JP2002150855A - Oxide superconductor wire material, and manufacturing method of the same - Google Patents

Oxide superconductor wire material, and manufacturing method of the same

Info

Publication number
JP2002150855A
JP2002150855A JP2000348192A JP2000348192A JP2002150855A JP 2002150855 A JP2002150855 A JP 2002150855A JP 2000348192 A JP2000348192 A JP 2000348192A JP 2000348192 A JP2000348192 A JP 2000348192A JP 2002150855 A JP2002150855 A JP 2002150855A
Authority
JP
Japan
Prior art keywords
oxide
buffer layer
nickel
layer
oxide buffer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000348192A
Other languages
Japanese (ja)
Other versions
JP4398582B2 (en
Inventor
Kaname Matsumoto
要 松本
Izumi Hirabayashi
泉 平林
Takeru Ikeda
長 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
International Superconductivity Technology Center
Original Assignee
Furukawa Electric Co Ltd
International Superconductivity Technology Center
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd, International Superconductivity Technology Center filed Critical Furukawa Electric Co Ltd
Priority to JP2000348192A priority Critical patent/JP4398582B2/en
Publication of JP2002150855A publication Critical patent/JP2002150855A/en
Application granted granted Critical
Publication of JP4398582B2 publication Critical patent/JP4398582B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Physical Vapour Deposition (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an oxide superconductor wire material having stable and excellent crystalline property at its whole lengthened part, with an oxide superconductor film showing high critical current density, and to provide a manufacturing method of the same. SOLUTION: For the oxide superconductor wire material comprising a polycrystalline metal base (1) having an aggregation structure oriented to 100} <001> direction, oxide buffer layers (2, 3) formed on the polycrystalline metal base (1), and an oxide superconductor layer (4) formed on the oxide buffer layer (2, 3), the oxide buffer layer (2, 3) is composed of the first oxide buffer layer (2) with a surface coarseness of Rmax=0.15 μm or less which is a surface oxide layer of the polycrystalline metal base (1), and the second oxide buffer layer (3) formed on the first oxide buffer layer (2).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、酸化物超電導線材
およびその製造方法に係り、特に、電力ケーブル、エネ
ルギー貯蔵等の電力機器分野、および医療用MRIや単
結晶製造用マグネット等の産業用機器分野などへの応用
開発が進められている酸化物超電導線材およびその製造
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an oxide superconducting wire and a method for manufacturing the same, and more particularly, to the field of power equipment such as power cables and energy storage, and industrial equipment such as medical MRI and magnets for manufacturing single crystals. The present invention relates to an oxide superconducting wire whose application and development to the field and the like are progressing, and a method for producing the same.

【0002】[0002]

【従来の技術】酸化物超電導体を使用した超電導線材の
作製方法は、主として、次の2つの方法に分類される。
2. Description of the Related Art A method for producing a superconducting wire using an oxide superconductor is mainly classified into the following two methods.

【0003】第1の方法は、金属シース中に酸化物超電
導粉末を充填した後、線材状に加工し、これを更に加工
した後、もしくは加工中に、熱処理を施して酸化物超電
導線材を得るパウダーインチューブ(PIT)法と呼ば
れる方法である。PIT法により得られた酸化物超電導
線材の典型例として、Bi系酸化物超電導体(Bi22
12,Bi2223)を銀あるいは銀合金のシース中に
多数本フィラメントとして存在させた超電導テープ線材
がある。
In the first method, a metal sheath is filled with an oxide superconducting powder and then processed into a wire, and after further processing or during the processing, a heat treatment is performed to obtain an oxide superconducting wire. This is a method called a powder-in-tube (PIT) method. As a typical example of the oxide superconducting wire obtained by the PIT method, a Bi-based oxide superconductor (Bi22
12, Bi2223) is present as a superconducting tape wire in which a large number of filaments are present in a silver or silver alloy sheath.

【0004】しかし、PIT法により得られた酸化物超
電導線材は、例えば、Bi2223系線材の場合、製造
速度が100m/hにまで達するが、臨界電流密度(J
c)は77K、自己磁場下で2〜6×104 A/cm2
程度であり、77Kでの機器への利用には制限がある。
また、シース材として銀もしくは銀合金を用いるため、
臨界電流密度が低下しないような引っ張り応力は、10
0MPa程度と低い。
However, in the case of Bi2223-based wires, the production speed of the oxide superconducting wires obtained by the PIT method reaches 100 m / h, but the critical current density (J
c) is 77K, 2-6 × 10 4 A / cm 2 under a self-magnetic field.
And there is a limit to the use of the device at 77K.
Also, since silver or silver alloy is used as the sheath material,
Tensile stress that does not lower the critical current density is 10
It is as low as about 0 MPa.

【0005】第2の方法は、多結晶金属基板上に結晶配
向を制御して中間層を設け、その上に酸化物超電導薄膜
を成膜して線材化する方法である。この方法では、中間
層は、金属基板と酸化物超電導層の拡散反応を抑制し、
更にその上に成膜した酸化物超電導体層の配向性を制御
して結晶粒の結合性を向上させ、高い臨界電流密度を得
ることを可能にする。
The second method is a method in which an intermediate layer is provided on a polycrystalline metal substrate by controlling the crystal orientation, and an oxide superconducting thin film is formed thereon to form a wire. In this method, the intermediate layer suppresses a diffusion reaction between the metal substrate and the oxide superconducting layer,
Further, it is possible to control the orientation of the oxide superconductor layer formed thereon to improve the bonding of crystal grains and to obtain a high critical current density.

【0006】第2の方法により得た超電導線材の典型例
として、ハステロイ合金テープ上にイオンビームアシス
テッドデポジション(IBAD)法などによりイットリ
ウム安定化ジルコニア(YSZ)を面内配向成膜して中
間層とし、その上にレーザーアブレーション法によりY
Ba2 Cu3 7-y (Y123)酸化物超電導薄膜を成
膜してテープ線材としたものがある。
As a typical example of the superconducting wire obtained by the second method, an in-plane oriented film of yttrium-stabilized zirconia (YSZ) is formed on a Hastelloy alloy tape by an ion beam assisted deposition (IBAD) method or the like. Layer on which Y is formed by laser ablation.
There is a tape wire obtained by forming a Ba 2 Cu 3 O 7-y (Y123) oxide superconducting thin film.

【0007】このテープ線材のJcは、77K、自己磁
場下で1×106 A/cm2 にも達するが、中間層の成
膜速度が0.001〜0.1m/hと極めて遅いため、
工業的には問題がある。
[0007] The Jc of this tape wire material is 77 K and reaches 1 × 10 6 A / cm 2 under a self-magnetic field. However, since the film formation speed of the intermediate layer is extremely low, 0.001 to 0.1 m / h,
There is a problem industrially.

【0008】同様の製造方法の例として、RABiTS
法と呼ばれる方法がある。この方法は、ニッケル金属に
圧延加工と熱処理を加えて集合組織化したニッケルテー
プとし、その上にPdなどを電子ビーム蒸着したり、C
eO2 やYSZをスパッター法などを用いて成膜して中
間層を形成し、この中間層上に更にレーザーアブレーシ
ョン法により、Y123系超電導体膜を形成する方法で
ある。
As an example of a similar manufacturing method, RABiTS
There is a method called the law. In this method, nickel metal is rolled and heat-treated to give a textured nickel tape, and Pd or the like is deposited thereon by electron beam evaporation,
In this method, eO 2 or YSZ is formed by sputtering or the like to form an intermediate layer, and a Y123-based superconductor film is formed on the intermediate layer by laser ablation.

【0009】この方法により得た超電導テープ線材も、
Jcは77K、自己磁場下で1×106 A/cm2 にも
達するが、中間層作成において複数回の薄膜形成プロセ
スを経るため、線材としての製造速度が低い点や、コス
トの面で問題がある。
[0009] The superconducting tape wire obtained by this method is also
Jc is 77K and reaches 1 × 10 6 A / cm 2 under a self-magnetic field. However, since the intermediate layer is formed through a plurality of thin film forming processes, the production speed as a wire is low and the cost is problematic. There is.

【0010】[0010]

【発明が解決しようとする課題】本発明者らは、既に、
金属基板ならびに金属基板の表面酸化物層の配向を利用
して、配向制御された酸化物超電導薄膜を成膜して線材
化する試みを行っている。そして、このような試みの中
から、特願平9−152410号において、表面酸化物
層を用いた酸化物超電導線材の製造方法を提案してい
る。この方法は、SOE(Surface Oxida
tion Epitaxy)法と呼ばれ、圧延加工と熱
処理によって集合組織化した多結晶金属テープに酸化処
理を施して金属基板上に直接配向性の優れた金属酸化物
層を形成し、これを中間層としてその上にレーザーアブ
レーション法や液相エピタキシャル法によって酸化物超
電導体層を成膜するものである。
SUMMARY OF THE INVENTION The present inventors have already
Attempts are being made to form an oxide superconducting thin film with controlled orientation by using the orientation of the metal substrate and the surface oxide layer of the metal substrate to form a wire. From such attempts, Japanese Patent Application No. 9-154410 proposes a method for manufacturing an oxide superconducting wire using a surface oxide layer. This method is based on SOE (Surface Oxida).
This method is referred to as a “tion epitaxy” method, in which a polycrystalline metal tape textured by rolling and heat treatment is oxidized to form a metal oxide layer having excellent orientation directly on a metal substrate, and this is used as an intermediate layer. An oxide superconductor layer is formed thereon by a laser ablation method or a liquid phase epitaxial method.

【0011】SOE法は、中間層の形成を高速化し、超
電導線材の製造速度を向上させることができるが、超電
導特性およびその長尺安定性において、必ずしも充分で
はなく、更に優れた超電導線材を得ることを課題として
研究を進めた結果、本発明に到達した。
Although the SOE method can speed up the formation of the intermediate layer and improve the production speed of the superconducting wire, the superconducting properties and its long-term stability are not always sufficient, and a more excellent superconducting wire is obtained. As a result of conducting research with this in mind, the present invention has been reached.

【0012】即ち、SOE法では、熱処理によって中間
層である表面酸化物層を形成するため、酸化物層の結晶
粒界の凹凸や酸化物結晶の不均質成長によって、その上
に成長させるY123系酸化物超電導体膜に種々の欠陥
が生じ、酸化物超電導体層中の弱結合部分が多くなるた
め、超電導体の臨界電流密度が小さい、あるいは長尺の
超電導線材では特性の不均質が生じやすいという問題が
ある。
That is, in the SOE method, since a surface oxide layer as an intermediate layer is formed by heat treatment, unevenness of crystal grain boundaries of the oxide layer and heterogeneous growth of oxide crystals cause the Y123-based layer to grow thereon. Various defects occur in the oxide superconductor film, and the number of weakly bonded portions in the oxide superconductor layer increases, so that the critical current density of the superconductor is small, or characteristics are likely to be uneven in a long superconducting wire. There is a problem.

【0013】また、表面酸化物層の結晶粒界近傍では、
下地金属の拡散による酸化物超電導体の汚染も問題とな
り、これも超電導線材の超電導特性およびその長尺安定
性に影響を与える。
Further, in the vicinity of the crystal grain boundary of the surface oxide layer,
Contamination of the oxide superconductor due to diffusion of the base metal also poses a problem, which also affects the superconducting characteristics of the superconducting wire and its long-term stability.

【0014】本発明は、SOE法を更に発展させるとと
もに、上述の課題を有効に解決するためになされたもの
で、長尺の超電導線材の全体にわたって安定して優れた
結晶性を有し、高い臨界電流密度を示す酸化物超電導膜
を有する超電導線材およびその製造方法を提供すること
を目的とする。
The present invention has been made in order to further develop the SOE method and effectively solve the above-mentioned problems. The present invention has stable and excellent crystallinity throughout a long superconducting wire and has a high crystallinity. It is an object of the present invention to provide a superconducting wire having an oxide superconducting film exhibiting a critical current density and a method for manufacturing the same.

【0015】[0015]

【課題を解決するための手段】本発明は、上記課題を解
決するため、種々検討を重ねた結果、金属基体上に形成
された表面酸化物層の平滑度(表面粗さ:Rmax )が酸
化物超電導層の超電導特性に大きな影響を与えることを
見いだし、本発明をなすに到った。
According to the present invention, as a result of various studies to solve the above-mentioned problems, the smoothness (surface roughness: R max ) of the surface oxide layer formed on the metal substrate is reduced. The present inventors have found that the superconductivity of the oxide superconducting layer is greatly affected, and have accomplished the present invention.

