JP2011090934A - Base material for superconductive thin film wiring material, manufacturing method thereof, and superconductive thin film wiring material - Google Patents

Base material for superconductive thin film wiring material, manufacturing method thereof, and superconductive thin film wiring material Download PDF

Info

Publication number
JP2011090934A
JP2011090934A JP2009244289A JP2009244289A JP2011090934A JP 2011090934 A JP2011090934 A JP 2011090934A JP 2009244289 A JP2009244289 A JP 2009244289A JP 2009244289 A JP2009244289 A JP 2009244289A JP 2011090934 A JP2011090934 A JP 2011090934A
Authority
JP
Japan
Prior art keywords
thin film
substrate
intermediate layer
superconducting thin
film wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009244289A
Other languages
Japanese (ja)
Inventor
Hajime Ota
肇 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2009244289A priority Critical patent/JP2011090934A/en
Publication of JP2011090934A publication Critical patent/JP2011090934A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method by which degradation of superconductive characteristics can be suppressed and the superconductive thin film wiring material can be obtained at a superior yield rate, and productivity can be improved sufficiently, when manufacturing a lengthy superconductive thin film wiring material by continuously forming an intermediate layer on a lengthy orientation metal substrate at a single time of processing, and furthermore by continuously forming an oxide superconductor thin film. <P>SOLUTION: The manufacturing method of a base material for the superconductive thin film wiring material, wherein the intermediate layer is formed having a bi-axially oriented intermediate layer formed on an orientation face of a tape-shaped orientation metal substrate, has a metal substrate fabricating process in which a non-orientation metal tape of a prescribed length is arranged between mutually neighboring two orientation metal tapes of a plurality of orientation metal tapes with a prescribed length and connected so that the lengthy metal substrate is manufactured, and an intermediate layer forming process in which the intermediate layer is continuously formed on the surface of the lengthy metal substrate. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、超電導薄膜線材用基材とその製造方法および超電導薄膜線材に関し、特に1回の成膜で長尺の中間層の形成が可能な超電導薄膜線材用基材の製造方法、この製造方法によって製造された超電導薄膜線材用基材およびこの超電導薄膜線材用基材を用いた超電導薄膜線材に関する。   The present invention relates to a substrate for a superconducting thin film wire, a method for manufacturing the same, and a superconducting thin film wire, and in particular, a method for manufacturing a substrate for a superconducting thin film wire capable of forming a long intermediate layer by a single film formation, and the manufacturing method The present invention relates to a substrate for a superconducting thin film wire manufactured by the method described above and a superconducting thin film wire using the substrate for a superconducting thin film wire.

液体窒素の温度で超電導性を有する高温超電導体の発見以来、ケーブル、限流器、マグネットなどの電力機器への応用を目指した高温超電導線材の開発が活発に行われている。中でも、REBaCu7−δ(REは希土類元素を示す。)などの酸化物超電導体を薄膜化した薄膜超電導線材が注目されている。このような薄膜超電導線材において、優れた超電導特性を有する高温超電導線材を得るためには、配向性の高い酸化物超電導体薄膜を形成する必要がある。 Since the discovery of high-temperature superconductors that have superconductivity at the temperature of liquid nitrogen, development of high-temperature superconducting wires aimed at application to power devices such as cables, current limiters, and magnets has been actively conducted. Among them, a thin film superconducting wire obtained by thinning an oxide superconductor such as RE 1 Ba 2 Cu 3 O 7-δ (RE represents a rare earth element) has attracted attention. In such a thin film superconducting wire, in order to obtain a high temperature superconducting wire having excellent superconducting properties, it is necessary to form an oxide superconductor thin film with high orientation.

このような高温超電導線材は、一般に、2軸配向性を有する長尺の配向金属基板の上に、中間層として、酸化物薄膜をエピタキシャル成長させることにより、超電導薄膜線材用基材を作製し、さらに、中間層の上に、酸化物超電導体をエピタキシャル成長させて超電導層を形成することにより製造される(例えば特許文献1)。   Such a high-temperature superconducting wire generally produces a base material for a superconducting thin film wire by epitaxially growing an oxide thin film as an intermediate layer on a long oriented metal substrate having biaxial orientation. In addition, an oxide superconductor is epitaxially grown on the intermediate layer to form a superconducting layer (for example, Patent Document 1).

また、本出願人は、これらの配向金属基板について、基板上に形成されたニッケル層を熱処理することにより、配向性および平坦性を向上させる技術を提案している(特願2009−163513)。   The present applicant has also proposed a technique for improving the orientation and flatness of these oriented metal substrates by heat-treating a nickel layer formed on the substrate (Japanese Patent Application No. 2009-163513).

特開2006−127847号公報JP 2006-127847 A

しかし、このような長尺の配向金属基板上に中間層を1回の処理で連続的に形成し、さらに酸化物超電導体薄膜を連続的に形成して長尺の超電導薄膜線材を作製した場合、作製された長尺の超電導薄膜線材の途中から超電導特性の低下が見られ、製品としての歩留まりを低下させるという問題があった。この歩留まりの低下を抑制するためには、長尺の配向金属基板を用いていても、超電導特性が低下しない時点で酸化物超電導体薄膜の形成を止める必要がある。このため、超電導薄膜線材用基材の長尺化、即ち、1回の処理で連続的に形成される中間層の長さには限界が生じ、充分に生産性を向上させることが困難であった。   However, when a long superconducting thin film wire is produced by continuously forming an intermediate layer on such a long oriented metal substrate in a single process and further forming an oxide superconductor thin film continuously. However, the superconducting properties were lowered from the middle of the produced long superconducting thin film wire, and there was a problem that the yield as a product was lowered. In order to suppress this decrease in yield, it is necessary to stop the formation of the oxide superconductor thin film when the superconducting characteristics do not deteriorate even when a long oriented metal substrate is used. For this reason, there is a limit to the length of the substrate for the superconducting thin film wire, that is, the length of the intermediate layer formed continuously in one process, and it is difficult to sufficiently improve the productivity. It was.

