JP2001110255A - High strength orientation multicrystal metal substrate and oxide superconductive wire material - Google Patents

High strength orientation multicrystal metal substrate and oxide superconductive wire material

Info

Publication number
JP2001110255A
JP2001110255A JP28686999A JP28686999A JP2001110255A JP 2001110255 A JP2001110255 A JP 2001110255A JP 28686999 A JP28686999 A JP 28686999A JP 28686999 A JP28686999 A JP 28686999A JP 2001110255 A JP2001110255 A JP 2001110255A
Authority
JP
Japan
Prior art keywords
nickel
oxide
metal layer
layer
metal substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28686999A
Other languages
Japanese (ja)
Other versions
JP4316070B2 (en
Inventor
Tomonori Watabe
智則 渡部
Toshihiko Maeda
敏彦 前田
Kaname Matsumoto
要 松本
Izumi Hirabayashi
泉 平林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
International Superconductivity Technology Center
Original Assignee
Furukawa Electric Co Ltd
International Superconductivity Technology Center
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd, International Superconductivity Technology Center filed Critical Furukawa Electric Co Ltd
Priority to JP28686999A priority Critical patent/JP4316070B2/en
Publication of JP2001110255A publication Critical patent/JP2001110255A/en
Application granted granted Critical
Publication of JP4316070B2 publication Critical patent/JP4316070B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a multicrystal metal substrate for an oxide superconductive wire material with high strength and high orientation. SOLUTION: A metal substrate for an oxide superconductive wire material is formed of a flexible metal tape which has an internal metal layer with at least a portion formed of iron based alloy and a surface metal layer formed of one type selected out of the groups consisting of nickel, nickel oxide and nickel alloy mainly containing nickel and provided on the outer periphery of the internal metal layer. The aggregate structure show that the 100} planes of crystal grains of nickel, nickel oxide or nickel alloy in the surface metal layer are almost parallel to the surface of the tape and the <001> axes are almost parallel to the rolling direction of the tape.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高強度配向多結晶
金属基板、およびこの基板上に酸化物超電導体層を形成
してなる酸化物超電導線材に関する。
The present invention relates to a high-strength oriented polycrystalline metal substrate and an oxide superconducting wire obtained by forming an oxide superconductor layer on the substrate.

【0002】[0002]

【従来の技術】酸化物超電導体を用いた超電導線材の作
製方法は、主として次の2種類の方法に分類される。
2. Description of the Related Art A method for producing a superconducting wire using an oxide superconductor is mainly classified into the following two methods.

【0003】第1の方法は、金属シース中に酸化物超電
導体粉末を充填して線材状に加工し、さらに加工後もし
くは加工中に熱処理を施して酸化物超電導線材を得るパ
ウダーインチューブ(PIT)法と呼ばれる方法であ
る。
In the first method, a metal sheath is filled with an oxide superconductor powder and processed into a wire, and a heat treatment is performed after or during the processing to obtain an oxide superconducting wire. ) Method.

【0004】この方法による超電導線材の典型例とし
て、Bi系酸化物超電導体(Bi2121,Bi222
3)を銀あるいは銀合金のシース中に多数本フィラメン
トとして存在させた超電導テープ線材がある。このよう
な超電導テープ線材は、例えば、Bi2223系線材で
は製造速度が100m/hにまで達するが、その臨界電
流密度(Jc)は、77K、自己磁場下で2〜6×10
4 A/cm2 程度である。また、シース材は銀もしくは
銀合金からなり、臨界電流密度が低下しないような引っ
張り応力は、100MPa程度である。
As a typical example of the superconducting wire by this method, a Bi-based oxide superconductor (Bi2121, Bi222) is used.
There is a superconducting tape wire in which 3) is present as many filaments in a silver or silver alloy sheath. The production speed of such a superconducting tape wire, for example, reaches 100 m / h with a Bi2223-based wire, but its critical current density (Jc) is 77 K, 2 to 6 × 10
It is about 4 A / cm 2 . Further, the sheath material is made of silver or a silver alloy, and the tensile stress that does not lower the critical current density is about 100 MPa.

【0005】第2の方法は、多結晶金属基板上に結晶配
向を制御して中間層を設け、その上に酸化物超電導薄膜
を成膜して線材化する方法である。この場合、中間層は
金属基板と酸化物超電導層の拡散反応を抑制し、さらに
その上に成膜した酸化物超電導体層の配向性を制御して
結晶粒の結合性を向上させ、それによって高い臨界電流
密度を得ることを可能にする。
The second method is a method in which an intermediate layer is provided on a polycrystalline metal substrate by controlling the crystal orientation, and an oxide superconducting thin film is formed thereon to form a wire. In this case, the intermediate layer suppresses the diffusion reaction between the metal substrate and the oxide superconducting layer, and further controls the orientation of the oxide superconducting layer formed thereon, thereby improving the bonding of the crystal grains. It is possible to obtain a high critical current density.

【0006】この方法による超電導線材の典型例とし
て、ハステロイ合金テープ上にイオンビームアシステッ
ドデポジション(IBAD)法などによりイットリウム
安定化ジルコニア(YSZ)を面内配向成膜して中間層
とし、その上にレーザーアブレーション法によりYBa
2 Cu3 7-y (Y123)酸化物超電導薄膜を成膜し
てテープ線材としたものがある。
As a typical example of the superconducting wire according to this method, yttrium-stabilized zirconia (YSZ) is formed into an intermediate layer on a Hastelloy alloy tape by ion beam assisted deposition (IBAD) to form an intermediate layer. YBa by laser ablation method
There is also a tape wire obtained by forming a 2 Cu 3 O 7-y (Y123) oxide superconducting thin film.

【0007】この方法により得られた超電導テープ線材
は、Jcが77K、自己磁場下で1×106 A/cm2
にも達するが、中間層の成膜速度が0.001〜0.1
m/hと極めて遅く、工業的には問題がある。
The superconducting tape wire obtained by this method has a Jc of 77 K and 1 × 10 6 A / cm 2 under a self-magnetic field.
But the film formation rate of the intermediate layer is 0.001 to 0.1
m / h, which is extremely slow, and there is an industrial problem.

【0008】同様の例として、RABiTS法と呼ばれ
る方法がある。この方法は、ニッケル金属に圧延加工と
熱処理を加えて集合組織化したニッケルテープとし、そ
の上にPdなどを電子ビーム蒸着したり、CeO2 やY
SZをスパッター法などにより成膜して中間層を形成
し、さらにレーザーアプレーション法によりY123系
超電導体膜を形成する方法である。
As a similar example, there is a method called RABiTS method. In this method, nickel metal is rolled and heat-treated to form a textured nickel tape, and Pd or the like is then electron-beam evaporated, CeO 2 or Y
In this method, an intermediate layer is formed by depositing SZ by sputtering or the like, and then a Y123-based superconductor film is formed by laser ablation.

【0009】この方法による超電導線材も、Jcは77
K、自己磁場下で1×106 A/cm2 にも達するが、
中間層作成において複数回の薄膜形成プロセスを経るた
め、線材としての製造速度が低い点や、コストの面で問
題がある。更に、多結晶金属基板として熱処理により集
合組織化したNiは焼鈍されて軟化し、耐力(引張強
度)が30MPa程度であるので、酸化物超電導線材の
基板としては強度に問題がある。
The superconducting wire produced by this method also has a Jc of 77.
K, reaching 1 × 10 6 A / cm 2 under a self-magnetic field,
Since the intermediate layer is formed through a plurality of thin film forming processes, there are problems in that the production speed as a wire is low and the cost is low. Furthermore, Ni that has been textured as a polycrystalline metal substrate by heat treatment is annealed and softened, and has a strength (tensile strength) of about 30 MPa. Therefore, there is a problem in strength as an oxide superconducting wire substrate.

【0010】また、多結晶金属基板上に直接酸化物超電
導層を成膜する方法もある。この方法は、拡散反応によ
り酸化超電導体の特性を損なうことのない銀に圧延加工
と熱処理を加えて集合組織とし、これを多結晶金属基板
として用い、その上にレーザーアブレーション法により
Y123系超電導体膜を形成する方法である。この方法
による超電導線材では、77K、自己磁場下で1×10
6 A/cm2 のJcを得ることが可能である。
There is also a method of forming an oxide superconducting layer directly on a polycrystalline metal substrate. In this method, silver that does not impair the properties of the oxidized superconductor by a diffusion reaction is subjected to rolling and heat treatment to form a texture, which is used as a polycrystalline metal substrate, and a Y123-based superconductor is formed thereon by a laser ablation method. This is a method of forming a film. In the superconducting wire according to this method, 1 × 10
Jc of 6 A / cm 2 can be obtained.

【0011】しかしながら、銀は集合組織化し難く、配
向性の向上に限界があり、更に、銀は熱処理によって焼
鈍されて軟化してしまう。銀のヤング率は81GPa程
度であって、ニッケルのヤング率210GPaと比較し
てきわめて小さく、強度の点で重大な問題がある。また
工業的には銀の価格が高い点も問題である。
However, silver is difficult to form a texture, and there is a limit in improving the orientation. Further, silver is annealed by heat treatment and softened. The Young's modulus of silver is about 81 GPa, which is extremely small as compared with the Young's modulus of nickel of 210 GPa, and there is a serious problem in strength. Another problem is that the price of silver is high industrially.

【0012】また、SOE(Sueface Oxid
ation Epitaxy)法と呼ばれる手法では、
圧延加工と熱処理によって集合組織化した多結晶金属テ
ープに酸化処理を施して、直接、配向性の優れた金属酸
化物層を形成し、これを中間層としてその上にレーザー
アブレーション法や液相エピタキシャル法によって酸化
物超電導体層を成膜している。
In addition, SOE (Surface Oxid)
A method called the “Epiation method”
The polycrystalline metal tape textured by rolling and heat treatment is oxidized to directly form a highly oriented metal oxide layer, which is then used as an intermediate layer on which a laser ablation method or liquid phase epitaxial method is applied. The oxide superconductor layer is formed by the method.

【0013】この方法によると、集合組織化によって高
度に配向した金属表面を得ることができる。しかし、配
向した酸化物層を得るためには、金属材料とその熱処理
方法の選択が重要になる。中間層とする酸化物層の配向
性が低いと、Jcは104 A/cm2 のオーダーにとど
まってしまう。また、金属基板(金属テープ)としての
典型例はニッケルや銅であるが、いずれも集合組織化の
ための熱処理で焼鈍されて軟化し、強度の点で問題があ
る。
According to this method, a highly oriented metal surface can be obtained by texture-assembly. However, in order to obtain an oriented oxide layer, selection of a metal material and a heat treatment method thereof is important. If the orientation of the oxide layer serving as the intermediate layer is low, Jc is limited to the order of 10 4 A / cm 2 . Further, nickel and copper are typical examples of the metal substrate (metal tape), but both are annealed by a heat treatment for texture formation and are softened, and have a problem in strength.

【0014】[0014]

【発明が解決しようとする課題】上述のように、PIT
法では、得られた超電導線材は、77KでのJcが小さ
いため、77Kでの機器への利用には制限がある。
SUMMARY OF THE INVENTION As described above, PIT
According to the method, the obtained superconducting wire has a small Jc at 77K, and thus there is a limit to the use of the superconducting wire at 77K.

【0015】一方、酸化物超電導薄膜線材に関しても、
IBAD法やRABiTS法では、中間層を形成する工
程が複雑で、成膜速度も遅いため、工業的に問題があ
る。また、銀基板を使用して中間層を形成するプロセス
を省略する方法では、配向性と線材強度に問題があり、
SOE法においては中間層形成プロセスは高速化できる
が、線材強度と金属酸化物の配向性の問題がある。
On the other hand, regarding the oxide superconducting thin film wire,
In the IBAD method and the RABiTS method, the process of forming the intermediate layer is complicated and the film formation rate is low, and thus there is an industrial problem. Also, the method of omitting the process of forming an intermediate layer using a silver substrate has problems in orientation and wire strength,
In the SOE method, the intermediate layer forming process can be sped up, but there are problems with the strength of the wire and the orientation of the metal oxide.

【0016】更に、金属基板の材料によっては、構成元
素が拡散によって超電導層と反応し、特性を低下させた
り、磁化によって大きな磁化損失が生じ、交流応用には
交流損失が大きくなるなどの問題がある。
Furthermore, depending on the material of the metal substrate, there is a problem that the constituent elements react with the superconducting layer by diffusion, deteriorating the characteristics, causing a large magnetization loss due to magnetization, and increasing the AC loss in AC applications. is there.

【0017】本発明は、以上のような事情の下になさ
れ、高強度および高配向を有する、酸化物超電導線材用
多結晶金属基板を提供することを目的とする。
An object of the present invention is to provide a polycrystalline metal substrate for an oxide superconducting wire having a high strength and a high orientation under the above circumstances.

【0018】本発明の他の目的は、かかる多結晶金属基
板上に酸化物超電導体層を形成した、高いJcを示す酸
化物超電導線材を提供することにある。
Another object of the present invention is to provide an oxide superconducting wire having a high Jc in which an oxide superconductor layer is formed on such a polycrystalline metal substrate.

【0019】[0019]

【課題を解決するための手段】上記課題を解決するた
め、本発明者は、鋭意研究を重ねた結果、ニッケル、酸
化ニッケル、あるいはニッケルを主成分とするニッケル
合金で表面金属層を形成し、ニッケルと拡散接合が可能
な金属で内部金属層を形成した複合金属材料は、圧延加
工と適当な熱処理によって基板表面に集合組織を得るこ
とが可能であることから、内部金属層の金属材料として
高強度金属材料を使用することによって、高強度および
高配向性の多結晶金属基板を得ることが出来ることを見
いだした。本発明は、このような知見に基づくものであ
る。
Means for Solving the Problems In order to solve the above problems, the present inventors have made intensive studies and as a result, formed a surface metal layer with nickel, nickel oxide, or a nickel alloy containing nickel as a main component, A composite metal material having an internal metal layer formed of a metal that can be diffusion-bonded to nickel can obtain a texture on the substrate surface by rolling and appropriate heat treatment. It has been found that a polycrystalline metal substrate having high strength and high orientation can be obtained by using a high-strength metal material. The present invention is based on such findings.

【0020】すなわち、本発明は、少なくとも1部が鉄
系合金からなる内部金属層と、この内部金属層の外周面
に形成された、ニッケル、酸化ニッケルおよびニッケル
を主成分とするニッケル合金からなる群から選ばれた1
種からなる表面金属層とを備える可撓性金属テープから
なる酸化物超電導線材用金属基板であって、前記表面金
属層のニッケル、酸化ニッケルあるいはニッケル合金の
結晶粒の{100}面がテープ表面にほぼ平行であり、
かつその<001>軸がテープの圧延方向にほぼ平行で
あるような集合組織を示すことを特徴とする高強度配向
多結晶金属基板を提供する。この金属基板の内部金属層
は、その全体が鉄系金属で形成されてもよいことは当然
である。
That is, according to the present invention, at least a part of the inner metal layer is made of an iron-based alloy, and nickel, nickel oxide and a nickel alloy mainly containing nickel are formed on the outer peripheral surface of the inner metal layer. 1 selected from the group
A metal substrate for an oxide superconducting wire comprising a flexible metal tape having a surface metal layer made of a seed, wherein {100} faces of nickel, nickel oxide or nickel alloy crystal grains of the surface metal layer are formed on the tape surface. Is almost parallel to
And a high-strength oriented polycrystalline metal substrate characterized by exhibiting a texture whose <001> axis is substantially parallel to the rolling direction of the tape. Of course, the entire internal metal layer of the metal substrate may be formed of an iron-based metal.

【0021】本発明の金属基板では、金属基材としての
強度は内部金属層を構成する鉄系合金からなる高強度金
属が担い、基板として必要な配向性を表面金属層のニッ
ケル、酸化ニッケルあるいはニッケル合金部分が担うこ
とになる。
In the metal substrate of the present invention, the strength as a metal substrate is borne by a high-strength metal made of an iron-based alloy constituting the internal metal layer, and the orientation required for the substrate is given by nickel, nickel oxide or nickel on the surface metal layer. The nickel alloy part will play a role.

【0022】以上のように構成される本発明の金属基板
によると、表面金属層がニツケル、酸化ニッケルもしく
はニツケル合金であるので、SOE法のように酸化処理
によって直接金属テープ上に酸化物層を形成することも
可能になり、中間層の形成を高速化することが可能であ
る。
According to the metal substrate of the present invention configured as described above, since the surface metal layer is made of nickel, nickel oxide or nickel alloy, the oxide layer is directly oxidized on the metal tape by the oxidation treatment as in the SOE method. Also, the formation of the intermediate layer can be accelerated.

【0023】また、本発明の金属基板においては、ステ
ンレス鋼に代表される鉄系合金を複合強化材として使用
しているので、高温でも高強度であり、液相エピタキシ
ャル法のように高温を必要とする酸化物超電導体薄膜の
高速成膜プロセスにも十分適用可能である。
Further, since the metal substrate of the present invention uses an iron-based alloy typified by stainless steel as a composite reinforcing material, it has high strength even at a high temperature, and requires a high temperature as in a liquid phase epitaxial method. The present invention can be sufficiently applied to a high-speed film forming process for forming an oxide superconductor thin film.

【0024】表面金属層を構成する金属については、配
向処理や酸化処理、あるいは酸化物超電導体薄膜の成膜
時に内部金属層との拡散反応によって配向性が低下した
り、表面金属層が薄すぎて内部金属層の組織の影響を受
けて配向組織が乱れることが考えられるが、圧延加工終
了後の表面金属層の厚さを、配向のための熱処理の際に
内部金属層を構成する金属が拡散する距離よりも厚く、
例えば4μm以上とすることにより、熱処理による良好
な配向組織が得られる。
With respect to the metal constituting the surface metal layer, the orientation is reduced by an orientation treatment, an oxidation treatment, or a diffusion reaction with the internal metal layer during the formation of the oxide superconductor thin film, or the surface metal layer is too thin. It is conceivable that the texture of the orientation is disturbed by the influence of the texture of the internal metal layer, but the thickness of the surface metal layer after rolling is reduced by the metal constituting the internal metal layer during the heat treatment for orientation. Thicker than the spreading distance,
For example, when the thickness is 4 μm or more, a good oriented structure can be obtained by the heat treatment.

【0025】ただし、内部金属層で高強度化を図るなら
ば、表面金属層の全体に占める割合は小さい方がよいの
で、表面金属層は薄くする方が望ましい。この場合、内
部金属層は面心立法構造の金属の方が高度な配向を得や
すく、ステンレス鋼でもオーステナイト系のものが好ま
しい。
However, if the strength of the inner metal layer is to be increased, the smaller the proportion of the surface metal layer in the entire surface metal layer, the better. In this case, for the internal metal layer, a metal having a face-centered cubic structure can easily obtain a high degree of orientation, and an austenitic stainless steel is also preferable.

【0026】内部金属層を構成する鉄系金属としては、
ステンレス鋼、クロム−モリブデン鋼、マンガン鋼、ニ
ッケル−クロム鋼、クロム−マンガン鋼等が挙げられ
る。また、内部金属層の厚さは、基板の厚さから8〜1
0μm減じた厚さであるのが好ましい。
As the iron-based metal constituting the internal metal layer,
Examples include stainless steel, chromium-molybdenum steel, manganese steel, nickel-chromium steel, chromium-manganese steel, and the like. The thickness of the internal metal layer is 8 to 1 from the thickness of the substrate.
Preferably, the thickness is reduced by 0 μm.

【0027】オーステナイト系ステンレスは非磁性なの
で、複合材料とした場合に純ニッケルに比べ磁性を低減
することができる。この点で交流応用にも有効である。
更に、内部金属層と表面金属層の界面に酸化物層を形成
すると、内部金属層の構成元素の拡散を抑制することが
出来るため、酸化物超電導体層と基板構成元素の反応を
抑制することが可能になる。
Since austenitic stainless steel is non-magnetic, its magnetism can be reduced in the case of a composite material as compared with pure nickel. In this respect, it is also effective for AC applications.
Furthermore, when an oxide layer is formed at the interface between the internal metal layer and the surface metal layer, the diffusion of the constituent elements of the internal metal layer can be suppressed, so that the reaction between the oxide superconductor layer and the constituent elements of the substrate can be suppressed. Becomes possible.

【0028】このように、本発明によると、高配向性と
高強度を有し、磁性の問題や基板構成元素の拡散による
超電導特性の低下の問題の解決にも著しい効果を上げる
ことを可能にした高強度配向多結晶金属基板、および酸
化物超電導線材を得ることが可能である。
As described above, according to the present invention, it has a high orientation and a high strength, and can significantly improve the problem of magnetism and the problem of deterioration of superconductivity due to diffusion of constituent elements of a substrate. It is possible to obtain a high strength oriented polycrystalline metal substrate and an oxide superconducting wire.

【0029】[0029]

【発明の実施の形態】以下に、本発明の実施の形態とし
ての、種々の実施例について説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Various embodiments of the present invention will be described below.

【0030】[実施例1]本実施例は、ステンレス鋼を
内部金属層とした場合の高強度化、および内部金属層を
オーステナイト系ステンレス鋼にした場合の低磁性化の
効果について示すものである。
Example 1 This example shows the effect of increasing the strength when stainless steel is used as the internal metal layer and the effect of lowering the magnetism when using the austenitic stainless steel as the internal metal layer. .

【0031】直径20mm、厚さ2.5mmのニッケル
パイプに、SUS310S、SUH31、SUH30
9、SUH310、若しくはSUS316のオーステナ
イト系ステンレス鋼、又はSUS430のフエライト系
ステンレス鋼の棒をそれぞれ挿入し、スエージング後、
アルゴン雰囲気で800℃の加熱処理を行った。
SUS310S, SUH31, SUH30 were placed on a nickel pipe having a diameter of 20 mm and a thickness of 2.5 mm.
9, SUH310, or SUS316 austenitic stainless steel, or SUS430 ferrite stainless steel rods are inserted, and after swaging,
A heat treatment at 800 ° C. was performed in an argon atmosphere.

【0032】続いて、圧延加工によって厚さ0.2mm
のニッケル/ステンレス鋼複合テープとした。
Subsequently, a thickness of 0.2 mm was obtained by rolling.
Nickel / stainless steel composite tape.

【0033】比較例として、同形状のニッケルパイプ
に、銅、および銅70wt%−ニッケル30wt%合金
をそれぞれ挿入したもの、および直径20mmの純ニッ
ケル棒についても同様にして金属テープに加工した。
As a comparative example, a metal pipe having the same shape of nickel pipe in which copper and an alloy of 70 wt% of copper and 30 wt% of nickel were inserted, and a pure nickel rod having a diameter of 20 mm were processed in the same manner.

【0034】これらの複合テープをアルゴン雰囲気中に
おいて1000℃で1.0時間アニールして、配向処理
を施した。
These composite tapes were annealed in an argon atmosphere at 1000 ° C. for 1.0 hour to perform an orientation treatment.

【0035】次に、室温で配向処理を施したテープの引
っ張り試験を行い、耐力を比較した。また、X線回折測
定によって結晶粒表面にニッケル{100}面が占める
割合を求めた。更に、交流損失を示唆する磁化のヒステ
リシスを液体窒素温度下で電磁誘導法により求めた。こ
のとき印加した外部磁場は0.1Tp−pである。下記
表1にそれらの結果を示す。
Next, a tensile test was performed on the tape subjected to the orientation treatment at room temperature, and the proof stress was compared. Further, the ratio of nickel {100} plane to the crystal grain surface was determined by X-ray diffraction measurement. Further, the hysteresis of magnetization indicating AC loss was determined by an electromagnetic induction method at liquid nitrogen temperature. The external magnetic field applied at this time is 0.1 Tp-p. Table 1 below shows the results.

【0036】[0036]

【表1】 [Table 1]

【0037】上記表1から、いずれのテープも80%以
上の結晶粒がニッケル{100}面に配向しており、配
向性では遜色のないことが分かる。一方、耐力で比較す
ると、純ニッケルや、ニッケル/銅複合テープ、ニッケ
ル/銅70wt%−ニッケル30wt%合金複合テープ
は、いずれのニッケル/ステンレス鋼複合テープの耐力
より100MPa以上小さく、明らかに本発明に係る金
属基板の方が大きな強度を示すことがわかる。
From Table 1 above, it can be seen that 80% or more of the crystal grains of each tape are oriented in the nickel {100} plane, and there is no inferiority in the orientation. On the other hand, when compared in terms of proof stress, pure nickel, the nickel / copper composite tape, and the nickel / copper 70 wt% -nickel 30 wt% alloy composite tape are 100 MPa or less smaller than the proof stress of any nickel / stainless steel composite tape. It can be seen that the metal substrate according to (1) shows higher strength.

【0038】磁化によるヒステリシスについては、銅や
オーステナイト系ステンレス鋼のような非磁性材料を内
部金属層とすると、Niフェライト系ステンレス鋼に比
較して、4分の1以下に小さくすることができ、交流応
用に効果的であることが分かる。
Hysteresis due to magnetization can be reduced to one-fourth or less when a nonmagnetic material such as copper or austenitic stainless steel is used as the inner metal layer, as compared with Ni ferritic stainless steel. It turns out that it is effective for AC application.

【0039】[実施例2]本実施例は、表面金属層の厚
さ、配向についての実施例である。
[Embodiment 2] This embodiment is an embodiment relating to the thickness and orientation of the surface metal layer.

【0040】直径20mm、厚さ2.5mmのニッケル
パイプにSUS310棒を挿入し、スエージング後、ア
ルゴン雰囲気中で800℃、1時間の加熱処理をおこな
った。その後、圧延加工によって、厚さ0.3mmのニ
ッケル/SUS310鋼複合テープを作製した。
A SUS310 rod was inserted into a nickel pipe having a diameter of 20 mm and a thickness of 2.5 mm, and after swaging, heat treatment was performed at 800 ° C. for 1 hour in an argon atmosphere. Thereafter, a nickel / SUS310 steel composite tape having a thickness of 0.3 mm was produced by rolling.

【0041】この複合テープをアルゴン雰囲気中におい
て1000℃で15分間、30分間、1時間および1.
5時間、それぞれアニールして、ニッケル−SUS31
0複合テープとした。
The composite tape was placed in an argon atmosphere at 1000 ° C. for 15 minutes, 30 minutes, 1 hour and 1.
Anneal each for 5 hours to obtain nickel-SUS31
0 composite tape.

【0042】なお、最外層のニツケルとSUS310の
境界は明確でなく、鉄やニッケル、クロムの濃度に勾配
ができていた。特に、 EPMA観察の結果、熱処理前
と比較して、鉄元素の表面金属層のニッケル側への拡散
距離が最大であった。表面金属層であるニッケルの配向
はX線回折測定によって調べ、鉄元素の拡散距離はEP
MAで観察した。その結果を下記表2に示す。
The boundary between the outermost layer of nickel and SUS310 was not clear, and there was a gradient in the concentration of iron, nickel and chromium. In particular, as a result of the EPMA observation, the diffusion distance of the iron element to the nickel side of the surface metal layer was the largest as compared with before the heat treatment. The orientation of nickel, which is a surface metal layer, is examined by X-ray diffraction measurement, and the diffusion length of iron element is EP
Observed by MA. The results are shown in Table 2 below.

【0043】[0043]

【表2】 [Table 2]

【0044】上記表2から、表面金属層の高度な配向を
得るためには30分以上の熱処理が好ましいが、1時間
以上保持した場合には配向に変化は余り見られないこと
がわかる。一方、配向処理による鉄元素の拡散は30分
で2.4μm、1時間で30μmであるので、配向処理
前の表面金属層の厚さは3μm以上が好ましく、その後
の成膜プロセスを経ることを考えると、4μm以上であ
ることがより好ましいことがわかる。
From Table 2 above, it can be seen that in order to obtain a high degree of orientation of the surface metal layer, a heat treatment of 30 minutes or more is preferable, but when held for 1 hour or more, there is little change in the orientation. On the other hand, since the diffusion of the iron element by the orientation treatment is 2.4 μm in 30 minutes and 30 μm in 1 hour, the thickness of the surface metal layer before the orientation treatment is preferably 3 μm or more. Considering that, it is more preferable that the thickness be 4 μm or more.

【0045】続いて、1000℃、1時間の配向処理を
施したテープを酸素雰囲気中、1100℃で0.5時間
酸化処理を施して、表面にNiO層を形成した。得られ
たNiO結晶の{100}面は、下地のニッケル表面に
平行であり、図1に示すX線極点図に示すように、<1
00>軸が圧延方向に高度に平行に配向していることを
確認した。
Subsequently, the tape which had been subjected to the orientation treatment at 1000 ° C. for 1 hour was subjected to oxidation treatment at 1100 ° C. for 0.5 hour in an oxygen atmosphere to form a NiO layer on the surface. The {100} plane of the obtained NiO crystal is parallel to the underlying nickel surface, and as shown in the X-ray pole figure shown in FIG.
It was confirmed that the 00> axis was oriented highly parallel to the rolling direction.

【0046】[実施例3]本実施例は、ニッケルを主成
分とするニッケル合金を表面金属層に使用した場合の配
向基板の作製例、およびニツケル−銅合金を表面金属層
にした効果を示す実施例である。
[Embodiment 3] This embodiment shows an example of fabricating an oriented substrate when a nickel alloy containing nickel as a main component is used for the surface metal layer, and the effect of using a nickel-copper alloy as the surface metal layer. This is an example.

【0047】外径20mm、厚さ2.5mmのNi89
wt%−Cr11wt%合金パイプ、Ni90wt%−
V10wt%合金パイプ、およびNi84wt%−Cu
16wt%合金パイプにSUS310棒を挿入し、スエ
ージング後、アルゴン雰囲気中で500℃、1時間の加
熱処理をおこなった。その後、圧延加工によって、厚さ
0.3mmのニッケル合金/SUS310鋼複合テープ
を作製した。
Ni89 having an outer diameter of 20 mm and a thickness of 2.5 mm
wt% -Cr11wt% alloy pipe, Ni90wt%-
V10wt% alloy pipe and Ni84wt% -Cu
A SUS310 rod was inserted into a 16 wt% alloy pipe, and after swaging, heat treatment was performed at 500 ° C. for 1 hour in an argon atmosphere. Thereafter, a nickel alloy / SUS310 steel composite tape having a thickness of 0.3 mm was produced by rolling.

【0048】この複合テープを、アルゴン−4%水素混
合ガス雰囲気中において、920℃で1.5時間それぞ
れアニールして、ニッケル合金−SUS310複合テー
プとした。
The composite tape was annealed at 920 ° C. for 1.5 hours in an argon-4% hydrogen mixed gas atmosphere to obtain a nickel alloy-SUS310 composite tape.

【0049】EPMA観察の結果、SUS310と表面
金属層の境界は明確でなく、鉄やニッケル、クロムの濃
度に勾配ができていた。表面金属層であるニッケル合金
の配向はX線回折測定によって調べた。また、磁化によ
るヒステリシスを、実施例1と同様に電磁誘導法によっ
て測定した。その結果を下記表3に示す。
As a result of EPMA observation, the boundary between SUS310 and the surface metal layer was not clear, and a gradient was formed in the concentration of iron, nickel, and chromium. The orientation of the nickel alloy as the surface metal layer was examined by X-ray diffraction measurement. Further, hysteresis due to magnetization was measured by an electromagnetic induction method in the same manner as in Example 1. The results are shown in Table 3 below.

【0050】[0050]

【表3】 [Table 3]

【0051】上記表3から、いずれも90%以上の結晶
粒がニッケル{100}面に配向しており、さらに、ヒ
ステリシスは表面金属層がNi単独で形成されていた場
合(実施例1)に比べて極めて小さくなり、交流応用に
効果があることを示している。
From Table 3 above, it can be seen that 90% or more of the crystal grains are oriented in the nickel {100} plane, and that the hysteresis is obtained when the surface metal layer is formed of Ni alone (Example 1). This is extremely small, indicating that it is effective for AC applications.

【0052】上記配向処理を施したニッケル合金/SU
S310鋼複合テープを、1050℃で酸素分圧を変化
させて、酸化物層の形成処理を試みた。しかし、Ni8
9wt%−Cr11wt%合金、Ni90wt%−V1
0wt%合金を表面金属層とした場合は、酸素分圧が5
×10-4Torr以下ではCrやVの酸化物だけが形成
されたり、逆に酸素分圧を大きくすると酸化物層が剥離
した。
Nickel alloy / SU subjected to the above orientation treatment
The S310 steel composite tape was subjected to an oxide layer forming treatment by changing the oxygen partial pressure at 1050 ° C. However, Ni8
9wt% -Cr11wt% alloy, Ni 90wt% -V1
When a 0 wt% alloy is used as the surface metal layer, the oxygen partial pressure is 5%.
At a pressure of 10-4 Torr or less, only oxides of Cr and V were formed, and when the oxygen partial pressure was increased, the oxide layer was peeled off.

【0053】しかし、Ni84wt%−Cu16wt%
合金を表面金属層にした場合は、酸素分圧を5×10-4
から1×10-3Torrにすると、NiO層が形成でき
た。なお、このときのNiOはX線回折の結果、NiO
(100)面がほぼ85%テープ面に平行に配向してい
た。従って、Ni84wt%−Cu16wt%合金を表
面金属層に使用すると、磁性の低減と配向した酸化物層
の形成に有効である。
However, Ni 84 wt% -Cu 16 wt%
When the alloy is used as the surface metal layer, the oxygen partial pressure is set to 5 × 10 −4.
From 1 to 10 3 Torr, a NiO layer could be formed. Note that NiO at this time was NiO as a result of X-ray diffraction.
The (100) plane was oriented approximately 85% parallel to the tape plane. Therefore, the use of a 84 wt% Ni-16 wt% alloy for the surface metal layer is effective in reducing magnetism and forming an oriented oxide layer.

【0054】[実施例4]本実施例は、複合材料に熱処
理を施すことにより形成されたNiO酸化物結晶層の配
向性や磁性、強度の優位性について示す。
[Embodiment 4] This embodiment shows the superiority of orientation, magnetism and strength of a NiO oxide crystal layer formed by subjecting a composite material to heat treatment.

【0055】実施例1と同様にして、ニッケルとSUS
310S,SUH31,SUH309,SUH310,
SUS316のオーステナイト系ステンレス鋼、および
SUS430フェライト系ステンレス鋼を用いて、それ
ぞれの厚さ0.2mmのニッケル/ステンレス鋼複合テ
ープを作製した。
In the same manner as in Example 1, nickel and SUS
310S, SUH31, SUH309, SUH310,
Using SUS316 austenitic stainless steel and SUS430 ferritic stainless steel, nickel / stainless steel composite tapes each having a thickness of 0.2 mm were produced.

【0056】比較例として同形状のニッケルパイプに
銅、銅70wt%−ニッケル30wt%合金をそれぞれ
挿入したもの、および直径20mmの純ニッケル棒につ
いても同様にして金属テープに加工した。
As a comparative example, a metal pipe in which copper and a 70 wt% -copper 30 wt% nickel alloy were inserted into a nickel pipe having the same shape, and a pure nickel rod having a diameter of 20 mm were processed in the same manner.

【0057】この複合テープを、アルゴン雰囲気中にお
いて、1000℃で1.0時間アニールして配向処理を
施した後、ニッケル/ステンレス鋼複合テープおよびニ
ッケルテープは酸素雰囲気中で1100℃、1時間の熱
処理、銅あるいは銅合金の複合テープは酸素雰囲気中で
1020℃、1時間の熱処理を施して、酸化物結晶層を
形成した。
After annealing this composite tape in an argon atmosphere at 1000 ° C. for 1.0 hour to perform orientation treatment, the nickel / stainless steel composite tape and the nickel tape were heated at 1100 ° C. for 1 hour in an oxygen atmosphere. The heat treatment was performed on the copper or copper alloy composite tape at 1020 ° C. for 1 hour in an oxygen atmosphere to form an oxide crystal layer.

【0058】その後、実施例1と同様に、耐力、配向
性、磁化によるヒステリシスを比較した。その結果を下
記表4に示す。
Then, as in Example 1, the proof stress, orientation, and hysteresis due to magnetization were compared. The results are shown in Table 4 below.

【0059】[0059]

【表4】 [Table 4]

【0060】上記表4から、いずれも80%以上の結晶
粒がNiO{100}面に配向しており、配向性では遜
色のないことが分かる。一方、耐力で比較すると、純ニ
ッケルや、ニッケル/銅複合テープ、ニッケル/銅70
wt %−ニッケル30wt%合金複合テープは、いず
れのニッケル/ステンレス鋼複合テープの耐力より半分
程度で、明らかに本発明の方が大きな強度を示すことが
わかる。
From Table 4 above, it can be seen that in each case 80% or more of the crystal grains are oriented in the NiO {100} plane, and there is no inferiority in the orientation. On the other hand, when compared with proof stress, pure nickel, nickel / copper composite tape, nickel / copper 70
It can be seen that the wt% -nickel 30 wt% alloy composite tape shows about half the proof stress of any of the nickel / stainless steel composite tapes, and that the present invention clearly shows higher strength.

【0061】磁化によるヒステリシスは、Niフェライ
ト系ステンレス鋼に比較して、銅やオーステナイト系ス
テンレス鋼のように非磁性材料を内部金属層とすると、
3分の1以下にヒステリシスを小さくすることができ、
交流応用に効果的であり、優れた多結晶金属基板である
ことを示している。
The hysteresis caused by magnetization can be obtained by using a nonmagnetic material such as copper or austenitic stainless steel as the inner metal layer, as compared with Ni ferritic stainless steel.
Hysteresis can be reduced to less than one third,
It is effective for AC applications and shows that it is an excellent polycrystalline metal substrate.

【0062】[実施例5]本実施例は、表面金属層と内
部金属層の界面に内部金属層の構成元素の酸化物を形成
した場合の効果を示す。
[Embodiment 5] This embodiment shows the effect when an oxide of a constituent element of the internal metal layer is formed at the interface between the surface metal layer and the internal metal layer.

【0063】実施例1と同様に、ニッケルパイプにSU
S310Sステンレス鋼の棒を挿入し、熱処理と圧延加
工によって、ニッケル/ステンレス鋼複合テープを作製
した。続いて、この複合テープを大気中とアルゴン中、
アルゴン−水素混合ガス中でそれぞれ900℃、1時間
の配向処理を施した。
As in the case of the first embodiment, SU was added to the nickel pipe.
A nickel / stainless steel composite tape was manufactured by inserting a rod of S310S stainless steel and performing heat treatment and rolling. Subsequently, the composite tape was placed in air and argon,
Each alignment treatment was performed at 900 ° C. for 1 hour in an argon-hydrogen mixed gas.

【0064】このとき、大気中で熱処理を施したテープ
は、テープ表面に厚さ6μm程度のNiO層が形成され
ると同時に、厚さ3μm程度の酸化クロムの層がニッケ
ルとステンレス鋼の界面に形成されていることが、SE
MやEPMA観察で確認できた。
At this time, the tape heat-treated in the air has a NiO layer having a thickness of about 6 μm on the surface of the tape, and a chromium oxide layer having a thickness of about 3 μm on the interface between nickel and stainless steel. SE is formed
It could be confirmed by M and EPMA observation.

【0065】一方、アルゴン中やアルゴン−水素混合ガ
ス中で熱処理をしたテープは、酸化クロムの層はなく、
20μm程度にわたって鉄やクロムが表面金属層のNi
側へ拡散していた。大気中で熱処理をしたテープの表面
からNiO層を研磨して除去した後、すべてのテープに
酸素中で1100℃、30分の熱処理を施した。
On the other hand, a tape heat-treated in argon or an argon-hydrogen mixed gas has no chromium oxide layer,
Iron or chromium over the surface metal layer Ni
Had diffused to the side. After the NiO layer was polished and removed from the surface of the tape that had been heat-treated in air, all the tapes were subjected to a heat treatment at 1100 ° C. for 30 minutes in oxygen.

【0066】続いて、熱処理後の各テープの断面をEP
MAで観察したところ、アルゴン中やアルゴン−水素混
合ガス中で配向熱処理を施したテープは、表面のNiO
中に鉄が拡散していることが確認できた。また、酸化ニ
ッケルは厚さ5〜7μmで、厚さ3μm程度の酸化鉄の
層と接し、さらに酸化鉄の層は厚さ3μm程度の酸化ク
ロムの層と接して、内部金属層に至っていた。
Subsequently, the cross section of each tape after the heat treatment was subjected to EP
Observation with MA revealed that the tape subjected to orientation heat treatment in argon or an argon-hydrogen mixed gas showed NiO
It was confirmed that iron was diffused inside. Nickel oxide had a thickness of 5 to 7 μm and was in contact with an iron oxide layer having a thickness of about 3 μm, and the iron oxide layer was in contact with a chromium oxide layer having a thickness of about 3 μm to reach the internal metal layer.

【0067】しかし、酸化クロムの層がニッケルとステ
ンレス鋼の界面に形成されていた場合は、テープ表面か
ら、厚さ5μm程度の酸化ニッケルの層、厚さ8μm程
度の酸化クロムの層、内部金属層の順に並ぶ構造になっ
ており、鉄の拡散を酸化クロムの層が抑制していること
が分かった。
However, when the chromium oxide layer was formed at the interface between nickel and stainless steel, the nickel oxide layer having a thickness of about 5 μm, the chromium oxide layer having a thickness of about 8 μm, The structure was arranged in the order of layers, and it was found that the diffusion of iron was suppressed by the layer of chromium oxide.

【0068】鉄が超電導層に混入すると、超電導特性が
著しく低下するため、鉄の拡散を抑制する酸化物層が表
面金属層と内部金属層の界面に形成されていることは、
極めて酸化物超電導層の形成には有益である。
When iron is mixed into the superconducting layer, the superconducting characteristics are remarkably reduced. Therefore, the oxide layer for suppressing the diffusion of iron is formed at the interface between the surface metal layer and the internal metal layer.
It is extremely useful for forming an oxide superconducting layer.

【0069】[実施例6]本実施例は、酸化物超電導線
材に係る実施例である。実施例5に記載のニッケル/ス
テンレス鋼複合テープをアルゴン中で、900℃、1時
間の配向処理を施し、さらに酸素中で1100℃、30
分の酸化熱処理を施した。得られたNiO結晶の極点図
を測定すると、テープ表面に{100}面が平行で、圧
延方向に<001>方向が高度に配向している集合組織
を呈していることが確認された。
[Embodiment 6] This embodiment relates to an oxide superconducting wire. The nickel / stainless steel composite tape described in Example 5 was subjected to orientation treatment at 900 ° C. for 1 hour in argon, and further subjected to 1100 ° C., 30 ° C. in oxygen.
Oxidizing heat treatment for a minute. When the pole figure of the obtained NiO crystal was measured, it was confirmed that the {100} plane was parallel to the tape surface, and that the <001> direction was highly oriented in the rolling direction, exhibiting a texture.

【0070】次に、作製された高強度配向多結晶金属基
板に、KrFエキシマレーザーを用いたレーザーアブレ
ーション法によりY123酸化物超電導層、Nd123
酸化物超電導層、およびゾルーゲル法によってBi22
12酸化物超電導層を成膜した。
Next, the Y123 oxide superconducting layer and the Nd123 were applied to the high intensity oriented polycrystalline metal substrate by laser ablation using a KrF excimer laser.
Oxide superconducting layer and Bi22 by sol-gel method
A 12 oxide superconducting layer was formed.

【0071】レーザーアブレーション法では、基板温度
を700℃、雰囲気ガスの酸素ガス圧力を100〜20
0mmTorr、レーザーのエネルギー密度は2J/c
2、レーザーの繰り返し周波数は10Hzとすること
により、Y123酸化物超電導層の膜厚は約0.3μm
となった。ゾルーゲル法では、構成元素のナフテン酸溶
解液を基板上に塗布し、スピンコートと500℃の乾燥
処理を繰り返すことによって、厚さ1μmまで堆積し
た。
In the laser ablation method, the substrate temperature is set to 700 ° C. and the oxygen gas pressure of the atmosphere gas is set to 100 to 20.
0mmTorr, laser energy density is 2J / c
m 2 , the laser repetition frequency is 10 Hz, and the film thickness of the Y123 oxide superconducting layer is about 0.3 μm.
It became. In the sol-gel method, a solution of a naphthenic acid solution of a constituent element was applied onto a substrate, and spin-coating and drying at 500 ° C. were repeated to deposit the solution to a thickness of 1 μm.

【0072】続いて、酸素中で900℃の部分溶融を経
た後、大気中で850℃、5時間の熱処理をして、酸化
物超電導層を形成した。
Subsequently, after partial melting at 900 ° C. in oxygen, heat treatment was performed at 850 ° C. for 5 hours in the air to form an oxide superconducting layer.

【0073】また、配向処理を施し、基板表面がNi
{100}<001>配向した高強度多結晶配向基板上
に、スパッタ法により、MgOを0.4μmの厚さに成
膜し、上述の条件でレーザーアブレーション法によりY
123酸化物超電導層を成膜した。この超電導線材につ
いて77K、自己磁場下でJcを測定して、下記表5に
示す結果を得た。
Further, an orientation treatment is performed so that the surface of the substrate is Ni
On a {100} <001> -oriented high-strength polycrystalline oriented substrate, a film of MgO is formed to a thickness of 0.4 μm by sputtering, and Y is formed by laser ablation under the above conditions.
A 123 oxide superconducting layer was formed. Jc of this superconducting wire was measured at 77 K under a self-magnetic field, and the results shown in Table 5 below were obtained.

【0074】[0074]

【表5】 [Table 5]

【0075】上記表5から、従来のIBAD法やRAB
iTS法で得られたJcと同程度のJcをY123超電
導体層やNd123超電導体層で得ることが可能である
ことが分かる。また、Bi系の超電導体のJcは銀基板
上で作製されたものと同等であることから、金属基板の
構成元素の拡散による特性低下が防止できていることが
分かる。
From Table 5 above, it can be seen that the conventional IBAD method and RAB
It can be seen that Jc similar to Jc obtained by the iTS method can be obtained in the Y123 superconductor layer or the Nd123 superconductor layer. In addition, since the Bi-based superconductor has the same Jc as that formed on the silver substrate, it can be seen that the characteristic deterioration due to the diffusion of the constituent elements of the metal substrate can be prevented.

【0076】[0076]

【発明の効果】以上詳細に述べたように、本発明による
と、高強度、高配向の多結晶金属基板を得ることが出
来、さらには酸化処理によって高配向の中間層を有する
金属基材の得ることが可能である。また、このような金
属基材上に超電導層を形成することにより、高いJcの
超電導線材を得ることが出来る。
As described above in detail, according to the present invention, a high-strength, highly-oriented polycrystalline metal substrate can be obtained, and a metal substrate having a highly-oriented intermediate layer can be obtained by oxidation treatment. It is possible to get. Further, by forming a superconducting layer on such a metal substrate, a superconducting wire having a high Jc can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例2により得たNi−SUS310複合テ
ープの配向性を示すX線極点図の1例を示す図。
FIG. 1 is a diagram showing an example of an X-ray pole figure showing the orientation of a Ni-SUS310 composite tape obtained in Example 2.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 前田 敏彦 東京都千代田区丸の内2丁目6番1号 古 河電気工業株式会社内 (72)発明者 松本 要 東京都江東区東雲一丁目14番3号 財団法 人国際超電導産業技術研究センター超電導 工学研究所内 (72)発明者 平林 泉 東京都江東区東雲一丁目14番3号 財団法 人国際超電導産業技術研究センター超電導 工学研究所内 Fターム(参考) 5G321 AA01 AA04 AA05 BA01 BA14 CA04 CA21 CA24 CA27 CA28 DB23 DB25 DB38  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Toshihiko Maeda 2-6-1 Marunouchi, Chiyoda-ku, Tokyo Furukawa Electric Co., Ltd. (72) Inventor Matsumoto required 1-14-1 Shinonome, Koto-ku, Tokyo (72) Inventor Izumi Hirabayashi 1-14-3 Shinonome, Shintomo, Koto-ku, Tokyo F-term (reference) 5G321 in the Superconductivity Engineering Research Center, International Superconducting Technology Research Center, Tokyo AA01 AA04 AA05 BA01 BA14 CA04 CA21 CA24 CA27 CA28 DB23 DB25 DB38

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】少なくとも1部が鉄系合金からなる内部金
属層と、この内部金属層の外周面に形成された、ニッケ
ル、酸化ニッケル、およびニッケルを主成分とするニッ
ケル合金からなる群から選ばれた1種からなる表面金属
層とを備える可撓性金属テープからなる酸化物超電導線
材用金属基板であって、前記表面金属層のニッケル、酸
化ニッケルあるいはニッケル合金の結晶粒の{100}
面がテープ表面にほぼ平行であり、かつその<001>
軸がテープの圧延方向にほぼ平行であるような集合組織
を示すことを特徴とする高強度配向多結晶金属基板。
1. An internal metal layer at least a part of which is made of an iron-based alloy, and nickel, nickel oxide, and a nickel alloy containing nickel as a main component formed on the outer peripheral surface of the internal metal layer. A metal substrate for an oxide superconducting wire made of a flexible metal tape having a surface metal layer of one kind selected from the group consisting of {100} crystal grains of nickel, nickel oxide or a nickel alloy of the surface metal layer.
The surface is substantially parallel to the tape surface, and its <001>
A high-strength oriented polycrystalline metal substrate characterized by exhibiting a texture whose axis is substantially parallel to the rolling direction of the tape.
【請求項2】前記内部金属層を構成する鉄系合金がステ
ンレス鋼であり、再結晶熱処理を施すことによって前記
表面金属層に再結晶集合組織が形成され、前記表面金属
層が、前記熱処理の際の前記内部金属層を構成する元素
の拡散距離よりも大きい厚さを有することを特徴とする
請求項1に記載の高強度配向多結晶金属基板。
2. An iron-based alloy constituting the internal metal layer is stainless steel, and a recrystallization texture is formed on the surface metal layer by performing recrystallization heat treatment, and the surface metal layer is formed by the heat treatment. 2. The high-strength oriented polycrystalline metal substrate according to claim 1, wherein the substrate has a thickness larger than a diffusion distance of an element constituting the internal metal layer.
【請求項3】前記表面金属層の厚さが4μm以上である
ことを特徴とする請求項1または2に記載の高強度配向
多結晶金属基板。
3. The high-strength oriented polycrystalline metal substrate according to claim 1, wherein the thickness of the surface metal layer is 4 μm or more.
【請求項4】前記内部金属層を構成する鉄系合金がオー
ステナイト系ステンレス鋼であることを特徴とする請求
項1〜3のいずれかの項に記載の高強度配向多結晶金属
基板。
4. The high-strength oriented polycrystalline metal substrate according to claim 1, wherein the iron-based alloy constituting the internal metal layer is austenitic stainless steel.
【請求項5】請求項1に記載の高強度配向多結晶基板に
対して熱処理を施すことにより、その表面に酸化ニッケ
ルを主成分とする酸化物結晶層を形成してなる可撓性金
属基板であって、前記酸化物結晶層の結晶粒の(10
0)面が基板表面にほぼ平行であるような結晶配向を示
すことを特徴とする高強度配向多結晶金属基板。
5. A flexible metal substrate formed by subjecting a high-strength oriented polycrystalline substrate according to claim 1 to a heat treatment to form an oxide crystal layer mainly composed of nickel oxide on the surface thereof. Wherein (10) of crystal grains of the oxide crystal layer
0) A high-strength oriented polycrystalline metal substrate having a crystal orientation in which the plane is substantially parallel to the substrate surface.
【請求項6】前記内部金属層と前記表面金属層との界面
に、前記内部金属層を構成する金属元素の少なくとも1
種類の金属元素の酸化物よりなる酸化物層が形成されて
いることを特徴とする請求項5に記載の高強度配向多結
晶金属基板。
6. At least one of metal elements constituting the internal metal layer is provided at an interface between the internal metal layer and the surface metal layer.
The high-strength oriented polycrystalline metal substrate according to claim 5, wherein an oxide layer made of an oxide of one of various kinds of metal elements is formed.
【請求項7】前記表面金属層を構成するニッケル合金が
ニッケル−銅合金である請求項1に記載の高強度配向多
結晶金属基板に対して熱処理を施すことにより、その表
面に酸化ニッケルを主成分とする酸化物結晶層を形成し
てなる請求項5に記載の高強度配向多結晶金属基板。
7. The high-strength oriented polycrystalline metal substrate according to claim 1, wherein the nickel alloy constituting the surface metal layer is a nickel-copper alloy, and the surface thereof is mainly made of nickel oxide. The high-strength oriented polycrystalline metal substrate according to claim 5, wherein an oxide crystal layer as a component is formed.
【請求項8】請求項1〜7のいずれかの項に記載の高強
度配向多結晶金属基板上に、主として酸化物超電導体よ
りなる超電導体層を、直接あるいは中間層を介して形成
してなる酸化物超電導線材。
8. A superconductor layer mainly composed of an oxide superconductor is formed on the high-strength oriented polycrystalline metal substrate according to any one of claims 1 to 7 directly or via an intermediate layer. Oxide superconducting wire.
【請求項9】超電導体の主成分たる酸化物超電導体がR
EBa2 Cu3 x (式中、REはYあるいはNdを示
し、xは7に近い数を示す。)なる化学式で表される超
電導物質であることを特徴とする請求項8に記載の酸化
物超電導線材。
9. An oxide superconductor which is a main component of the superconductor is R
EBa 2 Cu 3 O x (wherein, RE represents a Y or Nd, x is. Indicates the number close to 7) oxidation of claim 8, which is a superconducting material represented by a chemical formula consisting Superconducting wire.
JP28686999A 1999-10-07 1999-10-07 High strength oriented polycrystalline metal substrate and oxide superconducting wire Expired - Fee Related JP4316070B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28686999A JP4316070B2 (en) 1999-10-07 1999-10-07 High strength oriented polycrystalline metal substrate and oxide superconducting wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28686999A JP4316070B2 (en) 1999-10-07 1999-10-07 High strength oriented polycrystalline metal substrate and oxide superconducting wire

Publications (2)

Publication Number Publication Date
JP2001110255A true JP2001110255A (en) 2001-04-20
JP4316070B2 JP4316070B2 (en) 2009-08-19

Family

ID=17710066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28686999A Expired - Fee Related JP4316070B2 (en) 1999-10-07 1999-10-07 High strength oriented polycrystalline metal substrate and oxide superconducting wire

Country Status (1)

Country Link
JP (1) JP4316070B2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001236834A (en) * 2000-02-21 2001-08-31 Fujikura Ltd Oxide superconducting conductor
WO2003050826A1 (en) * 2001-12-10 2003-06-19 Mitsubishi Denki Kabushiki Kaisha Metal base material for oxide superconductive thick film and method for preparation thereof
JP2005056754A (en) * 2003-08-06 2005-03-03 Sumitomo Electric Ind Ltd Superconductive wire and its manufacturing method
JP2006127847A (en) * 2004-10-27 2006-05-18 Sumitomo Electric Ind Ltd Alignment substrate for film formation and superconducting wire material
JP2006286212A (en) * 2005-03-31 2006-10-19 Furukawa Electric Co Ltd:The High-strength polycrystalline metallic board for oxide superconductivity, and oxide superconductivity wire rod using the same
JP2007115562A (en) * 2005-10-21 2007-05-10 Internatl Superconductivity Technology Center Tape-shaped rare-earth group oxide superconductor and its manufacturing method
JP2007200831A (en) * 2005-12-26 2007-08-09 Furukawa Electric Co Ltd:The Superconductor base material and method for fabrication thereof
JP2008266686A (en) * 2007-04-17 2008-11-06 Chubu Electric Power Co Inc Clad textured metal substrate for forming epitaxial thin film thereon and method for manufacturing the same
JP2009117358A (en) * 2007-10-18 2009-05-28 Furukawa Electric Co Ltd:The Composite substrate for oxide superconducting wire material and manufacturing method thereof, and superconducting wire material
WO2010055612A1 (en) 2008-11-12 2010-05-20 東洋鋼鈑株式会社 Method for manufacturing metal laminated substrate for semiconductor element formation and metal laminated substrate for semiconductor element formation
WO2010055651A1 (en) 2008-11-12 2010-05-20 東洋鋼鈑株式会社 Method for producing metal laminated substrate for oxide superconducting wire, and oxide superconducting wire using the substrate
WO2010058823A1 (en) 2008-11-21 2010-05-27 財団法人 国際超電導産業技術研究センター Substrate for super-conductive film formation, super-conductive wire material, and method for producing the same
JP2011040396A (en) * 2010-08-25 2011-02-24 Sumitomo Electric Ind Ltd Manufacturing method of orientation substrate for film formation, superconducting wire material, and orientation substrate for film formation
WO2011040381A1 (en) * 2009-09-29 2011-04-07 古河電気工業株式会社 Substrate for superconducting wiring, superconducting wiring and production method for same
JP2012021508A (en) * 2010-07-16 2012-02-02 Tohoku Univ Processing device
JP2012199251A (en) * 2012-06-27 2012-10-18 Sumitomo Electric Ind Ltd Orientation substrate for film formation, superconducting wire material, and manufacturing method of orientation substrate for film formation
JP2012216487A (en) * 2011-03-31 2012-11-08 Korea Electrotechnology Research Inst High-temperature superconducting wire rod
JP2013077568A (en) * 2012-11-15 2013-04-25 Sumitomo Electric Ind Ltd Orientation substrate for film formation, superconducting wire material, and manufacturing method of orientation substrate for film formation

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001236834A (en) * 2000-02-21 2001-08-31 Fujikura Ltd Oxide superconducting conductor
WO2003050826A1 (en) * 2001-12-10 2003-06-19 Mitsubishi Denki Kabushiki Kaisha Metal base material for oxide superconductive thick film and method for preparation thereof
JP2005056754A (en) * 2003-08-06 2005-03-03 Sumitomo Electric Ind Ltd Superconductive wire and its manufacturing method
JP2006127847A (en) * 2004-10-27 2006-05-18 Sumitomo Electric Ind Ltd Alignment substrate for film formation and superconducting wire material
JP2006286212A (en) * 2005-03-31 2006-10-19 Furukawa Electric Co Ltd:The High-strength polycrystalline metallic board for oxide superconductivity, and oxide superconductivity wire rod using the same
JP2007115562A (en) * 2005-10-21 2007-05-10 Internatl Superconductivity Technology Center Tape-shaped rare-earth group oxide superconductor and its manufacturing method
JP2007200831A (en) * 2005-12-26 2007-08-09 Furukawa Electric Co Ltd:The Superconductor base material and method for fabrication thereof
JP4716324B2 (en) * 2005-12-26 2011-07-06 古河電気工業株式会社 Superconductor substrate and method for producing the same
JP2008266686A (en) * 2007-04-17 2008-11-06 Chubu Electric Power Co Inc Clad textured metal substrate for forming epitaxial thin film thereon and method for manufacturing the same
JP2009117358A (en) * 2007-10-18 2009-05-28 Furukawa Electric Co Ltd:The Composite substrate for oxide superconducting wire material and manufacturing method thereof, and superconducting wire material
WO2010055651A1 (en) 2008-11-12 2010-05-20 東洋鋼鈑株式会社 Method for producing metal laminated substrate for oxide superconducting wire, and oxide superconducting wire using the substrate
WO2010055612A1 (en) 2008-11-12 2010-05-20 東洋鋼鈑株式会社 Method for manufacturing metal laminated substrate for semiconductor element formation and metal laminated substrate for semiconductor element formation
US9034124B2 (en) 2008-11-12 2015-05-19 Toyo Kohan Co., Ltd. Method for producing metal laminated substrate for oxide superconducting wire, and oxide superconducting wire using the substrate
WO2010058823A1 (en) 2008-11-21 2010-05-27 財団法人 国際超電導産業技術研究センター Substrate for super-conductive film formation, super-conductive wire material, and method for producing the same
CN102224552B (en) * 2008-11-21 2014-08-20 财团法人国际超电导产业技术研究中心 Substrate for super-conductive film formation, super-conductive wire material, and method for producing the same
US8927461B2 (en) 2008-11-21 2015-01-06 International Superconductivity Technology Center Substrate for fabricating superconductive film, superconductive wires and manufacturing method thereof
WO2011040381A1 (en) * 2009-09-29 2011-04-07 古河電気工業株式会社 Substrate for superconducting wiring, superconducting wiring and production method for same
JP2012021508A (en) * 2010-07-16 2012-02-02 Tohoku Univ Processing device
JP2011040396A (en) * 2010-08-25 2011-02-24 Sumitomo Electric Ind Ltd Manufacturing method of orientation substrate for film formation, superconducting wire material, and orientation substrate for film formation
JP2012216487A (en) * 2011-03-31 2012-11-08 Korea Electrotechnology Research Inst High-temperature superconducting wire rod
JP2012199251A (en) * 2012-06-27 2012-10-18 Sumitomo Electric Ind Ltd Orientation substrate for film formation, superconducting wire material, and manufacturing method of orientation substrate for film formation
JP2013077568A (en) * 2012-11-15 2013-04-25 Sumitomo Electric Ind Ltd Orientation substrate for film formation, superconducting wire material, and manufacturing method of orientation substrate for film formation

Also Published As

Publication number Publication date
JP4316070B2 (en) 2009-08-19

Similar Documents

Publication Publication Date Title
JP4316070B2 (en) High strength oriented polycrystalline metal substrate and oxide superconducting wire
JP3587956B2 (en) Oxide superconducting wire and its manufacturing method
CN102209995B (en) Method for producing metal laminated substrate for oxide superconducting wire, and oxide superconducting wire using the substrate
JP2001518564A (en) Superconductor substrate
JP4602911B2 (en) Rare earth tape oxide superconductor
JP4716324B2 (en) Superconductor substrate and method for producing the same
JP3521182B2 (en) Oxide superconducting wire and superconducting device
JP4398582B2 (en) Oxide superconducting wire and method for producing the same
US6251834B1 (en) Substrate materials
JP3568561B2 (en) Structure of oxide superconductor with stabilizing metal layer
KR101680405B1 (en) Substrate, process for production of substrate, electrically super-conductive wire material, and process for production of electrically super-conductive wire material
JP2000109320A (en) Metallic substrate for oxide superconductor and its production
WO2012111678A1 (en) Super-conducting wire and method for producing super-conducting wire
JPWO2013008851A1 (en) Superconducting thin film and method for producing superconducting thin film
Kaul et al. Development of non-magnetic biaxially textured tape and MOCVD processes for coated conductor fabrication
JP5323444B2 (en) Composite substrate for oxide superconducting wire, manufacturing method thereof, and superconducting wire
JPH01189813A (en) Oxide superconductive wire material
Izumi et al. All Japan efforts on R&D of HTS coated conductors for future applications
JPH0524806A (en) Oxide superconductor
JPH06283056A (en) Oxide superconductive wire
JPH11329118A (en) Oxide superconducting composite material and its manufacture
JPH06251929A (en) Manufacture of oxide superconducting coil
JP2599138B2 (en) Method for producing oxide-based superconducting wire
JPH04324209A (en) Oxide superconductive wire and its manufacture
JP3248190B2 (en) Oxide superconducting wire, its manufacturing method and its handling method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080909

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081110

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090108

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090409

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090428

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090520

R151 Written notification of patent or utility model registration

Ref document number: 4316070

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140529

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees