターとして使用することができる。   The superconducting motor 30 shown in FIG. 5 introduces a cooling gas into the container 31 and uses the cooling gas to cool the superconducting coil 35 to a critical temperature or lower. A necessary current is supplied to the normal conducting coil 36 from a power supply (not shown) separately, and a necessary current is also supplied to the superconducting coil 35 from a power supply (not shown) separately, thereby rotating due to the magnetic field generated by both coils. The rotating shaft 33 can be rotated by force to be used as a superconducting motor.

図2に示す酸化物超電導導体の接続構造は、例えば、図6に示す構造の積層型の超電導マグネット40に適用することができる。この形態の超電導マグネット40は、図6の例ではパンケーキコイル41を8段積みとした構成であり、個々のパンケーキコイル41は酸化物超電導導体1をパンケーキコイル型に巻回して構成されている。
このように積層型の超電導マグネット40の複数のパンケーキコイル41を接続するために、図2に示す酸化物超電導導体の接続構造を適用することができる。
例えば、複数のパンケーキコイル41を接続する場合、上下に配置されたパンケーキコイル41、41の内側の酸化物超電導導体1、1の巻き初め端どうしを橋渡しするように第3の酸化物超電導導体を配置し、図2に示す構造を採用することができる。また、上下に配置されたパンケーキコイル41、41の外側の酸化物超電導導体1、1の巻き終わり側の終端どうしを橋渡しするように第3の酸化物超電導導体を配置し、図2に示す構造を採用することができる。
The connection structure of the oxide superconducting conductor shown in FIG. 2 can be applied to, for example, a laminated superconducting magnet 40 having the structure shown in FIG. The superconducting magnet 40 of this form has a configuration in which the pancake coils 41 are stacked in eight stages in the example of FIG. 6, and each pancake coil 41 is configured by winding the oxide superconducting conductor 1 in a pancake coil shape. ing.
Thus, in order to connect the plurality of pancake coils 41 of the laminated superconducting magnet 40, the connection structure of the oxide superconducting conductor shown in FIG. 2 can be applied.
For example, when a plurality of pancake coils 41 are connected, the third oxide superconductivity is formed so as to bridge the winding start ends of the oxide superconductors 1 and 1 inside the pancake coils 41 and 41 arranged above and below. A conductor can be arranged and the structure shown in FIG. 2 can be adopted. Further, a third oxide superconducting conductor is disposed so as to bridge the ends of the oxide superconducting conductors 1 and 1 outside the pancake coils 41 and 41 disposed on the upper and lower sides on the winding end side, as shown in FIG. A structure can be adopted.

図7は接続構造の第2実施形態を示すもので、第1と第2の酸化物超電導導体1が互いの端部を所定長さ重ね合わせて導電性接合材15により接合されている。
第2実施形態の構造では、第1、第2の酸化物超電導導体1が接合部において表裏逆転するので、この形態の構造は接続部において表裏が逆転しても支障がない場合に適用できる。
FIG. 7 shows a second embodiment of the connection structure, in which the first and second oxide superconducting conductors 1 are joined by a conductive joining material 15 with their end portions overlapped by a predetermined length.
In the structure of the second embodiment, since the first and second oxide superconducting conductors 1 are reversed at the joint, this structure can be applied when there is no problem even if the front and back are reversed at the connection.

第2実施形態の構造においてもヤング率41.4×10N/m未満の導電性接合材15で接続したので、超電導導体1、1を巻胴に巻き掛けるなどの構造に適用して第1、第2の超電導導体1に曲げ応力が作用した場合であっても、第1、第2の超電導導体1、1の接続部分周りの酸化物超電導層6に作用する応力を低減することができ、超電導特性の劣化の少ない接続構造を提供できる。
また、第2実施形態の構造を先に説明した、図3に示す超電導ケーブル16、図4に示す超電導限流器用モジュール25、超電導モーター30、超電導マグネット40、パンケーキコイル41などに適用できるのは勿論である。
Also in the structure of the second embodiment, since it is connected by the conductive bonding material 15 having a Young's modulus of less than 41.4 × 10 9 N / m 2 , it is applied to a structure in which the superconducting conductors 1 and 1 are wound around a winding drum. Even when bending stress acts on the first and second superconducting conductors 1, the stress acting on the oxide superconducting layer 6 around the connecting portion of the first and second superconducting conductors 1 and 1 is reduced. Therefore, it is possible to provide a connection structure with little deterioration of superconducting characteristics.
Further, the structure of the second embodiment can be applied to the superconducting cable 16 shown in FIG. 3, the superconducting fault current limiter module 25 shown in FIG. 4, the superconducting motor 30, the superconducting magnet 40, the pancake coil 41, etc. Of course.

幅10mm、厚さ100μm、長さ1mのテープ状のハステロイC276(米国ヘインズ社製商品名)製の基材上に、スパッタ法によりAl(拡散防止層;膜厚150nm)を成膜した上に、イオンビームスパッタ法によりY(ベッド層;膜厚20nm)を成膜した。次いで、このベッド層上に、イオンビームアシストスパッタ法(IBAD法)によりMgO(中間層;膜厚10nm)を形成した上に、パルスレーザー蒸着法(PLD法)により300nm厚のCeO(キャップ層)を成膜した。次いでCeO層上にPLD法により300nm厚のYBaCu(酸化物超電導層)を形成し、さらに酸化物超電導層上にスパッタ法により8μm厚のAgの第1の金属安定化層を形成し、テープ状の超電導積層体を作製した。 Al 2 O 3 (diffusion prevention layer; film thickness 150 nm) is formed by sputtering on a tape-shaped Hastelloy C276 (trade name, manufactured by Haynes, USA) having a width of 10 mm, a thickness of 100 μm, and a length of 1 m. In addition, Y 2 O 3 (bed layer; film thickness 20 nm) was formed by ion beam sputtering. Next, MgO (intermediate layer; film thickness: 10 nm) was formed on the bed layer by ion beam assisted sputtering (IBAD), and then 300 nm thick CeO 2 (cap layer) by pulsed laser deposition (PLD). ) Was formed. Next, YBa 2 Cu 3 O 7 (oxide superconducting layer) having a thickness of 300 nm is formed on the CeO 2 layer by a PLD method, and further, an Ag first metal stabilizing layer of 8 μm thickness is formed on the oxide superconducting layer by a sputtering method. To form a tape-shaped superconducting laminate.

次に、裏面に2μm厚みのSnめっきを施したCuテープからなる安定化材(厚さ20μm、幅18mm)を用意し、酸化物超電導積層体の片面に縦添えし、260℃に加熱したロールによる成形により安定化材の幅方向両端部で酸化物超電導導体の両端部を包み込むようにC字状に成形した。以上の工程により図1に断面構造を示す酸化物超電導導体を得た。この酸化物超電導導体を接続試験のために複数用意した。
また、上述の工程により長さ4.5cmの酸化物超電導導体を得、これを接続用の第3の酸化物超電導導体とした。この第3の酸化物超電導導体に対し第1の金属安定化層上に位置する第2の金属安定化層の表面に、厚さ40μmのインジウム半田層を形成した。
Next, a roll prepared by preparing a stabilizing material (thickness 20 μm, width 18 mm) made of Cu tape with 2 μm thick Sn plating on the back surface, vertically attached to one side of the oxide superconducting laminate, and heated to 260 ° C. Was formed into a C shape so as to wrap both ends of the oxide superconducting conductor at both ends in the width direction of the stabilizing material. The oxide superconducting conductor whose sectional structure is shown in FIG. A plurality of oxide superconducting conductors were prepared for the connection test.
In addition, an oxide superconducting conductor having a length of 4.5 cm was obtained by the above-described process, and this was used as a third oxide superconducting conductor for connection. An indium solder layer having a thickness of 40 μm was formed on the surface of the second metal stabilizing layer located on the first metal stabilizing layer with respect to the third oxide superconducting conductor.

2本の酸化物超電導導体をそれらの間に5mmの隙間をあけて上側に第1の金属安定化層が位置するように一列に並べ、先に用意した長さ4.5cmの第3の超電導導体の第1の金属安定化層を下側に向けて2本の超電導導体の両方の端部に双方2cmずつ被さるように配置した。即ち、第1、第2の酸化物超電導導体の第2の金属安定化層上に第3の酸化物超電導導体の第2の金属安定化層が被さるように配置した。
次いで、第3の酸化物超電導導体の上に半田ごてを押し当てて加圧しながらインジウム半田を溶融した後、室温まで冷却して第1、第2金属安定化層に対し第3の金属安定化層を半田付けした図2に示す超電導導体の接続構造を得ることができた。
Two oxide superconducting conductors are arranged in a line so that the first metal stabilizing layer is located on the upper side with a gap of 5 mm between them, and the third superconducting length of 4.5 cm prepared previously The first metal stabilizing layer of the conductor was disposed so as to cover both ends of each of the two superconducting conductors by 2 cm facing downward. That is, the second metal stabilization layer of the third oxide superconductor is disposed on the second metal stabilization layer of the first and second oxide superconductors.
Next, the indium solder is melted while pressing and pressing the soldering iron on the third oxide superconducting conductor, and then cooled to room temperature to stabilize the third metal against the first and second metal stabilizing layers. The connection structure of the superconducting conductor shown in FIG.

インジウム半田を用いた図2に示す構造で接続した直線状の酸化物超電導導体を複数用意し、これらの酸化物超電導導体を液体窒素中で通電試験し、臨界電流(Ic)を求めた。
次に、半径100mm、80mm、70mm、50mm、40mm、30mm、25mmのそれぞれの巻胴を用意し、これらの巻胴に先の工程にて作製した接続構造を有する酸化物超電導導体を巻き掛け、接続構造部分に曲げ応力を付加する試験を行った。各巻胴に酸化物超電導導体を巻き付ける際、第1、第2の酸化物超電導導体が内側に、第3の酸化物超電導導体が外側に位置するように巻胴周面に巻き付けた。
巻胴周面に巻き付けた状態のままの試料全体を液体窒素に浸漬し、接続した第1、第2酸化物超電導導体の端部に電源を接続して通電試験を行い、各試料の臨界電流(Ic)を測定し、巻き付ける試験の前に直線状態で測定した酸化物超電導導体のオリジナルの臨界温度(Ic)との比較を行った。
A plurality of linear oxide superconducting conductors connected with the structure shown in FIG. 2 using indium solder were prepared, and these oxide superconducting conductors were subjected to a current test in liquid nitrogen to obtain a critical current (Ic 0 ).
Next, each winding drum having a radius of 100 mm, 80 mm, 70 mm, 50 mm, 40 mm, 30 mm, and 25 mm is prepared, and the oxide superconducting conductor having the connection structure prepared in the previous step is wound around these winding drums, A test for applying bending stress to the connection structure was performed. When the oxide superconducting conductor was wound around each winding drum, it was wound around the winding drum peripheral surface so that the first and second oxide superconducting conductors were located inside and the third oxide superconducting conductor was located outside.
The whole sample as it is wound on the circumferential surface of the winding drum is immersed in liquid nitrogen, a power source is connected to the ends of the connected first and second oxide superconductors, and the critical current of each sample is measured. (Ic) was measured and compared with the original critical temperature (Ic 0 ) of the oxide superconducting conductor measured in a linear state before the winding test.

図8に巻胴の半径(曲げ半径)と(Ic/Ic)値との関係を示す。
図8に示す試験結果から、スズ半田を用いた接続部を有する酸化物超電導導体は、曲げ半径100mm、80mmでは劣化を生じないものの、曲げ半径を70mmとした場合に臨界電流値がほぼ0になるという結果を示した。これは、スズ半田のヤング率(49.9GPa)が高いため、70mmの曲げ半径とした場合、酸化物超電導導体の半田付け部分に曲げ応力が集中し、応力集中により酸化物超電導層が損傷したことが原因であると思われる。
これらに対し、インジウム半田を用いた接続部を有する酸化物超電導導体は、曲げ半径50mm、40mm、30mmまで臨界電流値の劣化がほとんど見られず、良好な超電導特性を維持した。この試料では曲げ半径25mmになって初めて臨界電流値の劣化を生じた。
この試験結果から、ヤング率の低いインジウム半田を用いることで半田接続部を有する酸化物超電導導体の曲げ耐久性が向上し、スズ半田を用いた接続構造に対し曲げ半径を小さくしても超電導特性が劣化しないことを確認できた。
FIG. 8 shows the relationship between the radius (bending radius) of the winding drum and the (Ic / Ic 0 ) value.
From the test results shown in FIG. 8, the oxide superconducting conductor having a connecting portion using tin solder does not deteriorate when the bending radius is 100 mm or 80 mm, but the critical current value becomes almost zero when the bending radius is 70 mm. I showed the result. This is because the Young's modulus (49.9 GPa) of tin solder is high, and when the bending radius is 70 mm, bending stress concentrates on the soldered portion of the oxide superconducting conductor, and the oxide superconducting layer is damaged by the stress concentration. Seems to be the cause.
On the other hand, the oxide superconducting conductor having a connecting portion using indium solder hardly deteriorated in the critical current value up to a bending radius of 50 mm, 40 mm, and 30 mm, and maintained good superconducting characteristics. In this sample, the critical current value deteriorated only when the bending radius was 25 mm.
From this test result, the use of indium solder with a low Young's modulus improves the bending durability of oxide superconducting conductors with solder joints, and superconducting properties even if the bending radius is reduced compared to the connection structure using tin solder. Was confirmed not to deteriorate.

本発明は、例えば超電導ケーブル、あるいは、超電導マグネット、超電導モーター、超電導限流器用モジュールなど、各種超電導機器に用いられる酸化物超電導導体の接続に利用することができる。   The present invention can be used to connect oxide superconducting conductors used in various superconducting devices such as superconducting cables, superconducting magnets, superconducting motors, and superconducting fault current limiter modules.

1…酸化物超電導導体、2…基材、5…中間層、6…酸化物超電導層、7…第1の金属安定化層、8、8A…第2の金属安定化層、9…超電導積層体、13…第3の酸化物超電導導体、15…導電性接合材、16…超電導ケーブル、18…超電導層、20…超電導シールド層、30…超電導モーター、35…超電導コイル、40…超電導マグネット、41…パンケーキコイル、90…超電導限流器用モジュール、99…超電導限流器。   DESCRIPTION OF SYMBOLS 1 ... Oxide superconducting conductor, 2 ... Base material, 5 ... Intermediate layer, 6 ... Oxide superconducting layer, 7 ... 1st metal stabilization layer, 8, 8A ... 2nd metal stabilization layer, 9 ... Superconducting lamination | stacking Body, 13 ... third oxide superconducting conductor, 15 ... conductive bonding material, 16 ... superconducting cable, 18 ... superconducting layer, 20 ... superconducting shield layer, 30 ... superconducting motor, 35 ... superconducting coil, 40 ... superconducting magnet, 41 ... Pancake coil, 90 ... Module for superconducting current limiting device, 99 ... Superconducting current limiting device.

Claims (3)

テープ状の基材に中間層と酸化物超電導層と金属安定化層を積層した構造の第1及び第2の超電導導体の端部同士が互いの金属安定化層同士を重ね合わせて隣接され、前記金属安定化層の重ね合わせ部分がヤング率41.4×10N/m未満の導電性接合材により接合されたことを特徴とする酸化物超電導導体の接続構造。 The ends of the first and second superconducting conductors having a structure in which an intermediate layer, an oxide superconducting layer, and a metal stabilizing layer are laminated on a tape-shaped base material are adjacent to each other by overlapping each other's metal stabilizing layers, An overlapping structure of the metal stabilizing layer is joined by a conductive joining material having a Young's modulus of less than 41.4 × 10 9 N / m 2 . テープ状の基材に中間層と酸化物超電導層と金属安定化層を積層した構造の第1及び第2の超電導導体の端部同士が互いの金属安定化層同士を基材に対し同じ側に揃えて隣接され、これら隣接された金属安定化層の端部同士をテープ状の基材に中間層と酸化物超電導層と金属安定化層を積層した構造の第3の超電導導体により接続した酸化物超電導導体の接続構造であり、
前記隣接された第1及び第2の超電導導体の金属安定化層の端部同士に前記第3の超電導導体の金属安定化層が被着され、前記第1及び第2の超電導導体の金属安定化層と前記第3の超電導導体の金属安定化層とが導電性接合材により接合されるとともに、前記導電性接合材のヤング率が41.4×10N/m未満とされたことを特徴とする酸化物超電導導体の接続構造。
The ends of the first and second superconducting conductors having a structure in which an intermediate layer, an oxide superconducting layer, and a metal stabilizing layer are laminated on a tape-shaped substrate are mutually on the same side with respect to the substrate. The ends of the adjacent metal stabilizing layers are connected to each other by a third superconducting conductor having a structure in which an intermediate layer, an oxide superconducting layer, and a metal stabilizing layer are laminated on a tape-like base material. It is a connection structure of an oxide superconductor,
The metal stabilization layer of the third superconducting conductor is deposited between the ends of the metal stabilization layers of the adjacent first and second superconducting conductors, and the metal stabilization of the first and second superconducting conductors. And a metal stabilizing layer of the third superconducting conductor are bonded by a conductive bonding material, and the Young's modulus of the conductive bonding material is less than 41.4 × 10 9 N / m 2. An oxide superconducting conductor connection structure.
請求項1または2に記載の酸化物超電導導体の接続構造が設けられた超電導機器。   A superconducting device provided with the oxide superconducting conductor connection structure according to claim 1.
JP2012263668A 2012-11-30 2012-11-30 Connection structure of oxide superconductive conductor and superconductive apparatus provided therewith Pending JP2014110144A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012263668A JP2014110144A (en) 2012-11-30 2012-11-30 Connection structure of oxide superconductive conductor and superconductive apparatus provided therewith

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012263668A JP2014110144A (en) 2012-11-30 2012-11-30 Connection structure of oxide superconductive conductor and superconductive apparatus provided therewith

Publications (1)

Publication Number Publication Date
JP2014110144A true JP2014110144A (en) 2014-06-12

Family

ID=51030661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012263668A Pending JP2014110144A (en) 2012-11-30 2012-11-30 Connection structure of oxide superconductive conductor and superconductive apparatus provided therewith

Country Status (1)

Country Link
JP (1) JP2014110144A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012195469A (en) * 2011-03-17 2012-10-11 Fuji Electric Co Ltd Superconducting coil and method for producing the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012195469A (en) * 2011-03-17 2012-10-11 Fuji Electric Co Ltd Superconducting coil and method for producing the same

Similar Documents

Publication Publication Date Title
JP5568361B2 (en) Superconducting wire electrode joint structure, superconducting wire, and superconducting coil
JP5695803B2 (en) Oxide superconducting wire, its connection structure, and superconducting equipment
JP5684601B2 (en) Oxide superconducting wire and method for producing the same
JP5841862B2 (en) High temperature superconducting wire and high temperature superconducting coil
JP2014154320A (en) Connection structure of oxide superconductive wire rod and superconductive apparatus
JP6101491B2 (en) Oxide superconducting wire and method for producing the same
JP6101490B2 (en) Oxide superconducting wire connection structure and superconducting equipment
JP6329736B2 (en) Laminated pancake type superconducting coil and superconducting equipment provided with the same
JP5775785B2 (en) Oxide superconducting wire and method for producing the same
JP6086852B2 (en) Oxide superconducting wire, connecting structure of oxide superconducting wire, connecting structure of oxide superconducting wire and electrode terminal, superconducting device including the same, and manufacturing method thereof
JP5693798B2 (en) Oxide superconducting wire
JP2013247011A (en) Oxide superconducting wire, and method of manufacturing the same
JP5732345B2 (en) Oxide superconducting wire connecting structure and oxide superconducting wire connecting method
JP5887085B2 (en) Superconducting coil and manufacturing method thereof
JP2014130730A (en) Connection structure and connection method of oxide superconductive wire material, and oxide superconductive wire material using the connection structure
JP5677116B2 (en) High temperature superconducting coil
WO2012039444A1 (en) Oxide superconductor wire material and method for producing same
JP2015228357A (en) Oxide superconducting wire rod, superconducting apparatus, and method for producing the oxide superconducting wire rod
JP6002602B2 (en) Oxide superconducting wire connection structure and manufacturing method thereof
WO2014104333A1 (en) Connection structure of oxide superconducting wires, method for producing same, and superconducting device
JP2014110144A (en) Connection structure of oxide superconductive conductor and superconductive apparatus provided therewith
JP2012150981A (en) Oxide superconducting wire material and manufacturing method thereof
JP5775810B2 (en) Manufacturing method of oxide superconducting wire
JP6707164B1 (en) Superconducting wire connection structure and superconducting wire
JP5775808B2 (en) Oxide superconducting wire and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150522

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160209

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160802