このため、長尺の配向金属基板上に中間層を1回の処理で連続的に形成し、さらに酸化物超電導体薄膜を形成して超電導薄膜線材を製造するに際して、超電導特性の低下を抑制することができ、歩留まりよく超電導薄膜線材を得て、充分に生産性を向上させることができる製造方法の開発が望まれていた。   For this reason, when a superconducting thin film wire is manufactured by forming an intermediate layer continuously on a long oriented metal substrate by a single process and further forming an oxide superconducting thin film, suppression of superconducting characteristics is suppressed. Therefore, it has been desired to develop a production method capable of obtaining a superconducting thin film wire with a high yield and sufficiently improving the productivity.

本発明者は、前記した超電導特性の低下が、配向金属基板上に形成された中間層において、配向性の悪化が生じたことにより発生している可能性があると考え、配向金属基板上に形成された中間層における配向率、詳しくは(200)配向率を測定した。   The present inventor considers that the above-described deterioration in superconducting characteristics may occur due to the deterioration of the orientation in the intermediate layer formed on the oriented metal substrate, and thus on the oriented metal substrate. The orientation rate in the formed intermediate layer, specifically (200) orientation rate, was measured.

その結果、中間層の成膜開始後一定の長さを経過すると、配向率が急激に低下していることが分かり、この配向率の低下が超電導薄膜線材の超電導特性の低下を招いていることが確認された。   As a result, it can be seen that after a certain length of time has elapsed since the start of film formation of the intermediate layer, the orientation rate has suddenly decreased, and this decrease in orientation rate has led to a decrease in the superconducting properties of the superconducting thin film wire. Was confirmed.

そして、さらに実験を行ったところ、長尺の配向金属基板上に中間層を形成するに際して、長尺の配向金属基板の途中にSUS等の無配向金属テープを挿入し、中間層を1回の処理で連続的に形成した場合、無配向金属テープに続く配向金属基板上では、一旦低下していた配向率が成膜開始時のレベルにまで回復した中間層の成膜が開始されることが分かり、本発明を完成させるに至った。以下、各請求項毎に説明する。   And when further experiment was conducted, when forming an intermediate layer on a long oriented metal substrate, a non-oriented metal tape such as SUS was inserted in the middle of the long oriented metal substrate, and the intermediate layer was formed once. In the case where the film is continuously formed by the treatment, on the oriented metal substrate following the non-oriented metal tape, the film formation of the intermediate layer in which the once lowered orientation rate is restored to the level at the start of film formation may be started. As a result, the present invention has been completed. Hereinafter, each claim will be described.

請求項1に記載の発明は、
テープ状の配向金属基板の配向面上に2軸配向させた中間層が形成されている超電導薄膜線材用基材の製造方法であって、
複数本の所定長さの配向金属テープの隣り合った2本の前記配向金属テープの間に、所定長さの無配向金属テープを配置、接続して長尺の金属基板を作製する金属基板作製工程と、
前記長尺の金属基板の表面に、前記中間層を連続的に形成する中間層形成工程とを
有することを特徴とする超電導薄膜線材用基材の製造方法である。
The invention described in claim 1
A method for producing a substrate for a superconducting thin film wire in which a biaxially oriented intermediate layer is formed on an orientation surface of a tape-like oriented metal substrate,
Metal substrate production for producing a long metal substrate by arranging and connecting a non-oriented metal tape of a predetermined length between two adjacent metal tapes of a plurality of aligned metal tapes of a predetermined length Process,
An intermediate layer forming step of continuously forming the intermediate layer on a surface of the long metal substrate.

前記した通り、長尺の配向金属テープの途中にSUS等の無配向金属テープが配置、接続されていると、無配向金属テープに続く配向金属テープ上では、一旦低下していた配向率が成膜開始時のレベルにまで回復した中間層の成膜が開始される。   As described above, when a non-oriented metal tape such as SUS is arranged and connected in the middle of a long oriented metal tape, the orientation ratio once lowered is formed on the oriented metal tape following the non-oriented metal tape. The formation of the intermediate layer that has recovered to the level at the start of the film is started.

このため、複数本の所定長さの配向金属テープの隣り合った2本の配向金属テープの間に、所定長さの無配向金属テープを配置、接続して長尺の金属基板を作製している本請求項の発明に基づく超電導薄膜線材用基材において、配向金属テープの長さを適切な長さに設定して、この金属基板上に中間層を連続的に形成した場合、一定の長さの間、充分な配向率が維持された成膜がなされ、その後、配向率が若干低下するだけに留まるパターンの中間層が、各配向金属テープ上に繰り返し形成される。   For this reason, a long metal substrate is produced by arranging and connecting a non-oriented metal tape of a predetermined length between two adjacent metal tapes of a plurality of oriented metal tapes of a predetermined length. When the length of the oriented metal tape is set to an appropriate length and the intermediate layer is continuously formed on the metal substrate, a certain length is obtained. In the meantime, film formation is performed while maintaining a sufficient orientation rate, and thereafter, an intermediate layer having a pattern in which the orientation rate only slightly decreases is repeatedly formed on each oriented metal tape.

このため、従来の製法のように、1回の処理で連続的に形成される中間層の長さに限界が生じることがなく、充分に生産性を向上させることができる。   For this reason, unlike the conventional manufacturing method, there is no limit in the length of the intermediate layer continuously formed by one process, and the productivity can be sufficiently improved.

そして、このような長尺の金属基板上に酸化物超電導体薄膜を形成して超電導薄膜線材を作製した場合、配向金属テープ上では超電導特性の低下が抑制されているため、歩留まりよく超電導薄膜線材を得ることができる   When a superconducting thin film wire is produced by forming an oxide superconductor thin film on such a long metal substrate, the superconducting thin film wire has high yield because the degradation of superconducting properties is suppressed on the oriented metal tape. Can get

本請求項の発明において、配向金属テープの長さは、配向金属テープの材質や形成される中間層(複数層の中間層が形成される場合には、第1層である種膜層)の材質等に応じて、中間層の配向率が実用上支障のない一定以上のレベルを維持できる長さに設定され、また、無配向金属テープの長さは、その材質等に応じて、続く配向金属テープ上において、一旦低下していた配向率を成膜開始時のレベルにまで回復した中間層の成膜を開始させることができる長さに設定される。   In the invention of this claim, the length of the oriented metal tape is the material of the oriented metal tape and the intermediate layer to be formed (if a plurality of intermediate layers are formed, the seed film layer which is the first layer). Depending on the material, etc., the orientation ratio of the intermediate layer is set to a length that can maintain a level above a certain level that does not impede practical use, and the length of the non-oriented metal tape depends on the material, etc. On the metal tape, the length is set to such a length that the film formation of the intermediate layer can be started after the orientation rate once lowered is restored to the level at the time of film formation start.

具体的な一例として、配向金属テープとしてNi/Cu/SUSの配向金属テープを、また無配向金属テープとしてSUSを用いて、長尺の金属基板を作製し、その上にCeO/YSZ(イットリア安定化ジルコニア)/CeOからなる中間層を形成させる場合、配向金属テープの長さは約30mに、無配向金属テープの長さは約5mに設定される。 As a specific example, a long metal substrate is prepared using a Ni / Cu / SUS oriented metal tape as an oriented metal tape and SUS as a non-oriented metal tape, and a CeO 2 / YSZ (yttria) is formed thereon. When the intermediate layer made of (stabilized zirconia) / CeO 2 is formed, the length of the oriented metal tape is set to about 30 m, and the length of the non-oriented metal tape is set to about 5 m.

なお、本請求項の発明における配向率は(200)配向率であり、[I(200)/{I(200)+I(111)}]×100(%)の式により求められる。ここで、I(200)とI(111)はそれぞれ中間層(種膜)の(200)面および(111)面のX線回折ピーク強度である。   In addition, the orientation rate in the invention of this claim is a (200) orientation rate, and is determined by the formula [I (200) / {I (200) + I (111)}] × 100 (%). Here, I (200) and I (111) are the X-ray diffraction peak intensities of the (200) plane and (111) plane of the intermediate layer (seed film), respectively.

配向率のレベルとしては、(200)配向率で、80%以上が好ましく、90%以上であるとより好ましい。   The level of orientation rate is preferably (200) orientation rate, preferably 80% or more, and more preferably 90% or more.

本請求項の発明において、配向金属テープとは、構成する金属元素が2軸配向している金属テープをいい、完全な2軸配向のみならず結晶軸のずれ角が25°以下の基板が含まれる。なお、配向の方向は、<100>軸が基板面に垂直な方向に、<010>軸が基板の長さ方向に配向していることが好ましい。   In the invention of this claim, the oriented metal tape means a metal tape in which the constituent metal elements are biaxially oriented, and includes not only perfect biaxial orientation but also a substrate whose crystal axis deviation angle is 25 ° or less. It is. The orientation is preferably such that the <100> axis is perpendicular to the substrate surface and the <010> axis is oriented in the length direction of the substrate.

配向金属テープとしては、具体的には、Ni、Cu、Ag、W、V、Cr、Mo、Mn、AlおよびFeの単体よりなる金属またはこれらの金属元素の任意の組み合わせよりなる合金からなる配向金属テープや、Ni/Cu/SUSなど補強材のSUSを有する多層構造の配向金属テープ等が好ましく用いられる。   Specifically, as the oriented metal tape, an orientation made of a metal made of a simple substance of Ni, Cu, Ag, W, V, Cr, Mo, Mn, Al and Fe or an alloy made of any combination of these metal elements. A metal tape, an oriented metal tape having a multilayer structure having SUS as a reinforcing material such as Ni / Cu / SUS, and the like are preferably used.

無配向金属テープとしては、SUS304やSUS316L等のSUS製であって、配向金属テープと同じ幅、厚さの金属テープが好ましく用いられる。   As the non-oriented metal tape, a metal tape made of SUS such as SUS304 or SUS316L and having the same width and thickness as the oriented metal tape is preferably used.

中間層としては、パイロクロア型、蛍石型、岩塩型またはペロブスカイト型結晶構造をもつ、1種以上の金属元素を有する金属酸化物が好ましく用いられる。   As the intermediate layer, a metal oxide having one or more metal elements having a pyrochlore type, fluorite type, rock salt type or perovskite type crystal structure is preferably used.

具体的には、例えば、CeO等のエピタキシャル成長により形成される単一の中間層や、CeO/YSZ/CeOの複数の層からなる中間層が好ましく用いられる。形成方法としては、スパッタ法、EBD(電子ビーム蒸着)法、PLD法、熱蒸着等、公知の方法を用いることができる。 Specifically, for example, a single intermediate layer formed by epitaxial growth such as CeO 2 or an intermediate layer composed of a plurality of layers of CeO 2 / YSZ / CeO 2 is preferably used. As a formation method, a known method such as a sputtering method, an EBD (electron beam evaporation) method, a PLD method, or thermal evaporation can be used.

請求項2に記載の発明は、
前記中間層形成工程の後に、
前記無配向金属テープを無配向金属テープ上に形成された中間層と共に切断して除去する無配向金属テープ除去工程を
有することを特徴とする請求項1に記載の超電導薄膜線材用基材の製造方法である。
The invention described in claim 2
After the intermediate layer forming step,
2. The production of a substrate for a superconducting thin film wire according to claim 1, further comprising a non-oriented metal tape removing step of cutting and removing the non-oriented metal tape together with an intermediate layer formed on the non-oriented metal tape. Is the method.

本請求項の発明においては、配向金属テープと無配向金属テープからなる長尺の金属基板上に中間層が形成された長尺の超電導薄膜線材用基材から、無配向金属テープを切断、除去しているため、除去後の超電導薄膜線材用基材は、配向金属テープ上に一定のレベルの配向率を有する中間層が形成された複数の超電導薄膜線材用基材となる。このようにして得られた超電導薄膜線材用基材上に酸化物超電導体薄膜を形成することにより、優れた超電導特性を有する超電導薄膜線材を確実に得ることができ、歩留まりの低下を抑制することができる。   In the invention of this claim, the non-oriented metal tape is cut and removed from the long substrate for the superconducting thin film wire in which the intermediate layer is formed on the long metal substrate made of the oriented metal tape and the non-oriented metal tape. Therefore, the superconducting thin film wire substrate after the removal becomes a plurality of superconducting thin film wire substrates in which an intermediate layer having a certain level of orientation rate is formed on the oriented metal tape. By forming an oxide superconductor thin film on the substrate for superconducting thin film wires thus obtained, a superconducting thin film wire having excellent superconducting properties can be obtained reliably, and a decrease in yield is suppressed. Can do.

請求項3に記載の発明は、
請求項1に記載の超電導薄膜線材用基材の製造方法により製造されていることを特徴とする超電導薄膜線材用基材である。
The invention according to claim 3
A substrate for a superconducting thin film wire, which is manufactured by the method for manufacturing a substrate for a superconducting thin film wire according to claim 1.

前記の通り、配向金属テープと無配向金属テープからなる長尺の金属基板上に連続的に中間層が形成された超電導薄膜線材用基材は、配向金属テープ上に配向率の安定した中間層が効率的に形成された基材である。そして、このような超電導薄膜線材用基材を用いて酸化物超電導体薄膜を形成することにより、優れた超電導特性を有する超電導薄膜線材を歩留まりよく提供することができる。   As described above, the substrate for a superconducting thin film wire in which an intermediate layer is continuously formed on a long metal substrate composed of an oriented metal tape and a non-oriented metal tape is an intermediate layer having a stable orientation rate on the oriented metal tape. Is a substrate formed efficiently. Then, by forming an oxide superconductor thin film using such a substrate for a superconducting thin film wire, a superconducting thin film wire having excellent superconducting characteristics can be provided with a high yield.

請求項4に記載の発明は、
請求項2に記載の超電導薄膜線材用基材の製造方法により製造されていることを特徴とする超電導薄膜線材用基材である。
The invention according to claim 4
A substrate for a superconducting thin film wire, which is manufactured by the method for manufacturing a substrate for a superconducting thin film wire according to claim 2.

本請求項の発明の超電導薄膜線材用基材は、配向金属テープ上に一定のレベルの配向率を有する中間層が形成された超電導薄膜線材用基材であるため、酸化物超電導体薄膜を形成する際、超電導特性の低下を抑制することができ、優れた超電導特性を有する超電導薄膜線材を歩留まりよく提供することができる。   The base material for a superconducting thin film wire according to the present invention is a base material for a superconducting thin film wire in which an intermediate layer having a certain level of orientation ratio is formed on an oriented metal tape, so that an oxide superconductor thin film is formed. In this case, it is possible to suppress a decrease in superconducting characteristics and to provide a superconducting thin film wire having excellent superconducting characteristics with a high yield.

請求項5に記載の発明は、
前記中間層の(200)配向率が90%以上であることを特徴とする請求項4に記載の超電導薄膜線材用基材である。
The invention described in claim 5
5. The substrate for a superconducting thin film wire according to claim 4, wherein the (200) orientation ratio of the intermediate layer is 90% or more.

本請求項の発明である超電導薄膜線材用基材は、配向金属テープ上に(200)配向率が90%以上と大きな配向率を有する中間層が形成された超電導薄膜線材用基材である。このため、この超電導薄膜線材用基材の上に、酸化物超電導体薄膜を形成することにより、優れた超電導特性を有する超電導薄膜線材を歩留まりよく提供することができる。   The substrate for a superconducting thin film wire according to the present invention is a substrate for a superconducting thin film wire in which an intermediate layer having a large (200) orientation ratio of 90% or more is formed on an oriented metal tape. Therefore, a superconducting thin film wire having excellent superconducting characteristics can be provided with a high yield by forming an oxide superconductor thin film on the substrate for this superconducting thin film wire.

請求項6に記載の発明は、
請求項4または請求項5に記載の超電導薄膜線材用基材の中間層上に酸化物超電導体からなる超電導膜が形成されていることを特徴とする超電導薄膜線材である。
The invention described in claim 6
A superconducting thin film wire characterized in that a superconducting film made of an oxide superconductor is formed on an intermediate layer of the substrate for a superconducting thin film wire according to claim 4 or 5.

本請求項の発明に係る超電導薄膜線材は、一定以上の配向率を有する中間層が形成された配向金属テープ上に、酸化物超電導体からなる超電導膜を形成することにより得られているため、優れた超電導特性を有する。   Since the superconducting thin film wire according to the present invention is obtained by forming a superconducting film made of an oxide superconductor on an oriented metal tape on which an intermediate layer having a certain degree of orientation is formed, Excellent superconducting properties.

超電導膜としては、RE−123系の酸化物超電導体、即ちREBaCu7−δ等が好ましく用いられる。形成方法としては、PLD法、MOD法、MOCVD法等公知の方法を用いることができる。 As the superconducting film, an RE-123-based oxide superconductor, that is, RE 1 Ba 2 Cu 3 O 7-δ or the like is preferably used. As a formation method, a known method such as a PLD method, an MOD method, or an MOCVD method can be used.

なお、必要に応じて、超電導膜の上に銀安定化層や銅安定化層等の安定化層が形成される。   If necessary, a stabilizing layer such as a silver stabilizing layer or a copper stabilizing layer is formed on the superconducting film.

本発明によれば、長尺の配向金属基板上に中間層を連続的に形成し、さらに酸化物超電導体薄膜を形成して超電導薄膜線材を作製するに際して、超電導特性の低下を抑制することができ、歩留まりよく超電導薄膜線材を得ることができる。   According to the present invention, when a superconducting thin film wire is produced by continuously forming an intermediate layer on a long oriented metal substrate and further forming an oxide superconducting thin film, it is possible to suppress deterioration in superconducting characteristics. And a superconducting thin film wire can be obtained with a high yield.

本発明の一実施例の超電導薄膜線材用基材の配向金属テープの構成を模式的に示す断面図である。It is sectional drawing which shows typically the structure of the orientation metal tape of the base material for superconducting thin film wires of one Example of this invention. 本発明の一実施例の超電導薄膜線材用基材の金属基板の構成を模式的に示す図である。It is a figure which shows typically the structure of the metal substrate of the base material for superconducting thin film wires of one Example of this invention. 本発明の一実施例の超電導薄膜線材用基材の構成を模式的に示す図である。It is a figure which shows typically the structure of the base material for superconducting thin film wires of one Example of this invention. 本発明の一実施例の超電導薄膜線材用基材の金属基板上に形成された中間層(種膜)の(200)配向率を示す図である。It is a figure which shows the (200) orientation rate of the intermediate | middle layer (seed film) formed on the metal substrate of the base material for superconducting thin film wires of one Example of this invention. 本発明の一実施例の超電導薄膜線材の構成を模式的に示す断面図である。It is sectional drawing which shows typically the structure of the superconducting thin film wire of one Example of this invention. 比較例の超電導薄膜線材用基材の構成を模式的に示す図である。It is a figure which shows typically the structure of the base material for superconducting thin film wires of a comparative example. 比較例の超電導薄膜線材用基材の金属基板上に形成された中間層(種膜)の(200)配向率を示す図である。It is a figure which shows the (200) orientation rate of the intermediate | middle layer (seed film) formed on the metal substrate of the base material for superconducting thin film wires of a comparative example.

以下、本発明を実施の形態に基づいて説明する。   Hereinafter, the present invention will be described based on embodiments.

(実施例)
本実施例は、Ni/Cu/SUSの配向金属テープとSUS製の無配向金属テープとで構成される長尺の金属基板を用い、この金属基板上にCeO/YSZ/CeOの3層からなる中間層を形成して、超電導薄膜線材用基材を作製した例である。
(Example)
In this example, a long metal substrate composed of a Ni / Cu / SUS oriented metal tape and a SUS non-oriented metal tape was used, and three layers of CeO 2 / YSZ / CeO 2 were formed on this metal substrate. This is an example in which a base material for a superconducting thin film wire is produced by forming an intermediate layer made of

[1]超電導薄膜線材用基材の作製
はじめに、超電導薄膜線材用基材の作製について工程順に説明する。
[1] Production of substrate for superconducting thin film wire First, production of a substrate for superconducting thin film wire will be described in the order of steps.

1.金属基板作製工程
(1)配向金属テープ
まず、配向金属テープを作製した。図1は、本実施例の超電導薄膜線材用基材の配向金属テープ11の構成を模式的に示す断面図である。本実施例では、厚さ100μmのSUS316LからなるSUS板111の上に厚さ18μmのCu層112を有する基板上に、めっき法により厚さ1μmのNi層113を形成させることにより、SUS上にNi/Cuの2軸配向層が設けられた配向金属テープ(厚さ119μm×幅30mm×長さ30m)11を作製した。
1. Metal substrate production process (1) Oriented metal tape First, an oriented metal tape was produced. FIG. 1 is a cross-sectional view schematically showing a configuration of an oriented metal tape 11 of a substrate for a superconducting thin film wire according to the present embodiment. In this embodiment, a Ni layer 113 having a thickness of 1 μm is formed on a SUS plate 111 made of SUS316L having a thickness of 100 μm on a substrate having a Cu layer 112 having a thickness of 18 μm by plating. An oriented metal tape (thickness 119 μm × width 30 mm × length 30 m) 11 provided with a Ni / Cu biaxially oriented layer was prepared.

(2)無配向金属テープ
次に、幅と厚さがそれぞれ配向金属テープ11と同じSUS316Lからなる金属テープを長さ5mに切断して、無配向金属テープを作製した。
(2) Non-oriented metal tape Next, a metal tape made of SUS316L having the same width and thickness as the oriented metal tape 11 was cut into a length of 5 m to prepare a non-oriented metal tape.

(3)金属基板の作製
次に、図2に示すように、隣り合った2本の配向金属テープ11の間に無配向金属テープ12を配置して接続後、還元性ガス(Hガス3モル%、Arガス97モル%)雰囲気下、圧力8Pa、950℃で20分間の熱処理を行って長尺の金属基板1を作製した。なお、図2において、(a)は平面図、(b)は側面図である。
(3) Production of Metal Substrate Next, as shown in FIG. 2, after placing and connecting the non-oriented metal tape 12 between two adjacent oriented metal tapes 11, a reducing gas (H 2 gas 3 Molten metal, Ar gas 97 mol%) In an atmosphere, heat treatment was performed at a pressure of 8 Pa and 950 ° C. for 20 minutes to produce a long metal substrate 1. In FIG. 2, (a) is a plan view and (b) is a side view.

2.中間層形成工程
図3は、金属基板1上に中間層を形成した超電導薄膜線材用基材2の構成を模式的に示す図であり、(a)は側面図、(b)は金属基板1の配向金属テープ11の箇所における断面図である。図3において21は中間層であり、中間層21は、CeOシード層(種膜)211、YSZバリア層212およびCeOキャップ層213で構成されている。
2. Intermediate Layer Forming Step FIGS. 3A and 3B are diagrams schematically showing a configuration of a base material 2 for a superconducting thin film wire having an intermediate layer formed on a metal substrate 1, wherein FIG. 3A is a side view, and FIG. It is sectional drawing in the location of the orientation metal tape 11 of. In FIG. 3, reference numeral 21 denotes an intermediate layer, and the intermediate layer 21 includes a CeO 2 seed layer (seed film) 211, a YSZ barrier layer 212, and a CeO 2 cap layer 213.

(1)CeOシード層(種膜)の成膜
まず、RFスパッタ法を用いて、還元性ガス(Hガス3モル%、Arガス97モル%)雰囲気下、圧力5.2Pa、温度700℃で、金属基板1上にCeOをエピタキシャル成長させて、厚さ0.15μmのCeOシード層(種膜)211を金属基板1の全長に亘り連続して形成した。
(1) Formation of CeO 2 seed layer (seed film) First, using an RF sputtering method, a reducing gas (H 2 gas 3 mol%, Ar gas 97 mol%) atmosphere, pressure 5.2 Pa, temperature 700 CeO 2 was epitaxially grown on the metal substrate 1 at a temperature of 0.15 μm to form a CeO 2 seed layer (seed film) 211 continuously over the entire length of the metal substrate 1.

(2)(200)配向率の測定
a.測定方法
次に、金属基板1上に形成されたCeOシード層(種膜)211のI(200)およびI(111)を、金属基板1の先端部より順次測定し、以下の式より(200)配向率(%)を求めた。
(200)配向率(%)
=[I(200)/{I(200)+I(111)}]×100
(2) Measurement of (200) orientation rate a. Measurement Method Next, I (200) and I (111) of the CeO 2 seed layer (seed film) 211 formed on the metal substrate 1 were sequentially measured from the tip of the metal substrate 1, and the following formula ( 200) The orientation ratio (%) was determined.
(200) Orientation rate (%)
= [I (200) / {I (200) + I (111)}] × 100

b.測定結果
図4に、測定結果を示す。図4において、縦軸は(200)配向率であり、横軸は金属基板1の先端部からの距離である。図4から、成膜開始から配向金属テープ11の後端である30mの少し手前までの部分、即ち後端部分を除く部分では(200)配向率がほぼ100%であり、後端部分では若干低下していることが分かる。ただし、後端部分においても、(200)配向率は90%以上を維持している。
b. Measurement Result FIG. 4 shows the measurement result. In FIG. 4, the vertical axis represents the (200) orientation rate, and the horizontal axis represents the distance from the tip of the metal substrate 1. From FIG. 4, the (200) orientation ratio is almost 100% in the portion from the start of film formation to the rear end of the oriented metal tape 11 slightly before 30 m, that is, the portion excluding the rear end portion, and slightly in the rear end portion. It turns out that it has fallen. However, the (200) orientation rate is maintained at 90% or more in the rear end portion.

また、30〜35mの間、即ち無配向金属テープ12上では一旦無配向となるが、35mを越えた箇所、即ち次の配向金属テープ11上に至ると(200)配向率が100%、即ち成膜開始直後と同じレベルにまで上昇していることが分かる。そして、以降はこれと同じ現象が繰り返されていることが分かる。   Further, it becomes non-oriented once between 30-35 m, that is, on the non-oriented metal tape 12, but when it reaches a place beyond 35 m, that is, on the next oriented metal tape 11, the (200) orientation rate is 100%, It can be seen that the level has risen to the same level as immediately after the start of film formation. It can be seen that the same phenomenon is repeated thereafter.

(3)YSZバリア層およびCeOキャップ層の成膜
次に、RFスパッタ法を用いて、CeOシード層(種膜)211の上に、厚さ0.25μmのYSZバリア層212、次いで厚さ0.05μmのCeOキャップ層213をエピタキシャル成長させて中間層21の形成を完了した。
(3) Formation of YSZ barrier layer and CeO 2 cap layer Next, the YSZ barrier layer 212 having a thickness of 0.25 μm is formed on the CeO 2 seed layer (seed film) 211 by using an RF sputtering method, and then the thickness is increased. A CeO 2 cap layer 213 having a thickness of 0.05 μm was epitaxially grown to complete the formation of the intermediate layer 21.

3.無配向金属テープ除去工程
次に、配向金属テープ11と無配向金属テープ12の境界で切断して、無配向金属テープ12をその上に形成された中間層と共に除去し、複数の超電導薄膜線材用基材2を得た。
3. Next, the non-oriented metal tape is removed by cutting at the boundary between the oriented metal tape 11 and the non-oriented metal tape 12, and the non-oriented metal tape 12 is removed together with the intermediate layer formed thereon, for a plurality of superconducting thin film wires. A substrate 2 was obtained.

[2]超電導薄膜線材の作製と超電導特性の評価
次に、超電導薄膜線材の作製と超電導特性の評価について説明する。
1.超電導薄膜線材の作製
図5は、本発明の一実施例の超電導薄膜線材3の構成を模式的に示す断面図である。図5において、31は超電導膜であり、32は安定化層である。
[2] Fabrication of superconducting thin film wire and evaluation of superconducting characteristics Next, fabrication of a superconducting thin film wire and evaluation of superconducting characteristics will be described.
1. Production of Superconducting Thin Film Wire FIG. 5 is a cross-sectional view schematically showing the configuration of the superconducting thin film wire 3 of one embodiment of the present invention. In FIG. 5, 31 is a superconducting film and 32 is a stabilization layer.

(1)超電導膜形成工程
まず、超電導薄膜線材用基材2の中間層21上に、PLD法を用いてGdBaCu7−δからなる厚さ1.5μmの超電導膜31を形成した。
(1) Superconducting film forming step First, a 1.5 μm thick superconducting film 31 made of Gd 1 Ba 2 Cu 3 O 7-δ is formed on the intermediate layer 21 of the superconducting thin film wire base material 2 using the PLD method. Formed.

(2)安定化層形成工程
次に、超電導膜31の上面および配向金属テープ11の裏面に、DCスパッタ法により厚さ5μmの銀安定化層321を形成し、さらに、銀安定化層321の外側にめっき法により厚さ10μmの銅安定化層322を形成して両面に安定化層32を形成した。
(2) Stabilizing layer forming step Next, a silver stabilizing layer 321 having a thickness of 5 μm is formed on the upper surface of the superconducting film 31 and the rear surface of the oriented metal tape 11 by DC sputtering, and further, the silver stabilizing layer 321 A 10 μm-thick copper stabilization layer 322 was formed on the outside by plating, and the stabilization layer 32 was formed on both sides.

その後、切断加工を施し、最終的に、幅2mmの超電導薄膜線材3を得た。   Thereafter, cutting was performed, and finally a superconducting thin film wire 3 having a width of 2 mm was obtained.

2.超電導特性の評価
1本の金属基板から作製された超電導薄膜線材用基材を用いて作製された全ての超電導薄膜線材の77K自己磁場下における超電導特性Icを測定した。その結果、作製した全ての超電導薄膜線材のIcは約250A/cmであり、良好な超電導特性を有することが確認できた。
2. Evaluation of Superconducting Characteristics Superconducting characteristics Ic in a 77K self-magnetic field of all superconducting thin film wires produced using a substrate for superconducting thin film wires produced from one metal substrate were measured. As a result, the Ic of all the produced superconducting thin film wires was about 250 A / cm, and it was confirmed that the superconducting properties were good.

(比較例)
1.超電導薄膜線材用基材の作製
(1)金属基板の作製と中間層の形成
全長に亘り配向金属テープのみからなる金属基板上に中間層を形成し、超電導薄膜線材用基材を作製した。図6は、比較例の超電導薄膜線材用基材4の構成を模式的に示す図であり、図に示す比較例の超電導薄膜線材用基材4の金属テープ41および中間層42は、それぞれ図3(b)に示した超電導薄膜線材用基材2の配向金属テープ11および中間層21と構成、幅、厚さが同一である。
(Comparative example)
1. Preparation of substrate for superconducting thin film wire (1) Preparation of metal substrate and formation of intermediate layer An intermediate layer was formed on a metal substrate made of only an oriented metal tape over the entire length to prepare a substrate for a superconducting thin film wire. FIG. 6 is a diagram schematically showing the configuration of the base material 4 for the superconducting thin film wire of the comparative example. The metal tape 41 and the intermediate layer 42 of the base material 4 for the superconducting thin film wire of the comparative example shown in FIG. The configuration, width, and thickness are the same as those of the oriented metal tape 11 and the intermediate layer 21 of the substrate 2 for superconducting thin film wires shown in 3 (b).

(2)CeOシード層(種膜)の(200)配向率の測定
中間層42の形成に際して、実施例と同様にして、CeOシード層(種膜)を形成後にCeOシード層種膜)の(200)配向率を測定した。測定結果を図7に示す。図7から、比較例の場合は、CeOシード層(種膜)の成膜開始から30mの少し手前までの部分では(200)配向率がほぼ100%であるが、30mの少し手前から徐々に低下し、30mを過ぎると急激に低下し、ついには約20%にまで低下していることが分かる。
(2) the formation of the measured intermediate layer 42 of (200) orientation ratio of CeO 2 seed layer (seed film), in the same manner as in Example, CeO 2 seed layer seed layer CeO 2 seed layer (seed film) after the formation ) Was measured. The measurement results are shown in FIG. From FIG. 7, in the case of the comparative example, the (200) orientation rate is almost 100% in the portion from the start of the formation of the CeO 2 seed layer (seed film) to slightly before 30 m, but gradually from slightly before 30 m. It can be seen that after 30 m, it suddenly decreases and finally decreases to about 20%.

2.超電導薄膜線材の作製
図6に示した超電導薄膜線材用基材4の上に実施例と同様にして超電導膜、安定化層を形成した後、切断加工を施し、実施例と同様に、幅2mmの超電導薄膜線材を得た。
2. Production of Superconducting Thin Film Wire After forming a superconducting film and a stabilizing layer on the substrate 4 for superconducting thin film wire shown in FIG. 6, a cutting process was performed, and the width was 2 mm as in the example. A superconducting thin film wire was obtained.

3.超電導特性の評価
実施例と同様にして、作製された全ての超電導薄膜線材の77K自己磁場下における超電導特性Icを測定した。その結果、CeOシード層(種膜)の成膜開始から30mまでの金属基板を用いた超電導薄膜線材用基材により作製された超電導薄膜線材は、Icが250A/cmと良好な超電導特性を有しているが、残りの超電導線材は、Icが100A/cm以下と低く、超電導特性が悪いことが分かった。
3. Evaluation of Superconducting Properties In the same manner as in the examples, the superconducting properties Ic of all the prepared superconducting thin film wires under a 77K self-magnetic field were measured. As a result, the superconducting thin film wire produced from the substrate for the superconducting thin film wire using the metal substrate up to 30 m from the start of the formation of the CeO 2 seed layer (seed film) has excellent superconducting characteristics with an Ic of 250 A / cm. However, it was found that the remaining superconducting wire had a low Ic of 100 A / cm or less and poor superconducting properties.

以上、本発明を実施の形態に基づいて説明したが、本発明は、上記の実施の形態に限定されるものではない。本発明と同一および均等の範囲内において、上記の実施の形態に対して種々の変更を加えることが可能である。   While the present invention has been described based on the embodiments, the present invention is not limited to the above embodiments. Various modifications can be made to the above-described embodiment within the same and equivalent scope as the present invention.

1 金属基板
2、4 超電導薄膜線材用基材
3 超電導薄膜線材
11 配向金属テープ
12 無配向金属テープ
21、42 中間層
31 超電導膜
32 安定化層
41 金属テープ
111 SUS板
112 Cu層
113 Ni層
211 CeOシード層(種膜)
212 YSZバリア層
213 CeOキャップ層
321 銀安定化層
322 銅安定化層
DESCRIPTION OF SYMBOLS 1 Metal substrate 2, 4 Base material for superconducting thin film wire 3 Superconducting thin film wire 11 Oriented metal tape 12 Unoriented metal tape 21, 42 Intermediate layer 31 Superconducting film 32 Stabilization layer 41 Metal tape 111 SUS plate 112 Cu layer 113 Ni layer 211 CeO 2 seed layer (seed film)
212 YSZ barrier layer 213 CeO 2 cap layer 321 Silver stabilization layer 322 Copper stabilization layer

Claims (6)

テープ状の配向金属基板の配向面上に2軸配向させた中間層が形成されている超電導薄膜線材用基材の製造方法であって、
複数本の所定長さの配向金属テープの隣り合った2本の前記配向金属テープの間に、所定長さの無配向金属テープを配置、接続して長尺の金属基板を作製する金属基板作製工程と、
前記長尺の金属基板の表面に、前記中間層を連続的に形成する中間層形成工程とを
有することを特徴とする超電導薄膜線材用基材の製造方法。
A method for producing a substrate for a superconducting thin film wire in which a biaxially oriented intermediate layer is formed on an orientation surface of a tape-like oriented metal substrate,
Metal substrate production for producing a long metal substrate by arranging and connecting a non-oriented metal tape of a predetermined length between two adjacent metal tapes of a plurality of aligned metal tapes of a predetermined length Process,
A method for producing a substrate for a superconducting thin film wire, comprising: an intermediate layer forming step of continuously forming the intermediate layer on a surface of the long metal substrate.
前記中間層形成工程の後に、
前記無配向金属テープを無配向金属テープ上に形成された中間層と共に切断して除去する無配向金属テープ除去工程を
有することを特徴とする請求項1に記載の超電導薄膜線材用基材の製造方法。
After the intermediate layer forming step,
2. The production of a substrate for a superconducting thin film wire according to claim 1, further comprising a non-oriented metal tape removing step of cutting and removing the non-oriented metal tape together with an intermediate layer formed on the non-oriented metal tape. Method.
請求項1に記載の超電導薄膜線材用基材の製造方法により製造されていることを特徴とする超電導薄膜線材用基材。   A substrate for a superconducting thin film wire, which is manufactured by the method for manufacturing a substrate for a superconducting thin film wire according to claim 1. 請求項2に記載の超電導薄膜線材用基材の製造方法により製造されていることを特徴とする超電導薄膜線材用基材。   A substrate for a superconducting thin film wire, which is manufactured by the method for manufacturing a substrate for a superconducting thin film wire according to claim 2. 前記中間層の(200)配向率が90%以上であることを特徴とする請求項4に記載の超電導薄膜線材用基材。   The substrate for a superconducting thin film wire according to claim 4, wherein the (200) orientation ratio of the intermediate layer is 90% or more. 請求項4または請求項5に記載の超電導薄膜線材用基材の中間層上に酸化物超電導体からなる超電導膜が形成されていることを特徴とする超電導薄膜線材。   A superconducting thin film wire comprising an oxide superconductor formed on an intermediate layer of the substrate for a superconducting thin film wire according to claim 4 or 5.
JP2009244289A 2009-10-23 2009-10-23 Base material for superconductive thin film wiring material, manufacturing method thereof, and superconductive thin film wiring material Pending JP2011090934A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009244289A JP2011090934A (en) 2009-10-23 2009-10-23 Base material for superconductive thin film wiring material, manufacturing method thereof, and superconductive thin film wiring material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009244289A JP2011090934A (en) 2009-10-23 2009-10-23 Base material for superconductive thin film wiring material, manufacturing method thereof, and superconductive thin film wiring material

Publications (1)

Publication Number Publication Date
JP2011090934A true JP2011090934A (en) 2011-05-06

Family

ID=44108997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009244289A Pending JP2011090934A (en) 2009-10-23 2009-10-23 Base material for superconductive thin film wiring material, manufacturing method thereof, and superconductive thin film wiring material

Country Status (1)

Country Link
JP (1) JP2011090934A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011113664A (en) * 2009-11-24 2011-06-09 Sumitomo Electric Ind Ltd Superconducting thin film wire-manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011113664A (en) * 2009-11-24 2011-06-09 Sumitomo Electric Ind Ltd Superconducting thin film wire-manufacturing method

Similar Documents

Publication Publication Date Title
JP5806302B2 (en) Multifilament superconductor with reduced AC loss and its formation method
JP2009507358A (en) High temperature superconducting wire and coil
US11657930B2 (en) High temperature superconducting wires having increased engineering current densities
KR20090029216A (en) Superconducting thin film material and method for producing the same
JP2008066399A (en) Connection structure of superconducting wire rod, superconducting coil, and connecting method of superconducting wire rod
JP2008210600A (en) Rare earth system tape-shape oxide superconductor and composite substrate used for it
JP2007115562A (en) Tape-shaped rare-earth group oxide superconductor and its manufacturing method
KR101289999B1 (en) Process for producing superconducting thin-film material and superconducting equipment
JP2007188756A (en) Rare earth based tape shape oxide superconductor
WO2011099301A1 (en) Oxide superconductor cabling and method of manufacturing oxide superconductor cabling
JP2006127847A (en) Alignment substrate for film formation and superconducting wire material
JP2002150855A (en) Oxide superconductor wire material, and manufacturing method of the same
JP5274895B2 (en) Oxide superconducting conductor
JP5292054B2 (en) Thin film laminate and manufacturing method thereof, oxide superconducting conductor and manufacturing method thereof
US10158061B2 (en) Integrated superconductor device and method of fabrication
JP2011113662A (en) Metal base material for thin film superconducting wire, method of manufacturing the same, and method of manufacturing thin film superconducting wire
KR101680405B1 (en) Substrate, process for production of substrate, electrically super-conductive wire material, and process for production of electrically super-conductive wire material
JPWO2004088677A1 (en) Metal substrate for oxide superconducting wire, oxide superconducting wire, and manufacturing method thereof
JP2011090934A (en) Base material for superconductive thin film wiring material, manufacturing method thereof, and superconductive thin film wiring material
JP5415824B2 (en) Method for manufacturing a substrate with altered shape for coated conductor and coated conductor using said substrate
JP2010238634A (en) Oxide superconducting wire, method of manufacturing the same, and manufacturing device of substrate used for the same
JP5497412B2 (en) Manufacturing method of superconducting thin film wire
KR100721901B1 (en) Superconducting article and its manufacturing method
JP2005056741A (en) Thin film superconductive wire rod and its manufacturing method
JP2011040396A (en) Manufacturing method of orientation substrate for film formation, superconducting wire material, and orientation substrate for film formation