【0016】即ち、本発明は、{100}<001>方
位に配向した集合組織を有する多結晶金属基体と、この
多結晶金属基体の表面に形成された酸化物バッファー層
と、この酸化物バッファー層上に形成された酸化物超電
導層とを具備する超電導線材であって、前記酸化物バッ
ファー層が、前記多結晶金属基体の表面酸化物層である
とともに、その表面粗さがRmax =0.15μm以下で
ある第1の酸化物バッファー層と、この第1の酸化物バ
ッファー層上に形成された第2の酸化物バッファー層と
から構成されることを特徴とする酸化物超電導線材を提
供する。
That is, the present invention provides a polycrystalline metal substrate having a texture oriented in the {100} <001> direction, an oxide buffer layer formed on the surface of the polycrystalline metal substrate, and an oxide buffer A superconducting wire comprising an oxide superconducting layer formed on a layer, wherein the oxide buffer layer is a surface oxide layer of the polycrystalline metal substrate, and has a surface roughness of R max = 0. .15 .mu.m or less, and a second oxide buffer layer formed on the first oxide buffer layer. I do.

【0017】また、本発明は、{100}<001>方
位に配向した集合組織を有する多結晶金属基体の表面を
酸化処理して、第1の酸化物バッファー層を形成する工
程と、前記第1の酸化物バッファー層の表面を、機械的
研磨、化学的研磨、または化学的機械的研磨により、表
面粗さでRmax =0.15μm以下に平坦化する工程
と、前記平坦化された第1の酸化物バッファー層上に第
2の酸化物バッファー層を形成する工程と、前記第2の
酸化物バッファー層上に酸化物超電導層を形成する工程
とを具備することを特徴とする酸化物超電導線材の製造
方法を提供する。
The present invention also provides a step of oxidizing the surface of a polycrystalline metal substrate having a texture oriented in the {100} <001> direction to form a first oxide buffer layer; (1) flattening the surface of the oxide buffer layer by mechanical polishing, chemical polishing, or chemical mechanical polishing to a surface roughness of R max = 0.15 μm or less; An oxide comprising: a step of forming a second oxide buffer layer on one oxide buffer layer; and a step of forming an oxide superconducting layer on the second oxide buffer layer. Provided is a method for manufacturing a superconducting wire.

【0018】以下、本発明の超電導線材について、図面
を参照して、より詳細に説明する。本発明の超電導線材
は、図1に示すように、{100}<001>配向した
集合組織を有する多結晶金属基体1上に、第1の酸化物
バッファー層2、第2の酸化物バッファー層3、および
酸化物超電導体膜4を順次成膜することにより構成され
ている。
Hereinafter, the superconducting wire of the present invention will be described in more detail with reference to the drawings. As shown in FIG. 1, the superconducting wire of the present invention comprises a first oxide buffer layer 2 and a second oxide buffer layer on a polycrystalline metal substrate 1 having a {100} <001> -oriented texture. 3 and an oxide superconductor film 4 are sequentially formed.

【0019】ここで、{100}<001>配向した集
合組織とは、金属テープを構成する結晶のほとんどが、
結晶の(100)面がテープ表面に平行であり、結晶の
<001>方向がテープ長手方向に平行に配向している
状態を言う。
Here, the {100} <001> -oriented texture means that most of the crystals constituting the metal tape are
The (100) plane of the crystal is parallel to the tape surface, and the <001> direction of the crystal is oriented parallel to the tape longitudinal direction.

【0020】図1に示す本発明の超電導線材において、
多結晶金属基体1は、ニッ ケルあるいはニッケルを主
成分とするニッケル基合金により構成することが出来
る。或いは、多結晶金属基体1として、ニッケルとニッ
ケル基合金、ニッケルと銅基合金、またはニッケルと鉄
基合金の複合材料で、その最外層がニッケルであるもの
を用いることも可能である。
In the superconducting wire of the present invention shown in FIG.
The polycrystalline metal substrate 1 can be made of nickel or a nickel-based alloy containing nickel as a main component. Alternatively, as the polycrystalline metal substrate 1, a composite material of nickel and a nickel-based alloy, nickel and a copper-based alloy, or nickel and an iron-based alloy, whose outermost layer is nickel, can be used.

【0021】第1の酸化物バッファー層2は、多結晶金
属基体1を酸化することにより形成される。従って、第
1の酸化物バッファー層2は、酸化ニッケル(NiO)
により構成される。この場合、多結晶金属基体1の酸化
処理条件を適宜選択することによって、酸化ニッケルの
(100)面を基体表面に平行に成長させることがで
き、かつ、下地の多結晶金属基体1の結晶配向性を受け
継いで、酸化ニッケルの(100)面内の結晶配向性も
著しく向上させることが出来る。その結果、多結晶金属
基体1上に擬単結晶的な酸化ニッケル層を第1の酸化物
バッファー層2として形成することが出来る。
The first oxide buffer layer 2 is formed by oxidizing the polycrystalline metal substrate 1. Therefore, the first oxide buffer layer 2 is made of nickel oxide (NiO).
It consists of. In this case, by appropriately selecting the oxidation treatment conditions for the polycrystalline metal substrate 1, the (100) plane of nickel oxide can be grown parallel to the substrate surface, and the crystal orientation of the underlying polycrystalline metal substrate 1 Inherited from this property, the crystal orientation of the nickel oxide in the (100) plane can be significantly improved. As a result, a quasi-single crystal nickel oxide layer can be formed as the first oxide buffer layer 2 on the polycrystalline metal substrate 1.

【0022】本発明では、第1の酸化物バッファー層
2、例えば酸化ニッケル層の表面粗さ(Rmax )をある
一定の値、即ち、Rmax =0.15μm以下に制御する
ことにより、その上に形成される第2の酸化物バッファ
ー層3や酸化物超電導層4の平滑性を改善することが出
来る。その結果、酸化物超電導体4層中の弱結合部分の
数が低減し、実用的に重要な臨界電流密度を向上させる
ことが可能である。
In the present invention, by controlling the surface roughness (R max ) of the first oxide buffer layer 2, for example, the nickel oxide layer to a certain value, that is, R max = 0.15 μm or less, The smoothness of the second oxide buffer layer 3 and the oxide superconducting layer 4 formed thereon can be improved. As a result, the number of weakly coupled portions in the four oxide superconductor layers is reduced, and it is possible to improve the critical current density which is practically important.

【0023】第1の酸化物バッファー層2の表面は、機
械的研磨、化学的研磨、または化学的機械的研磨によ
り、表面粗さでRmax =0.15μm以下になるように
平坦化される。第1の酸化物バッファー層2の表面粗さ
は、好ましくは0.02μm以下である。また、第1の
酸化物バッファー層2厚さは、1〜7μmであるのが好
ましい。
The surface of the first oxide buffer layer 2 is planarized by mechanical polishing, chemical polishing, or chemical mechanical polishing so that the surface roughness becomes Rmax = 0.15 μm or less. . The surface roughness of the first oxide buffer layer 2 is preferably 0.02 μm or less. Further, the thickness of the first oxide buffer layer 2 is preferably 1 to 7 μm.

【0024】第2の酸化物バッファー層3を用いる理由
は、次の通りである。即ち、第1の酸化物バッファー層
2上に第2の酸化物バッファー層3を形成することによ
り、酸化物超電導層4との格子整合性を向上させて、結
晶性を向上させることが出来る。また、第1の酸化物バ
ッファー層2としての酸化ニッケル層上に直接酸化物超
電導層4を形成する場合には、酸化ニッケル層との結晶
粒界近傍では、下地から酸化物超電導層4にニッケルが
拡散する可能性があるが、キャップ層として第2の酸化
物バッファー層3を用いることにより、酸化物超電導層
4のニッケルによる汚染を完全に防止することが出来、
それによって実用的に重要な臨界電流密度を更に向上さ
せることが可能となる。
The reason for using the second oxide buffer layer 3 is as follows. That is, by forming the second oxide buffer layer 3 on the first oxide buffer layer 2, the lattice matching with the oxide superconducting layer 4 can be improved, and the crystallinity can be improved. In the case where the oxide superconducting layer 4 is formed directly on the nickel oxide layer as the first oxide buffer layer 2, the nickel superconducting layer 4 However, by using the second oxide buffer layer 3 as the cap layer, the contamination of the oxide superconducting layer 4 with nickel can be completely prevented,
This makes it possible to further improve the critical current density that is practically important.

【0025】第2の酸化物バッファー層3に用いられる
好ましい材料としては、SrTiO 3 ,BaTiO3
BaZrO3 ,LaGaO3 ,NdGaO3 ,LaAl
3,LaNiO3 ,MgO,YSZ,CeO2 ,Y2
3 等の高融点酸化物を挙げることができる。
Used for the second oxide buffer layer 3
A preferred material is SrTiO Three, BaTiOThree,
BaZrOThree, LaGaOThree, NdGaOThree, LaAl
OThree, LaNiOThree, MgO, YSZ, CeOTwo, YTwo
OThreeAnd the like.

【0026】表面粗さがRmax =0.15μm以下に調
整された第1の酸化物バッファー層2上に形成される第
2の酸化物バッファー層3は、下地である擬単結晶的な
酸化ニッケル層上にエピタキシャル成長させることが必
要である。その形成方法としては、これまで酸化物層形
成において実績のあるパルスレーザーデポジション法、
スパッタ法、蒸着法、CVD法等の気相法や、塗布熱分
解法、ゾルゲル法等の液相法を用いることが出来る。第
2の酸化物バッファー層2厚さは、0.02〜0.4μ
mであるのが好ましい。
The second oxide buffer layer 3 formed on the first oxide buffer layer 2 whose surface roughness is adjusted to R max = 0.15 μm or less has a quasi-single crystal oxidation It is necessary to grow epitaxially on the nickel layer. As the formation method, a pulse laser deposition method that has been used in oxide layer formation,
A gas phase method such as a sputtering method, a vapor deposition method, or a CVD method, or a liquid phase method such as a coating thermal decomposition method or a sol-gel method can be used. The thickness of the second oxide buffer layer 2 is 0.02 to 0.4 μm.
Preferably it is m.

【0027】酸化物超電導層を構成する酸化物超電導体
としては、YBaCu −8 に代表される
希土類123系酸化物超電導体や、Tl系酸化物超電導
体等を用いることが出来る。
As the oxide superconductor constituting the oxide superconducting layer, a rare earth 123-based oxide superconductor represented by YBa 2 Cu 3 O 7 -8 , a Tl-based oxide superconductor, or the like can be used. .

【0028】[0028]

【発明の実施の形態】以下、本発明の実施の形態として
の種々の実施例を示し、本発明をより具体的に説明す
る。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, various examples as embodiments of the present invention will be shown, and the present invention will be described more specifically.

【0029】実施例1 直径10mmの市販のニッケル棒(99.9%純度)に
圧延加工を施して、厚さ0.15mmまで薄くし、ニッ
ケルテープを得た。このテープを真空中にて800℃で
2時間アニールした。アニール後、テープ表面をX線回
折及びX線極点図により調べたところ、{100}<0
01>方位に配向した集合組織になっていた。
Example 1 A commercially available nickel rod (99.9% purity) having a diameter of 10 mm was rolled to a thickness of 0.15 mm to obtain a nickel tape. The tape was annealed in vacuum at 800 ° C. for 2 hours. After annealing, the tape surface was examined by X-ray diffraction and X-ray pole figure.
01> Orientation oriented.

【0030】続いて、このテープに酸素雰囲気中におい
て1100℃で1時間の酸化処理を施し、ニッケルテー
プ表面上に、第1の酸化物バッファー層として、膜厚1
0μmのNiO層を形成した。
Subsequently, the tape was subjected to an oxidation treatment at 1100 ° C. for 1 hour in an oxygen atmosphere to form a first oxide buffer layer having a film thickness of 1 on the surface of the nickel tape.
A 0 μm NiO layer was formed.

【0031】次に、形成されたNiO/NiテープのN
iO層表面にダイアモンド砥粒による研磨処理を施し、
表面粗さ(Rmax )として、それぞれ0.07μm、
0.15μm、0.2μm、0.4μm4種の試料を準
備した。なお、表面粗さは、接触式の表面粗さ計によっ
て測定した。
Next, N of the formed NiO / Ni tape was
Polishing the surface of the iO layer with diamond abrasive grains,
The surface roughness (R max ) was 0.07 μm,
Four kinds of samples of 0.15 μm, 0.2 μm and 0.4 μm were prepared. The surface roughness was measured by a contact type surface roughness meter.

【0032】これらのNiO/Niテープ上に、KrF
エキシマレーザーを用いたパルスレーザーデポジション
(PLD)法により、第2の酸化物バッファー層として
のYSZ膜と、YBCO超電導膜を成膜した。YSZ膜
は、膜厚として0.5μmと0.9μmの2種類を作製
した。なお、この時の成膜条件は、以下の通りである。
On these NiO / Ni tapes, KrF
By a pulse laser deposition (PLD) method using an excimer laser, a YSZ film as a second oxide buffer layer and a YBCO superconducting film were formed. As the YSZ film, two types having a thickness of 0.5 μm and 0.9 μm were prepared. The film forming conditions at this time are as follows.

【0033】 <YSZ膜(第2の酸化物バッファー層)> レーザーエネルギー密度:2J/cm2 基板温度:750℃ 繰り返し周波数:20Hz 酸素ガス圧力:20Pa 膜厚:0.5μm、0.9μm <YBCO超電導膜> レーザーエネルギー密度:3J/cm2 基板温度:700℃ 繰り返し周波数:30Hz 酸素ガス圧力:26Pa 膜厚:1μm 以上のようにして作成した試料について、直流4端子法
により臨界温度(Tc)を測定した。臨界電流密度(J
c)は、77K、1テスラに関して測定を行った。その
結果を下記表1に示す。
<YSZ film (second oxide buffer layer)> Laser energy density: 2 J / cm 2 Substrate temperature: 750 ° C. Repetition frequency: 20 Hz Oxygen gas pressure: 20 Pa Film thickness: 0.5 μm, 0.9 μm <YBCO Superconducting film> Laser energy density: 3 J / cm 2 Substrate temperature: 700 ° C. Repetition frequency: 30 Hz Oxygen gas pressure: 26 Pa Film thickness: 1 μm The critical temperature (Tc) of the sample prepared as described above was determined by a DC four-terminal method. It was measured. Critical current density (J
In c), the measurement was performed for 77K and 1 Tesla. The results are shown in Table 1 below.

【0034】[0034]

【表1】 [Table 1]

【0035】上記表1から、Rmax が0.15μm以下
の試料に関しては、YSZの膜厚によらず、Tcは87
K以上、Jcは70,000A/cm2 以上であり、と
もに優れた特性を示すことがわかる。これに対し、R
max が0.15μmを越える試料では、Tc、Jcとも
に満足すべき値が得られていない。
From the above Table 1, it can be seen that Tc is 87 regardless of the thickness of YSZ for the sample having R max of 0.15 μm or less.
It is understood that both K and Jc are 70,000 A / cm 2 or more, and both exhibit excellent characteristics. In contrast, R
For samples having max exceeding 0.15 μm, satisfactory values were not obtained for both Tc and Jc.

【0036】実施例2 直径20mmのニッケルパイプ中にニッケル−20wt
%クロム合金棒を挿入し、これをスエージング加工と圧
延加工によって、厚さ0.2mmのニッケル/ニッケル
−クロム合金複合テープを作製した。このテープを真空
中において、800℃で2時間アニールした。このテー
プの表面は、{100}<001>方位に配向した集合
組織になっていた。
Example 2 Nickel-20 wt% in a nickel pipe having a diameter of 20 mm
A nickel / nickel-chromium alloy composite tape having a thickness of 0.2 mm was manufactured by inserting a% chromium alloy rod and performing swaging and rolling. The tape was annealed in vacuum at 800 ° C. for 2 hours. The surface of this tape had a texture oriented in the {100} <001> direction.

【0037】続いて、このテープを酸素雰囲気中におい
て1100℃で1時間の酸化処理を施し、テープ表面上
に、第1の酸化物バッファー層として、膜厚10μmの
NiO層を形成した。
Subsequently, the tape was subjected to an oxidation treatment at 1100 ° C. for 1 hour in an oxygen atmosphere to form a 10 μm-thick NiO layer as a first oxide buffer layer on the tape surface.

【0038】次に、形成されたNiO/ニッケル/ニッ
ケル−クロム合金テープのNiO層の表面に、酸化アル
ミニウム砥粒による機械研磨と希硝酸による化学的研磨
を施し、表面粗さ(Rmax )として、それぞれ0.05
μm,0.15μm,0.18μm,0.3μmの試料
を準備した。
Next, the surface of the NiO layer of the formed NiO / nickel / nickel-chromium alloy tape is subjected to mechanical polishing using aluminum oxide abrasive grains and chemical polishing using dilute nitric acid to obtain a surface roughness (R max ). , 0.05 each
Samples of μm, 0.15 μm, 0.18 μm, and 0.3 μm were prepared.

【0039】これらのNiO/ニッケル/ニッケル−ク
ロム合金テープ上にKrFエキシマレーザーを用いたパ
ルスレーザーデポジション(PLD)法によって、第2
の酸化物バッファー層としてのMgO膜と、YBCO超
電導膜を成膜した。MgO膜は、膜厚として0.1μm
と0.3μmの2種類を作製した。なお、この時の成膜
条件は、以下の通りである。
On these NiO / nickel / nickel-chromium alloy tapes, a second laser was formed by pulse laser deposition (PLD) using a KrF excimer laser.
An MgO film as an oxide buffer layer and a YBCO superconducting film were formed. The MgO film has a thickness of 0.1 μm
And 0.3 μm. The film forming conditions at this time are as follows.

【0040】 <MgO膜(第2の酸化物バッファー層)> レーザーエネルギー密度:2J/cm2 基板温度:500℃ 繰り返し周波数:10Hz 酸素ガス圧力:1.3Pa 膜厚:0.1μm,0.3μm <YBCO超電導膜> レーザーエネルギー密度:2.5J/cm2 基板温度:720℃ 繰り返し周波数:30Hz 酸素ガス圧力:26Pa 膜厚:1μm 以上のようにして作成した試料について、直流4端子法
により臨界温度(Tc)を測定した。臨界電流密度(J
c)は、77K、1テスラに関して測定を行った。その
結果を下記表2に示す。
<MgO film (second oxide buffer layer)> Laser energy density: 2 J / cm 2 Substrate temperature: 500 ° C. Repetition frequency: 10 Hz Oxygen gas pressure: 1.3 Pa Film thickness: 0.1 μm, 0.3 μm <YBCO superconducting film> Laser energy density: 2.5 J / cm 2 Substrate temperature: 720 ° C. Repetition frequency: 30 Hz Oxygen gas pressure: 26 Pa Film thickness: 1 μm Critical temperature of the sample prepared as described above was measured by a DC four-terminal method. (Tc) was measured. Critical current density (J
In c), the measurement was performed for 77K and 1 Tesla. The results are shown in Table 2 below.

【0041】[0041]

【表2】 [Table 2]

【0042】上記表2から、Rmax が0.15μm以下
の試料に関しては、YSZの膜厚によらず、Tcは86
K以上、Jcは50,000A/cm2 以上であり、と
もに優れた特性を示すことがわかる。これに対し、R
max が0.15μmを越える試料では、Tc、Jcとも
に満足すべき値が得られていない。
From Table 2 above, for samples with R max of 0.15 μm or less, Tc was 86 regardless of the thickness of YSZ.
K and Jc are 50,000 A / cm 2 or more, and it can be seen that both exhibit excellent characteristics. In contrast, R
For samples having max exceeding 0.15 μm, satisfactory values were not obtained for both Tc and Jc.

【0043】[0043]

【発明の効果】以上詳細に説明したように、本発明によ
ると、{100}<001>方位に配向した集合組織を
有する多結晶金属基体と、酸化物超電導層との間に介在
する酸化物バッファー層として、表面粗さがRmax
0.15μm以下である第1の酸化物バッファー層と、
第2の酸化物バッファー層との積層体を用いることによ
り、従来に比べて酸化物超電導層の結晶性を向上させる
ことが出来るとともに、超電導層中の弱結合部分の数を
低減することが出来、そのため、実用上重要な臨界電流
密度の向上を実現することが可能である。
As described above in detail, according to the present invention, the oxide interposed between the polycrystalline metal substrate having the texture oriented in the {100} <001> direction and the oxide superconducting layer As the buffer layer, the surface roughness is R max =
A first oxide buffer layer that is 0.15 μm or less;
By using the stacked body with the second oxide buffer layer, the crystallinity of the oxide superconducting layer can be improved as compared with the related art, and the number of weakly coupled portions in the superconducting layer can be reduced. Therefore, it is possible to realize a practically important improvement in critical current density.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の超電導線材を示す断面図。FIG. 1 is a sectional view showing a superconducting wire of the present invention.

【符号の説明】[Explanation of symbols]

1…多結晶金属基体 2…第1の酸化物バッファー層 3…第2の酸化物バッファー層 4…酸化物超電導体膜 DESCRIPTION OF SYMBOLS 1 ... Polycrystalline metal base 2 ... 1st oxide buffer layer 3 ... 2nd oxide buffer layer 4 ... Oxide superconductor film

───────────────────────────────────────────────────── フロントページの続き (72)発明者 平林 泉 東京都江東区東雲一丁目14番3号 財団法 人国際超電導産業技術研究センター超電導 工学研究所内 (72)発明者 池田 長 東京都千代田区丸の内2丁目6番1号 古 河電気工業株式会社内 Fターム(参考) 4K029 BA12 BA25 BA50 BB02 BC04 CA01 DB20 FA03 FA06 5G321 AA01 AA04 BA01 BA03 CA04 CA18 CA21 CA24 CA27 CA28 DB37  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Izumi Hirabayashi 1-14-3 Shinonome, Koto-ku, Tokyo Foundation for Superconductivity Engineering, International Superconductivity and Industrial Technology Research Center (72) Inventor Cho Ikeda Marunouchi, Chiyoda-ku, Tokyo 2-6-1 Furukawa Electric Co., Ltd. F-term (reference) 4K029 BA12 BA25 BA50 BB02 BC04 CA01 DB20 FA03 FA06 5G321 AA01 AA04 BA01 BA03 CA04 CA18 CA21 CA24 CA27 CA28 DB37

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】{100}<001>方位に配向した集合
組織を有する多結晶金属基体と、この多結晶金属基体の
表面に形成された酸化物バッファー層と、この酸化物バ
ッファー層上に形成された酸化物超電導層とを具備する
超電導線材であって、前記酸化物バッファー層が、前記
多結晶金属基体の表面酸化物層であるとともに、その表
面粗さがRmax =0.15μm以下である第1の酸化物
バッファー層と、この第1の酸化物バッファー層上に形
成された第2の酸化物バッファー層とから構成されるこ
とを特徴とする酸化物超電導線材。
1. A polycrystalline metal substrate having a texture oriented in the {100} <001> direction, an oxide buffer layer formed on the surface of the polycrystalline metal substrate, and a polycrystalline metal substrate formed on the oxide buffer layer. A superconducting wire comprising an oxide superconducting layer, wherein the oxide buffer layer is a surface oxide layer of the polycrystalline metal substrate, and has a surface roughness of Rmax = 0.15 μm or less. An oxide superconducting wire comprising a first oxide buffer layer and a second oxide buffer layer formed on the first oxide buffer layer.
【請求項2】前記多結晶金属基体が、ニッケル、または
ニッケルを主成分とするニッケル基合金からなり、前記
第1の酸化物バッファー層が、酸化ニッケル(NiO)
からなることを特徴とする請求項1に記載の酸化物超電
導線材。
2. The polycrystalline metal substrate is made of nickel or a nickel-based alloy containing nickel as a main component, and the first oxide buffer layer is made of nickel oxide (NiO).
The oxide superconducting wire according to claim 1, comprising:
【請求項3】前記多結晶金属基体が、ニッケルとニッケ
ル基合金、ニッケルと銅、ニッケルと銅基合金、または
ニッケルと鉄基合金との複合材料であり、その最外層が
ニッケルであって、前記第1の酸化物バッファー層が、
酸化ニッケル(NiO)からなることを特徴とする請求
項1に記載の酸化物超電導線材。
3. The polycrystalline metal substrate is a composite material of nickel and a nickel-based alloy, nickel and copper, nickel and a copper-based alloy, or nickel and an iron-based alloy, the outermost layer of which is nickel, Wherein the first oxide buffer layer comprises:
The oxide superconducting wire according to claim 1, comprising nickel oxide (NiO).
【請求項4】前記第2の酸化物バッファー層が、SrT
iO3 、BaTiO3 、BaZrO 3 、LaGaO3 、
NdGaO3 、LaAlO3 、LaNiO3、,Mg
O、YSZ、CeO2 、及びY2 3 からなる群から選
択される高融点の酸化物結晶からなることを特徴とする
請求項1〜3のいずれかの項に記載の酸化物超電導線
材。
4. The method according to claim 1, wherein the second oxide buffer layer is formed of SrT
iO3,BaTiO3,BaZrO 3,LaGaO3,
NdGaO3,LaAlO3,LaNiO3,, Mg
O, YSZ, CeO2,And YTwoOThreeSelected from the group consisting of
Selected from high melting point oxide crystals
The oxide superconducting wire according to claim 1.
Wood.
【請求項5】請求項1〜4のいずれかの項に記載の酸化
物超電導線材を製造する方法であって、{100}<0
01>方位に配向した集合組織を有する多結晶金属基体
の表面を酸化処理して、第1の酸化物バッファー層を形
成する工程と、前記第1の酸化物バッファー層の表面
を、機械的研磨、化学的研磨、または化学的機械的研磨
により、表面粗さでRmax =0.15μm以下に平坦化
する工程と、前記平坦化された第1の酸化物バッファー
層上に第2の酸化物バッファー層を形成する工程と、前
記第2の酸化物バッファー層上に酸化物超電導層を形成
する工程とを具備することを特徴とする酸化物超電導線
材の製造方法。
5. A method for producing an oxide superconducting wire according to claim 1, wherein {100} <0.
A step of oxidizing the surface of the polycrystalline metal substrate having a texture oriented in the <01> direction to form a first oxide buffer layer; and mechanically polishing the surface of the first oxide buffer layer. Flattening the surface roughness to R max = 0.15 μm or less by chemical polishing or chemical mechanical polishing, and forming a second oxide on the flattened first oxide buffer layer. A method for producing an oxide superconducting wire, comprising: forming a buffer layer; and forming an oxide superconducting layer on the second oxide buffer layer.
【請求項6】前記第2の酸化物バッファー層が、パルス
レーザーデポジション法、スパッタ法、蒸着法、及びC
VD法からなる群から選択される気相法により成膜され
ることを特徴とする請求項5に記載の酸化物超電導線材
の製造方法。
6. The method according to claim 1, wherein the second oxide buffer layer is formed by a pulse laser deposition method, a sputtering method, a vapor deposition method,
The method for producing an oxide superconducting wire according to claim 5, wherein the film is formed by a gas phase method selected from the group consisting of VD methods.
【請求項7】前記第2の酸化物バッファー層が、塗布熱
分解法およびゾルゲル法からなる群から選択される液相
法により成膜されることを特徴とする請求項5に記載の
酸化物超電導線材の製造方法。
7. The oxide according to claim 5, wherein the second oxide buffer layer is formed by a liquid phase method selected from the group consisting of a coating thermal decomposition method and a sol-gel method. Manufacturing method of superconducting wire.
JP2000348192A 2000-11-15 2000-11-15 Oxide superconducting wire and method for producing the same Expired - Fee Related JP4398582B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000348192A JP4398582B2 (en) 2000-11-15 2000-11-15 Oxide superconducting wire and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000348192A JP4398582B2 (en) 2000-11-15 2000-11-15 Oxide superconducting wire and method for producing the same

Publications (2)

Publication Number Publication Date
JP2002150855A true JP2002150855A (en) 2002-05-24
JP4398582B2 JP4398582B2 (en) 2010-01-13

Family

ID=18821813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000348192A Expired - Fee Related JP4398582B2 (en) 2000-11-15 2000-11-15 Oxide superconducting wire and method for producing the same

Country Status (1)

Country Link
JP (1) JP4398582B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004060741A (en) * 2002-07-26 2004-02-26 Motoyama Eng Works Ltd Diaphragm, diaphragm valve, and film forming device
JP2004158448A (en) * 2002-10-23 2004-06-03 Nexans Superconductors Gmbh Superconducting cable conductor having rebco-coated conductor element
JP2005534157A (en) * 2002-07-26 2005-11-10 メトル、アクサイド、テクナラジズ、インク Method and apparatus for superconducting material on a tape substrate
WO2006008893A1 (en) * 2004-07-16 2006-01-26 Sumitomo Electric Industries, Ltd. Thin film material and method for manufacturing the same
JP2006286212A (en) * 2005-03-31 2006-10-19 Furukawa Electric Co Ltd:The High-strength polycrystalline metallic board for oxide superconductivity, and oxide superconductivity wire rod using the same
JP2007200831A (en) * 2005-12-26 2007-08-09 Furukawa Electric Co Ltd:The Superconductor base material and method for fabrication thereof
JP2007308336A (en) * 2006-05-18 2007-11-29 National Institute Of Advanced Industrial & Technology Method of manufacturing rare earth 123-type superconducting film orientated on yttrium aluminate single crystal
JP2007308337A (en) * 2006-05-18 2007-11-29 National Institute Of Advanced Industrial & Technology Method of manufacturing rare earth 123-type superconducting film orientated on neodymium gallate single crystal
JP2008509509A (en) * 2004-08-05 2008-03-27 トリトーア・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Method for producing highly organized tape-like high-temperature superconductor
JP2008200775A (en) * 2007-02-16 2008-09-04 Nihon Micro Coating Co Ltd Method for manufacturing tape substrate for superconductor, and tape substrate
JP2008311222A (en) * 2007-05-11 2008-12-25 Furukawa Electric Co Ltd:The Superconductive wire and its manufacturing method
JP2011249162A (en) * 2010-05-27 2011-12-08 Fujikura Ltd Method for manufacturing superconducting wire rod
WO2012165563A1 (en) 2011-05-31 2012-12-06 古河電気工業株式会社 Oxide superconductor thin film and superconducting fault current limiter
JP2013089354A (en) * 2011-10-14 2013-05-13 Sumitomo Electric Ind Ltd Intermediate layer-formed base material for superconducting thin film wiring material, its manufacturing method and superconducting thin film wiring material
WO2013141272A1 (en) * 2012-03-22 2013-09-26 中部電力株式会社 Alignment substrate for forming epitaxial film, and process for producing same

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005534157A (en) * 2002-07-26 2005-11-10 メトル、アクサイド、テクナラジズ、インク Method and apparatus for superconducting material on a tape substrate
JP2004060741A (en) * 2002-07-26 2004-02-26 Motoyama Eng Works Ltd Diaphragm, diaphragm valve, and film forming device
JP2011060769A (en) * 2002-07-26 2011-03-24 Metal Oxide Technologies Inc Method and apparatus for superconductive material on tape substrate
JP2004158448A (en) * 2002-10-23 2004-06-03 Nexans Superconductors Gmbh Superconducting cable conductor having rebco-coated conductor element
WO2006008893A1 (en) * 2004-07-16 2006-01-26 Sumitomo Electric Industries, Ltd. Thin film material and method for manufacturing the same
JP2006027958A (en) * 2004-07-16 2006-02-02 Sumitomo Electric Ind Ltd Thin film material and its manufacturing method
JP2008509509A (en) * 2004-08-05 2008-03-27 トリトーア・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Method for producing highly organized tape-like high-temperature superconductor
JP2006286212A (en) * 2005-03-31 2006-10-19 Furukawa Electric Co Ltd:The High-strength polycrystalline metallic board for oxide superconductivity, and oxide superconductivity wire rod using the same
JP4716324B2 (en) * 2005-12-26 2011-07-06 古河電気工業株式会社 Superconductor substrate and method for producing the same
JP2007200831A (en) * 2005-12-26 2007-08-09 Furukawa Electric Co Ltd:The Superconductor base material and method for fabrication thereof
JP4547540B2 (en) * 2006-05-18 2010-09-22 独立行政法人産業技術総合研究所 Method for producing rare earth 123 type superconducting film oriented on yttrium aluminate single crystal
JP2007308337A (en) * 2006-05-18 2007-11-29 National Institute Of Advanced Industrial & Technology Method of manufacturing rare earth 123-type superconducting film orientated on neodymium gallate single crystal
JP4613349B2 (en) * 2006-05-18 2011-01-19 独立行政法人産業技術総合研究所 Method for producing rare earth 123 type superconducting film oriented on neodymium gallate single crystal
JP2007308336A (en) * 2006-05-18 2007-11-29 National Institute Of Advanced Industrial & Technology Method of manufacturing rare earth 123-type superconducting film orientated on yttrium aluminate single crystal
JP2008200775A (en) * 2007-02-16 2008-09-04 Nihon Micro Coating Co Ltd Method for manufacturing tape substrate for superconductor, and tape substrate
JP2008311222A (en) * 2007-05-11 2008-12-25 Furukawa Electric Co Ltd:The Superconductive wire and its manufacturing method
JP2011249162A (en) * 2010-05-27 2011-12-08 Fujikura Ltd Method for manufacturing superconducting wire rod
WO2012165563A1 (en) 2011-05-31 2012-12-06 古河電気工業株式会社 Oxide superconductor thin film and superconducting fault current limiter
US9159898B2 (en) 2011-05-31 2015-10-13 Furukawa Electric Co., Ltd. Oxide superconductor thin film and superconducting fault current limiter
JP2013089354A (en) * 2011-10-14 2013-05-13 Sumitomo Electric Ind Ltd Intermediate layer-formed base material for superconducting thin film wiring material, its manufacturing method and superconducting thin film wiring material
WO2013141272A1 (en) * 2012-03-22 2013-09-26 中部電力株式会社 Alignment substrate for forming epitaxial film, and process for producing same
JP2013196996A (en) * 2012-03-22 2013-09-30 Chubu Electric Power Co Inc Orientation substrate for epitaxial film formation and manufacturing method therefor
US9242433B2 (en) 2012-03-22 2016-01-26 Tanaka Kikinzoku Kogyo K.K. Textured substrate for epitaxial film formation, and method for manufacturing the same

Also Published As

Publication number Publication date
JP4398582B2 (en) 2010-01-13

Similar Documents

Publication Publication Date Title
JP3587956B2 (en) Oxide superconducting wire and its manufacturing method
US7781376B2 (en) High temperature superconducting wires and coils
JP4713012B2 (en) Tape-shaped oxide superconductor
US6645313B2 (en) Powder-in-tube and thick-film methods of fabricating high temperature superconductors having enhanced biaxial texture
JP4398582B2 (en) Oxide superconducting wire and method for producing the same
JP4602911B2 (en) Rare earth tape oxide superconductor
JP5513154B2 (en) Oxide superconducting wire and manufacturing method of oxide superconducting wire
JP4316070B2 (en) High strength oriented polycrystalline metal substrate and oxide superconducting wire
US6455166B1 (en) Metallic substrates for high temperature superconductors
JP2003206134A (en) High temperature superconducting thick film member and method for producing the same
JP5498019B2 (en) Superconducting article
JP5415824B2 (en) Method for manufacturing a substrate with altered shape for coated conductor and coated conductor using said substrate
JP5624839B2 (en) Base material for oxide superconducting conductor and method for producing the same, oxide superconducting conductor and method for producing the same
KR100721901B1 (en) Superconducting article and its manufacturing method
US20040142824A1 (en) Method for the manufacture of a high temperature superconducting layer
US8644899B2 (en) Coated conductor
US7618923B2 (en) Method for making a superconductor with improved microstructure
Xu High J c Epitaxial YBa 2 Cu 3 O 7-δ Films Through a Non-Fluorine Approach for Coated Conductor Applications
JP2011249162A (en) Method for manufacturing superconducting wire rod
WO2002093590A1 (en) Oxide supercoductor in the form of tape and method for preparation thereof
JP2000086239A (en) Oxide-based superconductive material, its production and device using that

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090707

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091006

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091023

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121030

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4398582

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121030

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121030

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131030

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees