JP2007200831A - Superconductor base material and method for fabrication thereof - Google Patents

Superconductor base material and method for fabrication thereof Download PDF

Info

Publication number
JP2007200831A
JP2007200831A JP2006099794A JP2006099794A JP2007200831A JP 2007200831 A JP2007200831 A JP 2007200831A JP 2006099794 A JP2006099794 A JP 2006099794A JP 2006099794 A JP2006099794 A JP 2006099794A JP 2007200831 A JP2007200831 A JP 2007200831A
Authority
JP
Japan
Prior art keywords
layer
base material
superconductor
core layer
alloy layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006099794A
Other languages
Japanese (ja)
Other versions
JP4716324B2 (en
Inventor
Kazutomi Miyoshi
一富 三好
Yoshinori Nagasu
義則 長洲
Masanao Mimura
正直 三村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
International Superconductivity Technology Center
Original Assignee
Furukawa Electric Co Ltd
International Superconductivity Technology Center
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd, International Superconductivity Technology Center filed Critical Furukawa Electric Co Ltd
Priority to JP2006099794A priority Critical patent/JP4716324B2/en
Publication of JP2007200831A publication Critical patent/JP2007200831A/en
Application granted granted Critical
Publication of JP4716324B2 publication Critical patent/JP4716324B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

<P>PROBLEM TO BE SOLVED: To provide a superconductor base material and a method for fabrication thereof, focusing on a ceramic superconductor like a superconducting oxide or the other superconductor requiring orientational control. <P>SOLUTION: This base material comprises a metal core layer and an alloy layer which is formed at one or both surfaces of the core layer with Ni of 90 at.% or more in a way that the plane ä1, 0, 0} of crystal grains constituting the alloy metal is parallel to the above surface, and the crystal grain axis <0, 0, 1> is oriented in a predetermined direction. In addition, a presented method for fabricating this superconductor base material comprises a rolling step for rolling the superconductor base material at a processing rate of 90% or more; and a heat treatment step for holding and treating the rolled base material for 30 minutes to 10 hours at a temperature from 900°C to 1,200°C within an ambient atmosphere of mix gas produced by mixing argon and hydrogen, in a way that the proportion of hydrogen to argon is 2 to 5 vol.%. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、超電導体用基材および該基材の製造方法に関し、特に酸化物超電導体等のセラミック超電導体、その他の配向制御が必要となる超電導体用の基材およびその製造方法に関する。   The present invention relates to a base material for a superconductor and a method for manufacturing the base material, and more particularly, to a ceramic superconductor such as an oxide superconductor, a base material for a superconductor that requires other orientation control, and a method for manufacturing the same.

従来、酸化物超電導体等のセラミック超電導体層を金属基材上に形成して超電導素材を形成する場合、可能な限り高い超電導特性を得るために、超電導体層中の結晶粒の面方位が同一方向を向いて配向するように超電導体層を形成することが行われる。また、面方位だけでなく結晶軸の方向を揃える所謂2軸配向するように超電導体層を形成することによって、超電導特性をさらに高める技術が知られている(例えば、特許文献1参照)。   Conventionally, when a superconducting material is formed by forming a ceramic superconductor layer such as an oxide superconductor on a metal substrate, in order to obtain the highest possible superconducting characteristics, the plane orientation of the crystal grains in the superconductor layer is The superconductor layer is formed so as to be oriented in the same direction. In addition, a technique is known in which superconducting properties are further improved by forming a superconductor layer so as to align not only the plane direction but also the crystal axis direction so-called biaxial orientation (see, for example, Patent Document 1).

2軸配向した超電導体層を得る場合、通常、金属基材としても2軸配向した所謂2軸配向多結晶金属基板(以下、単に2軸配向金属基板という)が用いられ、この基板上に例えばCeO、YSZ(Yttria Stabilized Zirconia)、Y等の配向が容易な酸化物を積層して中間層(以下、酸化物からなる中間層を酸化物中間層という。)を形成し、その上に所謂YBCO等の酸化物超電導体からなる層(以下、酸化物超電導体層という。)を形成して配向させるということが行われる。 When obtaining a biaxially oriented superconductor layer, a biaxially oriented so-called biaxially oriented polycrystalline metal substrate (hereinafter simply referred to as a biaxially oriented metal substrate) is usually used as the metal base material. An intermediate layer (hereinafter, an intermediate layer made of an oxide is referred to as an oxide intermediate layer) is formed by stacking easily oriented oxides such as CeO 2 , YSZ (Yttria Stabilized Zirconia), and Y 2 O 3 . A layer made of an oxide superconductor such as so-called YBCO (hereinafter referred to as an oxide superconductor layer) is formed and oriented on the top.

ここで、従来、超電導素材形成に用いられる基材としては、単一金属又は単一合金からなるものの他に、単一金属または単一合金からなるコア層の周囲に金属Ni層からなる表面の合金層を形成した、コア層と表面の合金層からなる複合金属基材等の2軸配向金属基板があった。以下、上記の金属Ni層からなる表面の合金層をNiクラッドといい、この表面の合金層を有する複合金属基材をNiクラッド基板という。Niクラッド基板等の複合金属基材上に酸化物からなる超電導体層(以下、酸化物超電導体層という。)を形成しても、十分に高い超電導特性を有する超電導素材を製造することは通常困難であり、また低コストで製造することはできなかった。   Here, as a base material conventionally used for superconducting material formation, in addition to a single metal or a single alloy, a surface of a metal Ni layer around a core layer made of a single metal or a single alloy is used. There was a biaxially oriented metal substrate such as a composite metal base material composed of a core layer and a surface alloy layer on which an alloy layer was formed. Hereinafter, the alloy layer on the surface composed of the metal Ni layer is referred to as Ni clad, and the composite metal base material having the alloy layer on the surface is referred to as Ni clad substrate. Even when a superconductor layer made of an oxide (hereinafter referred to as an oxide superconductor layer) is formed on a composite metal substrate such as a Ni clad substrate, it is usual to produce a superconducting material having sufficiently high superconducting characteristics. It was difficult and could not be produced at low cost.

Niクラッド基板上に超電導特性の高い酸化物超電導体層を形成する場合、酸化物超電導体層中の結晶粒は通常高い配向度を有することが求められるが、同様に2軸配向金属基板も金属結晶粒の2軸配向度の高いものが用いられる。そして、この2軸配向金属基板上にエピタキシャル成長される酸化物中間層も、2軸配向金属基板と同程度以上の結晶粒の配向度が要求される。ここで、上記の配向度は、所謂YBCO等のY系酸化物超電導体の場合、θ−2θ法を用いて得られるX線回折の(1,1,1)面と(2,0,0)面からの2つのピークの強度を用いて以下のように定義する。
P=P/(P+P)×100
ここで、Pは%で表される配向度であり、Pは(1,1,1)面での回折によって得られるピークの強度であり、Pは(2,0,0)面での回折によって得られるピークの強度である。配向度Pは、通常、90%以上あることが求められ、90%以上の配向度を一般に高配向度という。
When an oxide superconductor layer having high superconducting properties is formed on a Ni clad substrate, the crystal grains in the oxide superconductor layer are usually required to have a high degree of orientation. Similarly, a biaxially oriented metal substrate is also a metal. Those having a high degree of biaxial orientation of crystal grains are used. The oxide intermediate layer epitaxially grown on the biaxially oriented metal substrate is also required to have a crystal grain orientation degree equal to or higher than that of the biaxially oriented metal substrate. Here, in the case of a Y-based oxide superconductor such as so-called YBCO, the above-mentioned degree of orientation is the (1,1,1) plane of X-ray diffraction obtained by using the θ-2θ method and the (2,0,0). ) It is defined as follows using the intensity of two peaks from the surface.
P = P 2 / (P 1 + P 2 ) × 100
Here, P is the degree of orientation expressed in%, P 1 is the intensity of the peak obtained by diffraction on the (1,1,1) plane, and P 2 is on the (2,0,0) plane. It is the intensity of the peak obtained by diffraction. The degree of orientation P is usually required to be 90% or more, and the degree of orientation of 90% or more is generally referred to as a high degree of orientation.

また、上記の2軸配向金属基板は、配向性の目安としてのX線極点図におけるスポットの広がりの半値幅が8°以内のものが通常必要となる。2軸配向金属基板上に配向度Pが90%以上で2軸配向度が8°以下の中間層(合金層の上面に形成される)を形成するためには、成膜温度500〜600℃、成膜雰囲気の真空度1×10−3Pa程度、成膜速度0.3nm/s程度以下の成膜条件が必要となる。 In addition, the above-mentioned biaxially oriented metal substrate usually needs to have a half-width of spot spread within 8 ° in an X-ray pole figure as a measure of orientation. In order to form an intermediate layer (formed on the upper surface of the alloy layer) having an orientation degree P of 90% or more and a biaxial orientation degree of 8 ° or less on a biaxially oriented metal substrate, a film forming temperature of 500 to 600 ° C. In addition, film formation conditions are required such that the degree of vacuum of the film formation atmosphere is about 1 × 10 −3 Pa and the film formation rate is about 0.3 nm / s or less.

このような中間層の成膜条件では、例えば成膜速度が低い等の理由により量産ができなかった。例えば、中間層の量産を可能にするためには、真空度が5×10−2Pa程度以下、温度が500〜900℃程度の範囲内、成膜速度が1nm/s程度以上等の成膜条件が通常必要である。また、従来の制約された成膜条件下で製造された中間層の膜質は、その上に形成される酸化物超電導体層の配向度Pが十分でなく、IBAD(Ion Beam Assist Deposition)方式を用いて成膜されたものに比較して長手方向の広い範囲に亘って高い臨界電流密度を得ることができないという問題があった(例えば、非特許文献1参照。)。 Under such intermediate layer deposition conditions, mass production could not be performed, for example, because the deposition rate was low. For example, in order to enable mass production of the intermediate layer, the degree of vacuum is about 5 × 10 −2 Pa or less, the temperature is in the range of about 500 to 900 ° C., and the film formation rate is about 1 nm / s or more. Conditions are usually necessary. In addition, the film quality of the intermediate layer produced under the conventional constrained film formation conditions is that the degree of orientation P of the oxide superconductor layer formed thereon is not sufficient, and the IBAD (Ion Beam Assist Deposition) method is used. There is a problem that a high critical current density cannot be obtained over a wide range in the longitudinal direction as compared with the film formed by using the film (see, for example, Non-Patent Document 1).

ここで、膜質の優れた中間層を成膜する方法として、特殊な単一合金基板を用いる方法が知られている。これは、Ni−Wを初めとする合金を材料とし配向させた合金層を備えた基板を用いるものであり、中間層のエピタキシャル成長に優れ、酸化物超電導体層の積層においても配向度が高く、成膜条件も量産が可能な範囲内に設定することが可能である。   Here, as a method for forming an intermediate layer having excellent film quality, a method using a special single alloy substrate is known. This is a substrate provided with an alloy layer oriented with an alloy such as Ni-W as a material, excellent in epitaxial growth of the intermediate layer, and has a high degree of orientation in the stack of oxide superconductor layers, The film forming conditions can also be set within a range where mass production is possible.

特開平11−3620号公報Japanese Patent Laid-Open No. 11-3620 須藤泰範、柿本一臣ら著、「IBAD/PLD法による長尺YBCO超電導線材」、低温工学、39巻、11号、536−540頁、2004年Yasunori Sudo, Kazuomi Enomoto et al., “Long YBCO Superconducting Wire by IBAD / PLD Method”, Low Temperature Engineering, Vol. 39, No. 11, pp. 536-540, 2004

しかしながら、従来のNiクラッドまたは単一合金基板では、長尺の超電導素材を製造する際に要求される基板強度が低く、磁性による交流損失の増大という問題があった。ここで、上記の基板強度としては、通常、室温において外力が印加されたときの歪みが0.2%となる応力(以下、0.2%耐力という。)が500MPa以上のものが求められる。また基板の磁性としては、77Kの飽和磁化が0.3T以下のものが求められる。しかし。従来の単一合金基板は、0.2%耐力が200MPa程度であり、77Kの飽和磁化が0.4T程度であり、交流用の超電導素材の製造には適さなかった。   However, the conventional Ni clad or single alloy substrate has a problem that the substrate strength required when manufacturing a long superconducting material is low, and the AC loss increases due to magnetism. Here, the substrate strength is usually required to have a stress (hereinafter referred to as 0.2% proof stress) at which the strain becomes 0.2% when an external force is applied at room temperature of 500 MPa or more. Further, the magnetism of the substrate is required to have a saturation magnetization at 77K of 0.3 T or less. However. The conventional single alloy substrate has a 0.2% proof stress of about 200 MPa and a saturation magnetization of 77 K of about 0.4 T, and is not suitable for the production of a superconducting material for alternating current.

すなわち、量産の際に通常行われるリール・トゥ・リール方式で長尺の超電導素材を製造するとき、単一合金基板は引っ張りを受けながら600〜900℃程度の高温環境にさらされる。これによって、結晶成長が促進されると同時に単一合金基板が焼鈍され、基板強度が低下していた。そして、巻取りの際に生ずる歪みによって単一合金基板の配向度が低下し、単一合金基板上への酸化物中間層および酸化物超電導体層の配向度等が低下していた。また、従来の単一合金基板では、基板強度と配向度とをできるだけ高くするために、PdやPt等の元素を混ぜたり、単一合金基板を厚くしたりする等の手段がとられるため、コストを下げることができず量産には適さなかった。また飽和磁化が0.3T以下になる単一合金基板では配向性を高くすることが困難であった。   That is, when a long superconducting material is manufactured by a reel-to-reel method that is normally performed in mass production, the single alloy substrate is exposed to a high temperature environment of about 600 to 900 ° C. while being pulled. As a result, the crystal growth was promoted and at the same time the single alloy substrate was annealed, and the substrate strength was reduced. Then, the degree of orientation of the single alloy substrate is reduced by the strain generated during winding, and the degree of orientation of the oxide intermediate layer and the oxide superconductor layer on the single alloy substrate is reduced. In addition, in the conventional single alloy substrate, in order to make the substrate strength and the degree of orientation as high as possible, means such as mixing elements such as Pd and Pt, and increasing the thickness of the single alloy substrate are taken. The cost could not be lowered and it was not suitable for mass production. In addition, it is difficult to increase the orientation with a single alloy substrate having a saturation magnetization of 0.3 T or less.

本発明はこのような問題を解決するためになされたもので、製造過程における焼鈍の影響を緩和することによって基板強度を向上できると共に酸化物中間層の配向度を高く維持でき、また高い配向性を維持したまま基板全体の弱磁性化が可能となり、交流応用に適した量産可能な超電導体用基材およびその製造方法を提供することを目的とする。   The present invention has been made to solve such problems, and by reducing the influence of annealing in the manufacturing process, the substrate strength can be improved and the degree of orientation of the oxide intermediate layer can be maintained high, and high orientation can be achieved. An object of the present invention is to provide a base material for a superconductor capable of being mass-produced suitable for alternating current application and a manufacturing method thereof.

本発明に係る第1の態様は、金属からなるコア層と、前記コア層の一面または両表面に形成されNiを90at.%以上含む合金層であって、結晶粒の{1,0,0}面が表面に並行でかつ<0,0,1>軸が所定の方向を向いて配向した表面の合金層とを備えることを特徴とする超電導体用基材である。
ここで、金属とは単一金属および合金を含むものとし、以下同様とする。
According to a first aspect of the present invention, there is provided a core layer made of metal and Ni formed on one or both surfaces of the core layer at 90 at. % Of the alloy layer, wherein the {1, 0, 0} plane of the crystal grains is parallel to the surface and the <0, 0, 1> axis is oriented in a predetermined direction. This is a base material for a superconductor.
Here, the metal includes a single metal and an alloy, and so on.

本発明に係る第2の態様は、前記超電導体用基材は、テープ状の形状を有し、前記合金層は、その結晶粒の(1,0,0)面がテープ面に並行で、かつ<0,0,1>軸がテープ長手方向を向いて配向していることを特徴とする超電導体用基材である。
ここでテープ面とは、超電導体用基板の上に中間層が形成される面もしくはその反対側の面を言う。
According to a second aspect of the present invention, the superconductor substrate has a tape-like shape, and the alloy layer has a (1, 0, 0) plane of crystal grains parallel to the tape surface. The <0, 0, 1> axis is oriented in the longitudinal direction of the tape.
Here, the tape surface refers to the surface on which the intermediate layer is formed on the superconductor substrate or the opposite surface.

本発明に係る第3の態様は、前記コア層が少なくともNiを含み、かつW、Mo、Cr、V、Fe、およびCuの内のいずれか1つ以上の元素を合計で1〜80at.%含むことを特徴とする超電導体用基材である。   According to a third aspect of the present invention, the core layer contains at least Ni, and one or more elements of W, Mo, Cr, V, Fe, and Cu are added in a total amount of 1 to 80 at. % Is a base material for a superconductor.

本発明に係る第4の態様は、前記コア層が、非磁性金属材料からなることを特徴とする超電導体用基材である。   According to a fourth aspect of the present invention, there is provided a substrate for a superconductor, wherein the core layer is made of a nonmagnetic metal material.

本発明に係る第5の態様は、前記合金層が少なくともNiを含み、かつかつW、Mo、Cr、V、Fe、およびCuの内のいずれか1つ以上の元素を合計で0.5〜10at.%含むことを特徴とする超電導体用基材である。   According to a fifth aspect of the present invention, the alloy layer contains at least Ni, and any one or more of W, Mo, Cr, V, Fe, and Cu are added in a total amount of 0.5 to 10 at. . % Is a base material for a superconductor.

本発明に係る第6の態様は、前記合金層中の結晶粒の粒径が、10〜80μmの範囲内であることを特徴とする超電導体用基材である。   According to a sixth aspect of the present invention, there is provided a substrate for a superconductor, wherein the grain size of the crystal grains in the alloy layer is in the range of 10 to 80 μm.

本発明に係る第7の態様は、前記合金層の一面または両面の合計の厚さが、前記コア層の厚さ以下であることを特徴とする超電導体用基材である。   According to a seventh aspect of the present invention, there is provided the base material for a superconductor, wherein a total thickness of one surface or both surfaces of the alloy layer is equal to or less than a thickness of the core layer.

本発明に係る第8の態様は、前記合金層および前記コア層はWを含み、該合金層のW濃度は、0.5〜10at.%の範囲内であって、かつ前記コア層のW濃度よりも低いことを特徴とする超電導体用基材である。   According to an eighth aspect of the present invention, the alloy layer and the core layer contain W, and the W concentration of the alloy layer is 0.5 to 10 at. %, And lower than the W concentration of the core layer.

本発明に係る第9の態様は、前記コア層と前記合金層との間に元素の拡散を防止する拡散防止層を備えることを特徴とする超電導体用基材である。   According to a ninth aspect of the present invention, there is provided a superconductor substrate comprising a diffusion preventing layer for preventing diffusion of an element between the core layer and the alloy layer.

本発明に係る第10の態様は、金属からなるコア層と、前記コア層の1つ以上の面に形成されるNiを90at.%以上含む合金層からなる基材を、加工率90%以上の圧延を施して形成する圧延工程と、前記圧延工程で圧延した基材を、温度900〜1200℃、アルゴンと水素との混合気体であってアルゴンに占める水素の割合が2〜5 vol%の雰囲気中で30分〜10時間保持し、前記合金層の結晶粒の(1,0,0)面が圧延面に沿いかつ<0,0,1>軸が圧延方向を向くように配向させる熱処理工程とを備えることを特徴とする超電導体用基材の製造方法である。
ここで、前記コア層は、Niを含むことが好ましい。
According to a tenth aspect of the present invention, there is provided a core layer made of metal, and Ni formed on one or more surfaces of the core layer at 90 at. %, A rolling process for forming a base material made of an alloy layer containing 90% or more of the processing rate and a base material rolled in the rolling process at a temperature of 900 to 1200 ° C., a mixed gas of argon and hydrogen And maintained for 30 minutes to 10 hours in an atmosphere where the ratio of hydrogen to argon is 2 to 5 vol%, and the (1,0,0) plane of the crystal grains of the alloy layer is along the rolling plane and <0 , 0,1> a heat treatment step for orienting the axis to face the rolling direction.
Here, the core layer preferably contains Ni.

本発明に係る第11の態様は、前記圧延工程は、前記コア層となる部材を、当該部材の1つ以上の面に形成されるNiを90at.%以上含む合金層で内包させ、圧延する工程であることを特徴とする超電導体用基材の製造方法である。   According to an eleventh aspect of the present invention, in the rolling step, the member to be the core layer is made of 90 at. Ni formed on one or more surfaces of the member. It is the manufacturing method of the base material for superconductors characterized by being the process of including and rolling with the alloy layer containing% or more.

本発明に係る第12の態様は、前記圧延工程は、前記コア層となる板状の部材を表面となる前記合金層となる複数の板状の部材で挟んで圧延する工程であることを特徴とする超電導体用基材の製造方法である。   According to a twelfth aspect of the present invention, the rolling step is a step of rolling by sandwiching a plate-like member serving as the core layer between a plurality of plate-like members serving as the alloy layers. This is a method for producing a superconductor substrate.

本発明の第13の態様は、前記コア層となる板状の部材を前記表面の合金層となる複数の板状の部材で挟んで圧延する工程であることを特徴とする超電導体用基材の製造方法である。   A thirteenth aspect of the present invention is a superconductor substrate characterized by being a step of sandwiching and rolling a plate-like member serving as the core layer between a plurality of plate-like members serving as the surface alloy layers. It is a manufacturing method.

本発明の第14の態様は、金属からなるコア層と、該コア層の一表面または両表面に形成されNiを90at.%以上含む合金層からなる表面の合金層とを有する基材を、加工率90%以上の圧延をする圧延工程と、
前記圧延工程で圧延した基材を、温度900〜1200℃、アルゴンと水素との混合気体であってアルゴンに対して水素の割合が2〜5 vol%の雰囲気中で30分〜10時間保持し、熱処理工程して製造された超電導体用基材の前記合金層の表面に酸化物からなる中間層を形成し、さらにその中間層の上に酸化物超電導層を形成する超電導体の製造方法である。
According to a fourteenth aspect of the present invention, there is provided a core layer made of a metal and Ni formed on one surface or both surfaces of the core layer at 90 at. A rolling step for rolling a base material having a surface alloy layer composed of an alloy layer containing at least 90% of a processing rate of 90% or more;
The base material rolled in the rolling step is held for 30 minutes to 10 hours in an atmosphere of a mixed gas of argon and hydrogen at a temperature of 900 to 1200 ° C. and a ratio of hydrogen to argon of 2 to 5 vol %. In the method of manufacturing a superconductor, an intermediate layer made of an oxide is formed on the surface of the alloy layer of the superconductor substrate manufactured by a heat treatment step, and an oxide superconducting layer is further formed on the intermediate layer. is there.

本発明によれば、コア層を耐熱性の金属材料を用いて形成し、その表面を合金層で形成するため、製造過程における焼鈍の影響を緩和し、また基板強度を向上できると共に、当該合金層上に形成される酸化物中間層の配向度を高く維持できる、またその高い配向性も維持したまま基板全体の磁気特性を減少させることが可能となり、交流電流の応用に適した量産可能な基材および基材の製造方法を実現できる。   According to the present invention, the core layer is formed using a heat-resistant metal material, and the surface thereof is formed of an alloy layer. Therefore, the influence of annealing in the manufacturing process can be reduced, the substrate strength can be improved, and the alloy The degree of orientation of the oxide intermediate layer formed on the layer can be maintained high, and the magnetic properties of the entire substrate can be reduced while maintaining the high orientation, enabling mass production suitable for alternating current applications. The base material and the manufacturing method of the base material can be realized.

以下、本発明の実施の態様について、図面に基づいて詳細に説明する。
図1は、本発明の実施の態様に係る基材の断面構造を示す模式図である。図1において、基材1は、Niを含む耐熱合金からなるコア層10と、コア層10の表面上に形成されNiを90at.%以上含む合金層からなる表面を形成する合金層20とを備える。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a schematic view showing a cross-sectional structure of a substrate according to an embodiment of the present invention. In FIG. 1, a base material 1 includes a core layer 10 made of a heat-resistant alloy containing Ni, and Ni is formed on the surface of the core layer 10 with 90 at. And an alloy layer 20 that forms a surface made of an alloy layer containing at least%.

コア層10は、基材1の基板強度を保持するための耐熱性の強度支持基材からなり、Niに加え、W、Mo、Cr、V、Fe、およびCuの内のいずれか1つ以上の元素を合計で1〜80at.%含む材料からなる。コア層10は、例えば50μm程度以上の厚さを有する。コア層10は、主成分がNiであり、非磁性金属元素からなるため、得られる超電導素材の交流損失の低減を図ることが可能となる。また、基材の加工性に関しては、強度支持基材を、複数種類の基板強度の異なる合金層を組み合わせた構成にすることによって改善することができる。具体的には、W濃度の異なるNi-W合金を組み合わせることによって加工性を改善することもできる。   The core layer 10 is composed of a heat-resistant strength support base material for maintaining the substrate strength of the base material 1, and any one or more of W, Mo, Cr, V, Fe, and Cu in addition to Ni. 1 to 80 at. % Material. The core layer 10 has a thickness of, for example, about 50 μm or more. Since the core layer 10 is mainly composed of Ni and made of a nonmagnetic metal element, it is possible to reduce the AC loss of the obtained superconducting material. Moreover, regarding the workability of the base material, the strength supporting base material can be improved by combining a plurality of types of alloy layers having different substrate strengths. Specifically, workability can also be improved by combining Ni—W alloys having different W concentrations.

表面を形成する合金層20は、Niを90at.%以上含む材料によって構成され、Niに加え、W、Mo、Cr、V、Fe、およびCuの内のいずれか1つ以上の元素を合計で0.5〜10at.%含むのが好ましい。表面の合金層20とコア層10の両方がWを含む場合、表面の合金層20のW濃度は、コア層10のW濃度よりも低く0.5〜8at.%の範囲内になるように設定されている。すなわち、表面の合金層20中のW濃度を内部に形成されるコア層10のW濃度よりも低くすることによって、耐熱性と加工性を確保できる。   The alloy layer 20 forming the surface is made of 90 at. %, And in addition to Ni, any one or more of W, Mo, Cr, V, Fe, and Cu are added in a total amount of 0.5 to 10 at. % Is preferable. When both the surface alloy layer 20 and the core layer 10 contain W, the W concentration of the surface alloy layer 20 is lower than the W concentration of the core layer 10 by 0.5 to 8 at. It is set to be within the range of%. That is, heat resistance and workability can be ensured by making the W concentration in the surface alloy layer 20 lower than the W concentration in the core layer 10 formed inside.

また、表面の合金層20は、例えば数十〜数百μm程度の厚さを有し、コア層10の半分以下の厚さを有する。コア層10は表面の合金層20よりも強度が高いため、表面の合金層20をコア層10よりも厚くすると、圧延時に表面の合金層20がコア層よりも延伸しやすい。その結果、厚さ、硬度等の制御が不安定になる。これに対して、コア層10を表面の合金層20よりも厚くする場合、すなわち、表面の合金層20の厚さをコア層10の半分以下にする場合は、圧延時の厚さ、硬度等の制御が容易になる。表面の合金層20は、さらに、結晶粒の(1,0,0)面が後述する熱処理によって表面に並行になり、また<0,0,1>軸が所定の方向を向いて配向するように形成される。   Further, the surface alloy layer 20 has a thickness of, for example, about several tens to several hundreds of μm, and has a thickness that is half or less of the core layer 10. Since the core layer 10 has higher strength than the surface alloy layer 20, if the surface alloy layer 20 is thicker than the core layer 10, the surface alloy layer 20 is more easily stretched than the core layer during rolling. As a result, control of thickness, hardness, etc. becomes unstable. On the other hand, when the core layer 10 is thicker than the surface alloy layer 20, that is, when the thickness of the surface alloy layer 20 is less than half of the core layer 10, the thickness, hardness, etc. during rolling It becomes easy to control. Further, the (1, 0, 0) plane of the crystal grains is parallel to the surface of the alloy layer 20 by the heat treatment described later, and the <0, 0, 1> axis is oriented in a predetermined direction. Formed.

圧延して基材を製造する場合、加工硬化を除去するため熱処理するので、合金層の結晶粒の<0,0,1>軸は圧延方向に平行となる。ここで、熱処理後の結晶粒の大きさは、10〜80μmの範囲内に入るようにすることが好ましい。表面の合金層20の集合組織は、圧延時に生じた歪みが熱処理で緩和されるときの駆動力によって配向する。ここで、結晶粒の大きさが揃っていると、駆動力の下での配向度が高くなる。これに対して、粒経が不揃いであり、大傾角粒界が含まれる等の場合、結晶粒の配向方向は駆動力があっても必ずしも揃わず、配向度が低下する。   When a base material is produced by rolling, heat treatment is performed to remove work hardening, so that the <0, 0, 1> axes of the crystal grains of the alloy layer are parallel to the rolling direction. Here, the size of the crystal grains after the heat treatment is preferably in the range of 10 to 80 μm. The texture of the alloy layer 20 on the surface is oriented by a driving force when strain generated during rolling is relaxed by heat treatment. Here, when the size of the crystal grains is uniform, the degree of orientation under a driving force increases. On the other hand, when the grain diameter is uneven and a large tilt grain boundary is included, the orientation direction of the crystal grains is not necessarily uniform even if there is a driving force, and the degree of orientation decreases.

上記のように表面の合金層20を形成することによって、配向度の向上と表面粗さの低減を図ることができる。その結果、表面の合金層20上に例えばCeO、YSZ、Y等の酸化物からなる中間層を形成する場合、エピタキシャル性が優れ、高い成長速度で膜を形成することができ、またその上に形成される酸化物超電導体層もエピタキシャル性が優れ臨界電流特性が向上する。 By forming the surface alloy layer 20 as described above, it is possible to improve the degree of orientation and reduce the surface roughness. As a result, when an intermediate layer made of an oxide such as CeO 2 , YSZ, Y 2 O 3, etc. is formed on the alloy layer 20 on the surface, the epitaxial property is excellent, and a film can be formed at a high growth rate. In addition, the oxide superconductor layer formed thereon has excellent epitaxial properties and improved critical current characteristics.

以下、本発明の実施の態様に係る基材の製造方法について、図面を用いて説明する。図2は、本発明の実施の態様に係る基材の製造方法について説明する図である。図2において、基材の製造方法は、上記のコア層10と表面の合金層20とを備える基材を圧延によって形成する圧延工程S1と、圧延工程S1で得られた基材に熱処理を施し、表面の合金層20中の結晶粒を配向させる熱処理工程S2とから構成される。   Hereinafter, the manufacturing method of the base material which concerns on the embodiment of this invention is demonstrated using drawing. FIG. 2 is a diagram for explaining a method for producing a substrate according to an embodiment of the present invention. In FIG. 2, the manufacturing method of the base material includes a rolling step S1 for forming a base material including the core layer 10 and the surface alloy layer 20 by rolling, and a heat treatment is performed on the base material obtained in the rolling step S1. And a heat treatment step S2 for orienting crystal grains in the alloy layer 20 on the surface.

圧延工程S1は、例えば、ビレット押し出し法を用いてコア層10となる部材を表面の合金層20となる部材内に内包させて得られるビレット等の部材を圧延する工程でも、コア層となる板状の部材を表面の合金層となる複数の板状の部材で挟んだものを直接圧延する工程でも、上記の圧延工程を実現できるその他の工程であってもよい。   The rolling step S1 is a plate that becomes a core layer even in a step of rolling a member such as a billet obtained by enclosing a member that becomes a core layer 10 in a member that becomes an alloy layer 20 on the surface by using a billet extrusion method, for example. It may be a step of directly rolling a sheet member sandwiched between a plurality of plate-like members serving as alloy layers on the surface, or may be another step capable of realizing the above rolling step.

以下、上記のビレットを形成する工程、板状の部材を重ねる工程、その他の圧延処理の前に行われる工程を素材形成工程といい、圧延工程に含まれるものとする。圧延工程S1では、圧延工程で得られた部材を加工率90%以上に圧延する工程が施される。圧延の方法は、例えば、ロール圧延法を用いるのでもよい。   Hereinafter, the step of forming the billet, the step of stacking plate-like members, and other steps performed before the rolling process are referred to as a material forming step, and are included in the rolling step. In the rolling step S1, a step of rolling the member obtained in the rolling step to a processing rate of 90% or more is performed. As a rolling method, for example, a roll rolling method may be used.

熱処理工程S2で行われる熱処理は、例えば、温度900〜1200℃、アルゴンと水素との混合気体であってアルゴンに占める水素の割合が2〜5 vol%の雰囲気中、30分〜10時間保持するという条件で行われる。この熱処理によって、表面の合金層20の結晶粒の(1,0,0)面が圧延面に平行で、かつ<0,0,1>軸が圧延方向を向くように配向する。   The heat treatment performed in the heat treatment step S2 is, for example, maintained at a temperature of 900 to 1200 ° C. for 30 minutes to 10 hours in an atmosphere of a mixed gas of argon and hydrogen in which the proportion of hydrogen in the argon is 2 to 5 vol%. It is performed on the condition that. By this heat treatment, the crystal grains of the surface alloy layer 20 are oriented so that the (1,0,0) plane is parallel to the rolling surface and the <0,0,1> axis faces the rolling direction.

また、この熱処理によって、表面の合金層20中の結晶粒の大きさを制御することができ、この結晶粒の大きさとしては、配向性の観点から例えば、10〜80μmの範囲内にすることが好ましい。表面の合金層20中の結晶粒の大きさは、熱処理の温度、時間等を調整して制御することができる。また、熱処理以外にも、圧延の際の加工度、Niの組成、その他の添加物の種類及び組成等を調節することによっても調整することができる。このように結晶粒の大きさを制御することによっても量産性の確保に寄与することができる。   Moreover, the size of the crystal grains in the surface alloy layer 20 can be controlled by this heat treatment, and the size of the crystal grains is, for example, in the range of 10 to 80 μm from the viewpoint of orientation. Is preferred. The size of the crystal grains in the surface alloy layer 20 can be controlled by adjusting the temperature and time of the heat treatment. In addition to heat treatment, the degree of workability during rolling, the composition of Ni, the type and composition of other additives, and the like can also be adjusted. Controlling the crystal grain size in this way can also contribute to securing mass productivity.

以上説明した工程で基材を形成することによって、室温での0.2%伸びの強度を500MPa以上とすることができると共に、また飽和磁化を0.3T以下にすることができるため、交流電流に応用でき、量産に適した加工性、コストの低減等を図ることができる。   By forming the base material in the steps described above, the strength of 0.2% elongation at room temperature can be made 500 MPa or more, and the saturation magnetization can be made 0.3 T or less. Therefore, it is possible to achieve processability suitable for mass production, cost reduction, and the like.

なお、上記では基材1がコア層10上に表面の合金層20を有する構成について説明したが、図2に示すように、基材2がコア層10と表面の合金層20の界面の中間に拡散防止層30を設けると、熱処理工程S2における温度900〜1200℃での熱処理によってコア層10から表面の合金層20への元素、たとえばWの拡散を防止することが出来る。拡散防止層30を設けることによって、基材から表面の合金層20への意図しない元素の拡散を防止することができ、表面の合金層20における配向度を高くすることができる。ここで、拡散防止層30は、例えばTa、Nb等の耐熱性の金属材料を用いて形成することができる。   In addition, although the base material 1 demonstrated the structure which has the surface alloy layer 20 on the core layer 10 above, as shown in FIG. 2, the base material 2 is the middle of the interface of the core layer 10 and the surface alloy layer 20. If the diffusion prevention layer 30 is provided on the surface, diffusion of an element, for example, W, from the core layer 10 to the surface alloy layer 20 can be prevented by the heat treatment at a temperature of 900 to 1200 ° C. in the heat treatment step S2. By providing the diffusion preventing layer 30, unintended diffusion of elements from the base material to the surface alloy layer 20 can be prevented, and the degree of orientation in the surface alloy layer 20 can be increased. Here, the diffusion preventing layer 30 can be formed using a heat-resistant metal material such as Ta or Nb.

(実施例)
以下、本発明の基材を、実施例をあげてさらに具体的に説明する。ただし、本発明の適用は、以下に示す実施例に限定されるものではない。
「例1」
実施例の例1では、ビレット押し出し法を用いて基材を製造する方法について説明する。まず、組成がNi−W3at.%、外径がφ40mm、内径がφ25mm、そして長さが50mmの管(以下、外管という。)に、組成がNi-W7at.%、外径がφ24.8mm、長さが40mmの丸棒を挿入して蓋をし、溶接してビレットを形成する。ここで、上記の蓋として、組成がNi−W3at.%、外径がφ40mmの円盤上の部材を用い、上記の密閉を電子ビーム溶接で行う。
(Example)
Hereinafter, the substrate of the present invention will be described more specifically with reference to examples. However, application of this invention is not limited to the Example shown below.
"Example 1"
In Example 1 of an example, a method of manufacturing a substrate using a billet extrusion method will be described. First, the composition is Ni-W3at. %, An outer diameter of 40 mm, an inner diameter of 25 mm, and a length of 50 mm (hereinafter referred to as an outer tube), the composition of which is Ni-W7 at. %, An outer diameter of φ24.8 mm and a length of 40 mm, a round bar is inserted, covered, and welded to form a billet. Here, as the lid, the composition is Ni-W3at. %, Using a member on a disk having an outer diameter of φ40 mm, the above-mentioned sealing is performed by electron beam welding.

ここで、上記の外管は、表面の合金層20を形成することになる部材であり、組成がNi-W0.5at.%からNi−W3at.%範囲であるものが好ましい。なお、W以外にV、Mo、Cr、Fe、Cu等の元素がNiに添加されるのでもよい。同様に、上記の丸棒は、コア層10を形成することになる部材であり、組成がNi-W3at.%からNi−W7at.%範囲であるものが好ましい。なお、W以外にV、Mo、Cr、Fe、Cu等の元素がNiに添加されるのでもよい。具体的には、丸棒は、Ni-W5%、Ni-Cr、Ni-V等の他の合金を用いて形成されるのでもよい。この工程は、上記の圧延工程に対応するものである。   Here, the outer tube is a member that forms the surface alloy layer 20 and has a composition of Ni—W 0.5 at. % To Ni-W3at. % Range is preferred. In addition to W, elements such as V, Mo, Cr, Fe, and Cu may be added to Ni. Similarly, the above round bar is a member that will form the core layer 10 and has a composition of Ni—W3at. % To Ni-W7at. % Range is preferred. In addition to W, elements such as V, Mo, Cr, Fe, and Cu may be added to Ni. Specifically, the round bar may be formed using other alloys such as Ni-W 5%, Ni-Cr, Ni-V. This step corresponds to the rolling step described above.

次に、上記で形成されたビレットを押し出し機で押し出し加工し、押し出し機から押し出されたものをロール圧延し、例えば、厚さ100μm、幅10mmのテープ状の基材を形成する。ここで、表面の合金層20の厚さを例えば10μmとする。これによって、加工率は90%以上となる。上記の工程は、圧延工程に対応するものである。   Next, the billet formed above is extruded with an extruder, and the one extruded from the extruder is roll-rolled to form, for example, a tape-like substrate having a thickness of 100 μm and a width of 10 mm. Here, the thickness of the surface alloy layer 20 is, for example, 10 μm. As a result, the processing rate becomes 90% or more. The above process corresponds to the rolling process.

次に、圧延工程で得られた基材を温度1100℃、アルゴンと水素との混合気体であってアルゴンに占める水素の割合が2〜5% volの雰囲気中で3時間保持する。この熱処理によって、多層基材の表面の合金層20、すなわち、Ni−W3at.%層は、2軸配向する。この工程は熱処理工程に対応する。   Next, the base material obtained in the rolling step is held for 3 hours in an atmosphere of a temperature of 1100 ° C., a mixed gas of argon and hydrogen, and the proportion of hydrogen in argon is 2 to 5% vol. By this heat treatment, the alloy layer 20 on the surface of the multilayer substrate, that is, Ni-W3at. The% layer is biaxially oriented. This process corresponds to a heat treatment process.

図3(a)は、上記で得られた基材の表面の合金層20に対して得られたX線極点図である。図3(a)に示すX線極点図に示す通り、基材の表面の合金層20を形成する結晶粒の(1,0,0)面の配向度Pが99%程度である。結晶の2軸配向の鋭さを示すφスキャンピーク(α=34°)の半値幅、すなわちΔφは6.2°であることが示された。また、原子間力顕微鏡(Atomic Force Microscope、以下、AFMという。)を用いて表面粗さRaを評価したところ、10μm角の領域における表面粗さRaは4.8nmあった。また77Kでの飽和磁化は0.22Tであった。   FIG. 3A is an X-ray pole figure obtained for the alloy layer 20 on the surface of the base material obtained above. As shown in the X-ray pole figure shown in FIG. 3A, the degree of orientation P of the (1,0,0) plane of the crystal grains forming the alloy layer 20 on the surface of the substrate is about 99%. It was shown that the half width of φ scan peak (α = 34 °) indicating the sharpness of the biaxial orientation of the crystal, that is, Δφ was 6.2 °. Moreover, when the surface roughness Ra was evaluated using an atomic force microscope (hereinafter referred to as AFM), the surface roughness Ra in a 10 μm square region was 4.8 nm. The saturation magnetization at 77K was 0.22T.

図3(b)は、従来の2軸配向金属基板に対して得られたX線極点図である。図3(b)に示すX線極点図から、従来の製造方法で得られた2軸配向金属基板は、表面の合金層を形成する結晶粒の(1,0,0)面の2軸配向度が9.5°であることが示され、本発明によって2軸配向度を向上することができた。また、従来の製造方法で得られた2軸配向金属基板の表面粗さRaは、4.5nmであり、本実施例の例1に示すものと同程度であった。   FIG. 3B is an X-ray pole figure obtained for a conventional biaxially oriented metal substrate. From the X-ray pole figure shown in FIG. 3B, the biaxially oriented metal substrate obtained by the conventional manufacturing method is biaxially oriented on the (1,0,0) plane of the crystal grains forming the surface alloy layer. The degree was 9.5 °, and the biaxial orientation degree could be improved by the present invention. Further, the surface roughness Ra of the biaxially oriented metal substrate obtained by the conventional manufacturing method was 4.5 nm, which was similar to that shown in Example 1 of this example.

また、室温で引っ張り試験を行ったところ、歪みが0.2%になるときの応力である0.2%耐力は700MPaであった。これによって、90%以上の高配向度と、900MPaで0.2%耐力を有する高い基板強度とを有する基材が得られた。なお、このときの結晶粒の大きさは平均25μmであり、20〜80μmの範囲内にあった。   Moreover, when the tension test was done at room temperature, the 0.2% yield strength which is a stress when distortion becomes 0.2% was 700 MPa. Thereby, a base material having a high degree of orientation of 90% or more and a high substrate strength having a 0.2% proof stress at 900 MPa was obtained. In addition, the size of the crystal grain at this time was an average of 25 micrometers, and was in the range of 20-80 micrometers.

次に、本発明の実施例1の製造方法を用いて得られたテープ状の基材を用いて超電導線材を以下のように作成した。まず、テープ状の基材における長手方向の50mmの領域にわたって、電子ビーム蒸着法を用いて、成膜温度800℃、真空度約1×10−2Pa、成膜速度1nm/sの成膜条件で、厚さ約300nmのCeOからなる中間層(以下、Ce酸化物中間層という。)を形成した。 Next, a superconducting wire was prepared as follows using the tape-shaped substrate obtained by using the manufacturing method of Example 1 of the present invention. First, a film forming condition of a film forming temperature of 800 ° C., a vacuum degree of about 1 × 10 −2 Pa, and a film forming speed of 1 nm / s using an electron beam evaporation method over a 50 mm long region in a tape-like substrate. Thus, an intermediate layer made of CeO 2 having a thickness of about 300 nm (hereinafter referred to as Ce oxide intermediate layer) was formed.

上記で得られたCe酸化物中間層に対して、θ−2θ法を用いてX線回折測定を行った。その結果、CeOの(2,0,0)面と(1,1,1)面からの2つのピークの強度から、配向度Pは97%であることが示された。また、Ce酸化物中間層に対してのX線極点図は、図4に示すものとなり、このX線極点図から2軸配向度の半値幅Δφが5.2°であることが示された。また、AFMを用いて表面粗さRaを評価したところ、10μm角の領域における表面粗さRaは8.5nmあった。 X-ray diffraction measurement was performed on the Ce oxide intermediate layer obtained above using the θ-2θ method. As a result, it was shown that the degree of orientation P was 97% from the intensity of two peaks from the ( 2, 0 , 0) plane and the (1, 1, 1) plane of CeO2. In addition, the X-ray pole figure for the Ce oxide intermediate layer is as shown in FIG. 4, and this X-ray pole figure shows that the half-value width Δφ of the biaxial orientation degree is 5.2 °. . Further, when the surface roughness Ra was evaluated using AFM, the surface roughness Ra in a 10 μm square region was 8.5 nm.

次に、成膜条件として成膜温度を500〜900℃の範囲で変更して同様の成膜と評価を行った結果、高い2軸配向度を得ることができた。真空度を5×10−4〜5×10−2Paの範囲で変更した場合も同様であった。さらに、成膜速度を0.3〜30nm/sの範囲で変更した場合も同様であった。 Next, as a film formation condition, the film formation temperature was changed in the range of 500 to 900 ° C., and the same film formation and evaluation were performed. As a result, a high degree of biaxial orientation could be obtained. The same was true when the degree of vacuum was changed within the range of 5 × 10 −4 to 5 × 10 −2 Pa. Furthermore, the same was true when the deposition rate was changed in the range of 0.3 to 30 nm / s.

次に、上記で形成したCe酸化物中間層上にパルスレーザ成膜法を用いて、成膜温度500℃、真空度約5×10−3Paの成膜条件で厚さ500nmのYSZ膜を形成した。さらに、このYSZ膜上に、電子ビーム蒸着法を用い、上記と同様に厚さ約300nmのCeO層を形成した。次に、パルスレーザ成膜法を用いて、所謂YBCOを成膜温度700℃の条件で厚さ500nm堆積して超電導体層を形成し、超電導素材を得た。 Next, a YSZ film having a thickness of 500 nm is formed on the Ce oxide intermediate layer formed above by using a pulse laser film forming method under a film forming temperature of 500 ° C. and a film forming condition of a vacuum degree of about 5 × 10 −3 Pa. Formed. Further, a CeO 2 layer having a thickness of about 300 nm was formed on the YSZ film in the same manner as described above by using an electron beam evaporation method. Next, using a pulse laser film forming method, so-called YBCO was deposited to a thickness of 500 nm under conditions of a film forming temperature of 700 ° C. to form a superconductor layer to obtain a superconducting material.

次に、超電導特性を評価するために、高周波スパッタ法を用いて、上記で形成したYBCO膜上に厚さ約1μmの銀安定化層を形成した。ここで、4端子法による超電導特性の測定を行うため、上記の銀安定化層の上に4つ電極を長手方向に沿って形成した。次に、上記の4つの電極にリード線をハンダ付けし、長手方向外側の2つの電極を電流端子とし、長手方向内側の2つの電極を電圧端子とした。上記のように電極付けされた超電導素材を液体窒素に浸漬して、臨界電流を測定した。臨界電流は、電圧端子間の電界強度が1μV/cmになる電流値をもって定義した。その結果、磁場のない場合で200Aの臨界電流となった。   Next, in order to evaluate the superconducting characteristics, a silver stabilizing layer having a thickness of about 1 μm was formed on the YBCO film formed as described above by using a high frequency sputtering method. Here, in order to measure the superconducting characteristics by the four-terminal method, four electrodes were formed along the longitudinal direction on the silver stabilizing layer. Next, lead wires were soldered to the above four electrodes, the two electrodes on the outer side in the longitudinal direction were used as current terminals, and the two electrodes on the inner side in the longitudinal direction were used as voltage terminals. The superconducting material electroded as described above was immersed in liquid nitrogen and the critical current was measured. The critical current was defined as a current value at which the electric field strength between the voltage terminals was 1 μV / cm. As a result, a critical current of 200 A was obtained in the absence of a magnetic field.

「例2」
以下、実施例の例2では、直接圧延法を用いて基材を製造する方法について説明する。まず、コア層を形成する母材としての、組成Ni−7at.W%、厚さ20mm、幅100mm、長さ1000mmの板材を、これと同一の寸法で組成がNi−3at.%Wの表面の合金層を形成する板材2枚で挟み込み、圧延して各板材を圧接させる。圧接は圧延機を用いて行い、厚さが75μmになるまで圧接を繰り返す。ここで、表面の合金層の厚さは、例えば15μmである。
"Example 2"
Hereinafter, in Example 2 of an Example, the method to manufacture a base material using a direct rolling method is demonstrated. First, composition Ni-7 at. A plate material of W%, thickness 20 mm, width 100 mm, and length 1000 mm is made of Ni-3at. The sheet material is sandwiched between two sheet materials forming an alloy layer on the surface of% W, and each sheet material is pressed and pressed. The pressure welding is performed using a rolling mill, and the pressure welding is repeated until the thickness becomes 75 μm. Here, the thickness of the surface alloy layer is, for example, 15 μm.

ここで、上記の表面の合金層は、組成がNi-0.5at.W%からNi−3at.W%範囲であるものが好ましい。なお、W以外にV、Mo、Cr、Fe、Cu等の元素がNiに添加されるのでもよい。同様に、上記のコア層は、組成がNi-3at.W%からNi−7at.W%範囲であるものが好ましく、W以外にV、Mo、Cr、Fe、Cu等の元素がNiに添加されるのでもよい。この工程は、圧延素材形成工程に対応する。   Here, the alloy layer on the surface has a composition of Ni-0.5 at. W% to Ni-3at. Those in the W% range are preferred. In addition to W, elements such as V, Mo, Cr, Fe, and Cu may be added to Ni. Similarly, the core layer has a composition of Ni-3 at. From W% to Ni-7 at. Those in the W% range are preferable, and elements such as V, Mo, Cr, Fe, and Cu other than W may be added to Ni. This process corresponds to a rolled material forming process.

次に、熱処理工程では、圧延素材形成工程で得られた基材を、温度1100℃、アルゴンと水素との混合気体であってアルゴンに占める水素の割合が3 vol%の雰囲気中で3時間保持する。この熱処理によって、属多層基材の表面の合金層20、すなわち、Ni−W3at.%層は、2軸配向する。この工程は熱処理工程に対応する。   Next, in the heat treatment step, the base material obtained in the rolling material forming step is held for 3 hours in an atmosphere where the temperature is 1100 ° C., a mixed gas of argon and hydrogen, and the proportion of hydrogen in argon is 3 vol%. To do. By this heat treatment, the alloy layer 20 on the surface of the genus multilayer substrate, that is, Ni-W3at. The% layer is biaxially oriented. This process corresponds to a heat treatment process.

本発明の実施例の例1と同様に表面の合金層をなすNi−W3at.%層の配向度P、2軸配向度等を評価した。その結果、(1,0,0)面の配向度Pは99%であり、2軸配向度の半値幅Δφは6.2°であり、AFMによる10μm角の表面粗さRaは4.8nmあった。これは、図3(b)に基づいて従来の2軸配向金属基板の表面の合金層について得られる2軸配向度の半値幅Δφ(9.5°)よりも著しく向上し、表面粗さは従来のもの(4.5nm)と同程度である。このことは、表面粗さを略維持したまま、結晶配向度が著しく向上したことを示す。また77Kでの飽和磁化は0.27Tであった。   Similar to Example 1 of the embodiment of the present invention, Ni—W3at. % Layer orientation degree P, biaxial orientation degree, etc. were evaluated. As a result, the orientation degree P of the (1, 0, 0) plane is 99%, the half width Δφ of the biaxial orientation degree is 6.2 °, and the surface roughness Ra of 10 μm square by AFM is 4.8 nm. there were. This is remarkably improved from the half-value width Δφ (9.5 °) of the biaxial orientation degree obtained for the alloy layer on the surface of the conventional biaxially oriented metal substrate based on FIG. 3B, and the surface roughness is It is about the same as the conventional one (4.5 nm). This indicates that the degree of crystal orientation is remarkably improved while maintaining the surface roughness substantially. The saturation magnetization at 77K was 0.27T.

本発明の実施例の例1と同様に、室温で引っ張り試験を行ったところ、0.2%耐力は900MPaであった。これによって、90%以上の高配向度と、600MPaの0.2%耐力の高い基板強度とを有する基材が得られた。なお、このときの結晶粒の大きさは平均25μmであり、20-80μm範囲内にあった。   When a tensile test was performed at room temperature in the same manner as in Example 1 of the embodiment of the present invention, the 0.2% proof stress was 900 MPa. As a result, a base material having a high orientation degree of 90% or more and a substrate strength of 600 MPa with a high 0.2% proof stress was obtained. At this time, the average size of the crystal grains was 25 μm, and was in the range of 20-80 μm.

次に、本発明の実施例2の製造方法を用いて得られたテープ状の基材を用いて超電導線材を以下のように作成した。まず、テープ状の基材における長手方向の50mmの領域にわたって、電子ビーム蒸着法を用い、成膜温度800℃、真空度約1×10−2Pa、成膜速度1nm/sの成膜条件で、厚さ約300nmのCe酸化物中間層を形成した。
上記で得られたCe酸化物中間層に対して、θ−2θ法を用いてX線回折測定を行った。その結果、CeOの(2,0,0)面と(1,1,1)面からの2つのピークの強度に基づいて、配向度Pは97%であることが示された。また、Ce酸化物中間層に対してのX線極点図は、図4に示すものとなり、このX線極点図から2軸配向度の半値幅Δφが5.2°であることが示された。また、AFMを用いて表面粗さRaを評価したところ、10μm角の領域における表面粗さRaは8.5nmあった。
Next, a superconducting wire was prepared as follows using the tape-shaped substrate obtained by using the manufacturing method of Example 2 of the present invention. First, an electron beam evaporation method is used over a 50 mm longitudinal region of a tape-shaped substrate, under a film forming temperature of 800 ° C., a vacuum degree of about 1 × 10 −2 Pa, and a film forming speed of 1 nm / s. A Ce oxide intermediate layer having a thickness of about 300 nm was formed.
X-ray diffraction measurement was performed on the Ce oxide intermediate layer obtained above using the θ-2θ method. As a result, it was shown that the degree of orientation P was 97% based on the intensity of two peaks from the ( 2, 0 , 0) plane and the (1, 1, 1) plane of CeO2. In addition, the X-ray pole figure for the Ce oxide intermediate layer is as shown in FIG. 4, and this X-ray pole figure shows that the half-value width Δφ of the biaxial orientation degree is 5.2 °. . Further, when the surface roughness Ra was evaluated using AFM, the surface roughness Ra in a 10 μm square region was 8.5 nm.

次に、成膜条件として成膜温度を500〜900℃の範囲で変更して同様の成膜と評価を行った結果、高い2軸配向度を得ることができた。真空度を5×10−4〜5×10−2Paの範囲で変更した場合も同様であった。さらに、成膜速度を0.3〜30nm/sの範囲で変更した場合も同様であった。 Next, as a film formation condition, the film formation temperature was changed in the range of 500 to 900 ° C., and the same film formation and evaluation were performed. As a result, a high degree of biaxial orientation could be obtained. The same was true when the degree of vacuum was changed within the range of 5 × 10 −4 to 5 × 10 −2 Pa. Furthermore, the same was true when the deposition rate was changed in the range of 0.3 to 30 nm / s.

次に、上記で形成したCe酸化物中間層上にパルスレーザ成膜法を用いて、成膜温度500℃、真空度約5×10−3Paの成膜条件で厚さ500nmのYSZ膜を形成した。さらに、このYSZ膜上に、電子ビーム蒸着法を用い、上記と同様に厚さ約300nmのCeO層を形成した。次に、パルスレーザ成膜法を用いて、所謂YBCOを成膜温度700℃の条件で厚さ500nm堆積して超電導体層を形成し、超電導素材を得た。 Next, a YSZ film having a thickness of 500 nm is formed on the Ce oxide intermediate layer formed above by using a pulse laser film forming method under a film forming temperature of 500 ° C. and a film forming condition of a vacuum degree of about 5 × 10 −3 Pa. Formed. Further, a CeO 2 layer having a thickness of about 300 nm was formed on the YSZ film in the same manner as described above by using an electron beam evaporation method. Next, using a pulse laser film forming method, so-called YBCO was deposited to a thickness of 500 nm under conditions of a film forming temperature of 700 ° C. to form a superconductor layer to obtain a superconducting material.

次に、超電導特性を評価するために、高周波スパッタ法を用いて、上記で形成したYBCO膜上に厚さ約1μmの銀電極を形成した。銀電極の形成および銀電極へのリード線の接続は、本発明の実施例の例1で説明したものと同様に行った。上記のように電極付けされた超電導素材を液体窒素に浸漬して、臨界電流を測定した。臨界電流は、本発明の実施例の例1で説明したものと同様に、電圧端子間の電界強度が1μV/cmになる電流値をもって定義した。その結果、磁場のない場合で200Aの臨界電流となった。   Next, in order to evaluate the superconducting characteristics, a silver electrode having a thickness of about 1 μm was formed on the YBCO film formed as described above by using a high frequency sputtering method. Formation of the silver electrode and connection of the lead wire to the silver electrode were performed in the same manner as described in Example 1 of the example of the present invention. The superconducting material electroded as described above was immersed in liquid nitrogen and the critical current was measured. The critical current is defined as a current value at which the electric field strength between the voltage terminals is 1 μV / cm, as described in Example 1 of the embodiment of the present invention. As a result, a critical current of 200 A was obtained in the absence of a magnetic field.

「例3」
本発明の実施例1と同様にビレット押し出し法を用いて基材を製造する方法において、組成がNi−5at.%W、外径がφ40mm、内径がφ25mm、そして長さが50mmの管(以下、外管という。)に、組成がNi-9at.%W、外径がφ24.8mm、長さが40mmの丸棒を挿入して蓋をし、溶接してビレットを形成する。後の工程も例1と同様として、例えば、厚さ100μm、幅10mmのテープ状の基材を形成する。次の熱処理工程も例と同様として2軸配向した金属多層基板を作製する。
"Example 3"
In the method for producing a substrate using the billet extrusion method as in Example 1 of the present invention, the composition is Ni-5 at. % W, an outer diameter of φ40 mm, an inner diameter of φ25 mm, and a length of 50 mm (hereinafter referred to as an outer tube) having a composition of Ni-9 at. Insert a round bar with% W, outer diameter φ24.8 mm, length 40 mm, cover, and weld to form a billet. The subsequent steps are the same as in Example 1, and for example, a tape-shaped substrate having a thickness of 100 μm and a width of 10 mm is formed. The next heat treatment process is similar to the example, and a biaxially oriented metal multilayer substrate is produced.

基材の表面の合金層20を形成する結晶粒の(1,0,0)面の配向度Pが99%程度であり、2軸配向度の半値幅Δφは6.5°、AFMによる表面粗さRaは4.9nmであった。また77Kでの飽和磁化は0.09Tであった。     The degree of orientation P of the (1,0,0) plane of the crystal grains forming the alloy layer 20 on the surface of the base material is about 99%, the half-value width Δφ of the degree of biaxial orientation is 6.5 °, and the surface by AFM The roughness Ra was 4.9 nm. The saturation magnetization at 77K was 0.09T.

また、室温で引っ張り試験を行ったところ、歪みが0.2%になるときの応力である0.2%耐力は900MPaであった。これによって、90%以上の高配向度と、900MPaの0.2%耐力を有する高い基板強度とを有する基材が得られた。
表1に例1、例2、例3による金属多層基板の特性をまとめて示す。
Moreover, when the tension test was done at room temperature, the 0.2% yield strength which is a stress when distortion becomes 0.2% was 900 MPa. Thereby, a base material having a high degree of orientation of 90% or more and a high substrate strength having a 0.2% proof stress of 900 MPa was obtained.
Table 1 summarizes the characteristics of the metal multilayer substrates according to Examples 1, 2, and 3.

本発明に係る基材および基材の製造方法は、基板の高強度化と弱磁性化を両立し、基材表面に形成する酸化物中間層の配向度を高く維持でき、かつ、コストの低減が可能であるという効果を有し、もって高い量産性を確保できるという効果を有する。そこで、酸化物超電導体等のセラミック超電導体、その他の配向制御が必要となる超電導体用の基材および基材の製造方法等として有用である。本発明にかかる基材を利用した超伝導体を製造できる。   The base material and the base material manufacturing method according to the present invention can achieve both high strength and weak magnetism of the substrate, maintain a high degree of orientation of the oxide intermediate layer formed on the base material surface, and reduce costs. Has the effect of being capable of ensuring high mass productivity. Therefore, it is useful as a ceramic superconductor such as an oxide superconductor, a base material for a superconductor that requires other orientation control, a method for manufacturing the base material, and the like. A superconductor using the substrate according to the present invention can be manufactured.

図1は、本発明の実施の態様に係る基材の断面構造を示す模式図である。FIG. 1 is a schematic view showing a cross-sectional structure of a substrate according to an embodiment of the present invention. 図2は、本発明の実施の態様に係る基材の製造方法について説明する図である。FIG. 2 is a diagram for explaining a method for producing a substrate according to an embodiment of the present invention. 図3(a)、(b)は、それぞれ、本発明の基材の表面の合金層、従来の2軸配向金属基板に対して得られたX線極点図である。3 (a) and 3 (b) are X-ray pole figures obtained for the alloy layer on the surface of the base material of the present invention and a conventional biaxially oriented metal substrate, respectively. 図4は、実施例に示すCe酸化物中間層に対して得られたX線極点図である。FIG. 4 is an X-ray pole figure obtained for the Ce oxide interlayer shown in the examples.

符号の説明Explanation of symbols

1、2 基材
10 コア層
20 表面の合金層
30 拡散防止層
1, 2 Base material 10 Core layer 20 Surface alloy layer 30 Diffusion prevention layer

Claims (14)

金属からなるコア層と、
前記コア層の一面または両表面に形成されたNiを90at.%以上含む合金層であって、
該合金層を形成する結晶粒の{1,0,0}面が前記表面に平行で、かつ該結晶粒の<0,0,1>軸が所定の方向を向いて配向した合金層と、
を備えることを特徴とする超電導体用基材。
A core layer made of metal;
Ni formed on one or both surfaces of the core layer is 90 at. % Alloy layer containing at least
An alloy layer in which the {1, 0, 0} plane of crystal grains forming the alloy layer is parallel to the surface and the <0, 0, 1> axis of the crystal grains is oriented in a predetermined direction;
A base material for a superconductor, comprising:
前記超電導体用基材はテープ状の形状を有し、前記合金層は、その結晶粒の{1,0,0}面がテープ面と並行で、かつ<0,0,1>軸がテープ長手方向を向いて配向していることを特徴とする請求項1に記載の超電導体用基材。   The superconductor substrate has a tape shape, and the alloy layer has a {1,0,0} plane of crystal grains parallel to the tape plane and a <0,0,1> axis as a tape. The base material for a superconductor according to claim 1, wherein the base material is oriented in a longitudinal direction. 前記コア層が少なくともNiを含み、かつW、Mo、Cr、V、Fe、およびCuの内のいずれか1つ以上の元素を合計で1〜80at.%含むことを特徴とする請求項1に記載の超電導体用基材。   The core layer contains at least Ni, and one or more elements of W, Mo, Cr, V, Fe, and Cu are added in a total amount of 1 to 80 at. The substrate for superconductors according to claim 1, comprising: 前記コア層が、非磁性金属材料からなることを特徴とする請求項1に記載の超電導体用基材。   The base material for a superconductor according to claim 1, wherein the core layer is made of a nonmagnetic metal material. 前記合金層が少なくともNiを含み、かつW、Mo、Cr、V、Fe、およびCuの内のいずれか1つ以上の元素を合計で0.5〜10at.%含むことを特徴とする請求項1に記載の超電導体用基材。   The alloy layer contains at least Ni, and any one or more elements of W, Mo, Cr, V, Fe, and Cu are added in a total amount of 0.5 to 10 at. The substrate for superconductors according to claim 1, comprising: 前記合金層中の結晶粒の粒径が、10〜80μmの範囲内であることを特徴とする請求項1に記載の超電導体用基材。   The base material for a superconductor according to claim 1, wherein the grain size of the crystal grains in the alloy layer is in a range of 10 to 80 µm. 前記コアー層の一面または両面の合金層の合計の厚さが、前記コア層の厚さ以下であることを特徴とする請求項1に記載の超電導体用基材。   The base material for a superconductor according to claim 1, wherein a total thickness of one or both of the alloy layers of the core layer is equal to or less than a thickness of the core layer. 前記合金層および前記コア層は、共にWを含み、該合金層のW濃度は、0.5〜10at.%の範囲内であって、かつ前記コア層のW濃度よりも低いことを特徴とする請求項1に記載の超電導体用基材。   The alloy layer and the core layer both contain W, and the W concentration of the alloy layer is 0.5 to 10 at. The base material for a superconductor according to claim 1, which is in a range of% and lower than the W concentration of the core layer. 前記コア層と前記表面の合金層との間に両者間における元素の拡散を防止する拡散防止層を備えることを特徴とする請求項1に記載の超電導体用基材。   The base material for a superconductor according to claim 1, further comprising a diffusion preventing layer for preventing element diffusion between the core layer and the alloy layer on the surface. 前記金属からなるコア層と、
前記コア層の一面または両表面に形成されたNiを90at.%以上含む合金層であって、該合金層を形成する結晶粒の{1,0,0}面が前記表面に平行で、かつ該結晶粒の<0,0,1>軸が所定の方向を向いて配向した合金層と、
を備える超電導体用基材の一面または両面に形成された酸化物からなる中間層と、
該中間層の上にさらに形成された酸化物超電導体層と、からなる超電導体。
A core layer made of the metal;
Ni formed on one or both surfaces of the core layer is 90 at. % Or more of the alloy layer, wherein the {1, 0, 0} plane of the crystal grains forming the alloy layer is parallel to the surface, and the <0, 0, 1> axis of the crystal grains is in a predetermined direction. An alloy layer oriented toward the
An intermediate layer made of an oxide formed on one or both surfaces of a superconductor substrate comprising:
A superconductor comprising an oxide superconductor layer further formed on the intermediate layer.
金属からなるコア層と、該コア層の一表面または両表面に形成されNiを90at.%以上含む合金層からなる表面の合金層とを有する基材を、加工率90%以上の圧延をする圧延工程と、
前記圧延工程で圧延した基材を、温度900〜1200℃、アルゴンと水素との混合気体であってアルゴンに対して水素の割合が2〜5 vol%の雰囲気中で30分〜10時間保持し、熱処理工程とを備えることを特徴とする超電導体用基材の製造方法。
A core layer made of metal, and 90 nm of Ni formed on one surface or both surfaces of the core layer. A rolling step for rolling a base material having a surface alloy layer composed of an alloy layer containing at least 90% of a processing rate of 90% or more;
The base material rolled in the rolling step is held for 30 minutes to 10 hours in an atmosphere of a mixed gas of argon and hydrogen at a temperature of 900 to 1200 ° C. and a ratio of hydrogen to argon of 2 to 5 vol %. A method for producing a substrate for a superconductor, comprising a heat treatment step.
前記圧延工程は、前記コア層となる部材を前記合金層となる部材内に内包させ、圧延する工程であることを特徴とする請求項11に記載の超電導体用基材の製造方法。 The method for producing a substrate for a superconductor according to claim 11, wherein the rolling step is a step of encapsulating a member to be the core layer in a member to be the alloy layer and rolling. 前記圧延工程は、前記コア層となる板状の部材を前記表面の合金層となる複数の板状の部材で挟んで圧延する工程であることを特徴とする請求項11に記載の超電導体用基材の製造方法。   The superconductor according to claim 11, wherein the rolling step is a step of rolling by sandwiching a plate-like member serving as the core layer between a plurality of plate-like members serving as the surface alloy layers. A method for producing a substrate. 金属からなるコア層と、該コア層の一表面または両表面に形成されNiを90at.%以上含む合金層からなる表面の合金層とを有する基材を、加工率90%以上の圧延をする圧延工程と、
前記圧延工程で圧延した基材を、温度900〜1200℃、アルゴンと水素との混合気体であってアルゴンに対して水素の割合が2〜5 vol%の雰囲気中で30分〜10時間保持し、熱処理工程して製造された超電導体用基材の前記合金層の表面に酸化物からなる中間層を形成し、さらにその中間層の上に酸化物超電導層を形成する超電導体の製造方法。
A core layer made of metal, and 90 nm of Ni formed on one surface or both surfaces of the core layer. A rolling step for rolling a base material having a surface alloy layer composed of an alloy layer containing at least 90% of a processing rate of 90% or more;
The base material rolled in the rolling step is held for 30 minutes to 10 hours in an atmosphere of a mixed gas of argon and hydrogen at a temperature of 900 to 1200 ° C. and a ratio of hydrogen to argon of 2 to 5 vol %. A method of producing a superconductor, comprising: forming an intermediate layer made of an oxide on the surface of the alloy layer of the superconductor substrate manufactured by a heat treatment step, and further forming an oxide superconducting layer on the intermediate layer.
JP2006099794A 2005-12-26 2006-03-31 Superconductor substrate and method for producing the same Expired - Fee Related JP4716324B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006099794A JP4716324B2 (en) 2005-12-26 2006-03-31 Superconductor substrate and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005372056 2005-12-26
JP2005372056 2005-12-26
JP2006099794A JP4716324B2 (en) 2005-12-26 2006-03-31 Superconductor substrate and method for producing the same

Publications (2)

Publication Number Publication Date
JP2007200831A true JP2007200831A (en) 2007-08-09
JP4716324B2 JP4716324B2 (en) 2011-07-06

Family

ID=38455214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006099794A Expired - Fee Related JP4716324B2 (en) 2005-12-26 2006-03-31 Superconductor substrate and method for producing the same

Country Status (1)

Country Link
JP (1) JP4716324B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008200775A (en) * 2007-02-16 2008-09-04 Nihon Micro Coating Co Ltd Method for manufacturing tape substrate for superconductor, and tape substrate
JP2009046734A (en) * 2007-08-21 2009-03-05 Chubu Electric Power Co Inc Textured substrate for epitaxial film formation and surface improving method of textured substrate for epitaxial film formation
JP2009117358A (en) * 2007-10-18 2009-05-28 Furukawa Electric Co Ltd:The Composite substrate for oxide superconducting wire material and manufacturing method thereof, and superconducting wire material
JP2009245888A (en) * 2008-03-31 2009-10-22 Furukawa Electric Co Ltd:The Superconducting wire rod substrate and its method for manufacturing
WO2010055613A1 (en) 2008-11-12 2010-05-20 東洋鋼鈑株式会社 Polymer laminate substrate for formation of epitaxially grown film, and manufacturing method therefor
WO2010055651A1 (en) 2008-11-12 2010-05-20 東洋鋼鈑株式会社 Method for producing metal laminated substrate for oxide superconducting wire, and oxide superconducting wire using the substrate
WO2010055612A1 (en) 2008-11-12 2010-05-20 東洋鋼鈑株式会社 Method for manufacturing metal laminated substrate for semiconductor element formation and metal laminated substrate for semiconductor element formation
WO2010061757A1 (en) * 2008-11-28 2010-06-03 住友電気工業株式会社 Precursor manufacturing method, superconducting wire rod manufacturing method, precursor, and superconducting wire rod
JP2012216487A (en) * 2011-03-31 2012-11-08 Korea Electrotechnology Research Inst High-temperature superconducting wire rod
JP2012229493A (en) * 2012-08-16 2012-11-22 Chubu Electric Power Co Inc Orientation substrate for epitaxial film formation

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH113620A (en) * 1997-06-10 1999-01-06 Furukawa Electric Co Ltd:The Oxide superconducting wire and manufacture thereof
JP2001110255A (en) * 1999-10-07 2001-04-20 Furukawa Electric Co Ltd:The High strength orientation multicrystal metal substrate and oxide superconductive wire material
JP2001236834A (en) * 2000-02-21 2001-08-31 Fujikura Ltd Oxide superconducting conductor
JP2002150855A (en) * 2000-11-15 2002-05-24 Furukawa Electric Co Ltd:The Oxide superconductor wire material, and manufacturing method of the same
WO2004088677A1 (en) * 2003-03-31 2004-10-14 The Furukawa Electric Co., Ltd. Metal base plate for oxide superconductive wire rod, oxide superconductive wire rod and process for producing the same
JP2005516882A (en) * 2001-07-31 2005-06-09 アメリカン スーパーコンダクター コーポレイション Superconductor fabrication method and reaction apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH113620A (en) * 1997-06-10 1999-01-06 Furukawa Electric Co Ltd:The Oxide superconducting wire and manufacture thereof
JP2001110255A (en) * 1999-10-07 2001-04-20 Furukawa Electric Co Ltd:The High strength orientation multicrystal metal substrate and oxide superconductive wire material
JP2001236834A (en) * 2000-02-21 2001-08-31 Fujikura Ltd Oxide superconducting conductor
JP2002150855A (en) * 2000-11-15 2002-05-24 Furukawa Electric Co Ltd:The Oxide superconductor wire material, and manufacturing method of the same
JP2005516882A (en) * 2001-07-31 2005-06-09 アメリカン スーパーコンダクター コーポレイション Superconductor fabrication method and reaction apparatus
WO2004088677A1 (en) * 2003-03-31 2004-10-14 The Furukawa Electric Co., Ltd. Metal base plate for oxide superconductive wire rod, oxide superconductive wire rod and process for producing the same

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008200775A (en) * 2007-02-16 2008-09-04 Nihon Micro Coating Co Ltd Method for manufacturing tape substrate for superconductor, and tape substrate
JP2009046734A (en) * 2007-08-21 2009-03-05 Chubu Electric Power Co Inc Textured substrate for epitaxial film formation and surface improving method of textured substrate for epitaxial film formation
JP2009117358A (en) * 2007-10-18 2009-05-28 Furukawa Electric Co Ltd:The Composite substrate for oxide superconducting wire material and manufacturing method thereof, and superconducting wire material
JP2009245888A (en) * 2008-03-31 2009-10-22 Furukawa Electric Co Ltd:The Superconducting wire rod substrate and its method for manufacturing
WO2010055612A1 (en) 2008-11-12 2010-05-20 東洋鋼鈑株式会社 Method for manufacturing metal laminated substrate for semiconductor element formation and metal laminated substrate for semiconductor element formation
WO2010055651A1 (en) 2008-11-12 2010-05-20 東洋鋼鈑株式会社 Method for producing metal laminated substrate for oxide superconducting wire, and oxide superconducting wire using the substrate
WO2010055613A1 (en) 2008-11-12 2010-05-20 東洋鋼鈑株式会社 Polymer laminate substrate for formation of epitaxially grown film, and manufacturing method therefor
US9034124B2 (en) 2008-11-12 2015-05-19 Toyo Kohan Co., Ltd. Method for producing metal laminated substrate for oxide superconducting wire, and oxide superconducting wire using the substrate
WO2010061757A1 (en) * 2008-11-28 2010-06-03 住友電気工業株式会社 Precursor manufacturing method, superconducting wire rod manufacturing method, precursor, and superconducting wire rod
JP2010129432A (en) * 2008-11-28 2010-06-10 Sumitomo Electric Ind Ltd Method for manufacturing precursor, method for manufacturing superconducting wire rod, precursor, and superconducting wire rod
US8865627B2 (en) 2008-11-28 2014-10-21 Sumitomo Electric Industries, Ltd. Method for manufacturing precursor, method for manufacturing superconducting wire, precursor, and superconducting wire
KR101612149B1 (en) 2008-11-28 2016-04-12 스미토모 덴키 고교 가부시키가이샤 Method for manufacturing precursor, method for manufacturing superconducting wire, precursor, and superconducting wire
US9570215B2 (en) 2008-11-28 2017-02-14 Sumitomo Electric Industries, Ltd. Method for manufacturing precursor, method for manufacturing superconducting wire, precursor, and superconducting wire
JP2012216487A (en) * 2011-03-31 2012-11-08 Korea Electrotechnology Research Inst High-temperature superconducting wire rod
JP2012229493A (en) * 2012-08-16 2012-11-22 Chubu Electric Power Co Inc Orientation substrate for epitaxial film formation

Also Published As

Publication number Publication date
JP4716324B2 (en) 2011-07-06

Similar Documents

Publication Publication Date Title
JP4716324B2 (en) Superconductor substrate and method for producing the same
EP2357656A1 (en) Method for producing metal laminated substrate for oxide superconducting wire, and oxide superconducting wire using the substrate
JP4794886B2 (en) High-strength polycrystalline metal substrate for oxide superconductivity and oxide superconducting wire using the same
JP2001518564A (en) Superconductor substrate
JPH113620A (en) Oxide superconducting wire and manufacture thereof
JP4316070B2 (en) High strength oriented polycrystalline metal substrate and oxide superconducting wire
JP5123462B2 (en) Film-forming alignment substrate, superconducting wire, and method for manufacturing film-forming alignment substrate
JP4741326B2 (en) Oxide superconducting conductor and manufacturing method thereof
WO2013002372A1 (en) Re-123 superconducting wire and method for manufacturing same
JP3568561B2 (en) Structure of oxide superconductor with stabilizing metal layer
JP2007220467A (en) Method of manufacturing superconductive thin-film material, superconducting apparatus, and superconductive thin-film material
JP2002150855A (en) Oxide superconductor wire material, and manufacturing method of the same
Bhattacharjee et al. Nickel base substrate tapes for coated superconductor applications
KR100691061B1 (en) Substrate for superconducting wire and fabrication method thereof and superconducting wire
JP2010192349A (en) Superconductiing wire rod
KR101680405B1 (en) Substrate, process for production of substrate, electrically super-conductive wire material, and process for production of electrically super-conductive wire material
EP2829641A1 (en) Alignment substrate for forming epitaxial film, and process for producing same
US8865627B2 (en) Method for manufacturing precursor, method for manufacturing superconducting wire, precursor, and superconducting wire
JP4619475B2 (en) Oxide superconducting conductor
JP5323444B2 (en) Composite substrate for oxide superconducting wire, manufacturing method thereof, and superconducting wire
JP4791346B2 (en) Nb3Sn superconducting wire, precursor therefor, and Nb composite single core wire for precursor
JP4193194B2 (en) Method for producing Nb3Sn superconducting wire
JP2000109320A (en) Metallic substrate for oxide superconductor and its production
JP6167443B2 (en) Superconducting wire and manufacturing method thereof
JP2008293690A (en) Nb or nb group alloy sheet for manufacturing superconducting wire rod, and precursor for manufacturing superconducting wire rod

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070706

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20081017

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091222

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20100121

RD13 Notification of appointment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7433

Effective date: 20100121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110323

R151 Written notification of patent or utility model registration

Ref document number: 4716324

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees